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Abstract

Purpose

This study was aimed to purify and characterize the Protease inhibitor (PI) from a plant

Allium sativum (garlic) with strong medicinal properties and to explore its phytodrug

potentials.

Methods

Allium sativum Protease Inhibitor (ASPI) was purified using ammonium sulphate fraction-

ation and Fast Protein Liquid Chromatography on anion exchanger Hi-Trap DEAE column.

The purified protein was analyzed for its purity and molecular weight by SDS PAGE. The

confirmation of presence of trypsin inhibiting PI was performed by MALDI TOF-TOF and

analyzed by MASCOT database. The ASPI was further investigated for its kinetic properties

and stability under extreme conditions of pH, temperature and chemical denaturants. Sec-

ondary structure was determined by Circular Dichorism (CD) spectroscopy.

Results

ASPI of ~15 kDa inhibited trypsin and matched "truncated kunitz Trypsin Inhibitor (Glycine

max)" in MASCOT database. The purified ASPI showed 30376.1371 U/mg specific activ-

ity with a fold purity of 159.92 and yield ~93%. ASPI was quite stable in the range of pH

2–12 showing a decline in the activity around pH 4–5 suggesting that the pI value of the

protein as ASPI aggregates in this range. ASPI showed stability to a broad range of temper-

ature (10–80˚C) but declined beyond 80˚C. Further, detergents, oxidizing agents and

reducing agents demonstrated change in ASPI activity under varying concentrations. The

kinetic analysis revealed sigmoidal relationship of velocity with substrate concentration

with Vmax 240.8 (μM/min) and Km value of 0.12 μM. ASPI showed uncompetitive inhibition

with a Ki of 0.08±0.01 nM). The Far UV CD depicted 2.0% α -helices and 51% β -sheets at

native pH.
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Conclusions

To conclude, purified ~15 kDa ASPI exhibited fair stability in wide range of pH and tempera-

ture Overall, there was an increase in purification fold with remarkable yield. Chemical modi-

fication studies suggested the presence of lysine and tryptophan residues as lead amino

acids present in the reactive sites. Therefore, ASPI with trypsin inhibitory property has the

potential to be used as a non-cytotoxic clinical agents.

Introduction

Proteases and their inhibitors are accepted to be predominant in all living entities encompass-

ing microorganisms, plants and animals. Several biological processes such as blood coagula-

tion, hormone processing, complement cascade and apoptosis are conducted by these

biological macromolecules [1]. Protease inhibitors (PIs) which develop naturally are elemental

for modulating the operation of their corresponding proteases within these pathways [2]. The

inhibitors have been grouped in 48 families and graded in four mechanistic classes i.e. cysteine,

serine, metallo-protease and aspartic inhibitors which is based on the active amino-acid in

their “reaction center” [3].

The utility of protease inhibitors as therapeutic agents, specifically, their purposefulness in

inhibition of cellular transformation, blood clotting disorders, osteoporosis, retroviral disease

and cancer is under meticulous discovery procedure. One of the most significant biological

application of PIs is their capacity to be used as anti-cancer agents by arresting the growth of

transformed cells [4–8]. PIs from plant sources have acquired exceptional imporatnce as natu-

ral plant protecting agents [9]. PIs, in addition to inhibiting growth of insects and pests, also

offer restraining function against pathogenic nematodes like Globodera tabaccum [10] and

many pathogenic fungi including Candida tropicalis [11] and Trichoderma reesei [12]. Protease

Inhibitors have been decontaminated and defined from a considerable number of plant

sources [13–17].

Garlic (Allium sativum, Liliaceae) is a acclaimed medicinal plant used for healing and medi-

cation and is noted to be a vital culinary spice worldwide. It has been reported since long time

for its implicit health benefits and a large number of chemicals from garlic have been isolated

demonstrating their application in several human diseases [18–20]. During last two decades, it

was shown that garlic is endowed with antibiotic, antifungal [21] and antibacterial activities

[22]. Current observations have substantiated that garlic may also be used against antiarthero-

sclerosis, hypolipidemic [23–24] and anticarcinogenesis activities [25–26]. Moreover, several

studies have shown garlic to be a potent immunomodulator.

In this study, garlic extract was processed from the edible parts of garlic cloves, Seemingly,

ASPI was purified for the first time and its biophysical characterization was done to assess its

stability. Further, kinetic enquiry and concluded Vmax, Ki and Km values were conducted. It

is envisaged that this study would be useful in exploring the potential of ASPI as a phytodrug

in the context of a large number of diseases.

Materials and Methods

Materials

Allium sativum (PUSA- AG 102) commonly known as “garlic” was obtained from IARI, New

Delhi. Chemicals; trypsin (bovine pancreatic trypsin), Nα-benzoyl-DL-arginine-p-nitroanilide
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(BAPNA), phenylmethylsulfonyl fluoride (PMSF), Polyvinylpyrrolidone (PVP), acrylamide,

bis-acrylamide, Tetramethylethylenediamine (TEMED), ammonium persulfate and Sodium

Dodecyl Sulfate (SDS), acrylamide, bis-acrylamide, TEMED, ammonium persulfate and SDS

were obtained from Sigma-Aldrich. All other reagents and chemicals used were of analytical

grade.

ASPI purification

Garlic bulbs were homogenized in 20mM Tris- 2mM CaCl2 (Tris)buffer (pH 8.2) containing

1M NaCl. The homogenate was filtered through muslin cloth and was kept on stirring at 4˚C

for 4–5hrs. Protease inhibitor such as PVP and PMSF were added to avoid any proteolytic

activity. The homogenate was centrifuged at 9000 rpm for 1 hr at 4˚C The supernatant

obtained was saturated with 30% ammonium sulphate. The supernatant was collected and sub-

jected to 50% ammonium sulphate precipitation and the pellet was obtained after centrifuga-

tion at 9000 rpm for 1 hr. This pellet was solubilised in Tris buffer (pH 8.2) followed by

extensive dialysis using cellulose tubing (12 kDa cut off) in same buffer for 24 h. The dialyzed

sample was filtered and weak anion-exchange chromatography was performed on Hi Trap

DEAE FF (1 ml, 7 mm × 25 mm) column (GE Healthcare) pre-equilibrated with Tris buffer

(pH 8.2). The sample was injected into the column with a 5-ml loop. The fraction size of eluent

and flow rate of buffer were checked by Akta purifier. The unbound proteins were washed till

the absorbance at 280 nm dropped down to zero. The bound proteins were eluted with 0-1M

NaCl in linear gradient in same buffer. The first peak eluted at 0.12 M NaCl showed trypsin

inhibitory activity. The eluent was further concentrated using Amicon filter (Merck, Ger-

many). The protein was then assayed for concentration and activity as mentioned below. The

purified protein thus served as ASPI and was characterized further for biochemical assays.

Protein estimation

ASPI concentration was measured following the protocol of Lowry et al. with minor modifica-

tions [27] using Bovine Serum Albumin (1mg/ml) as standard.

SDS-PAGE analysis

SDS-PAGE was performed by the method of Laemmli [28] using 12% resolving gel and 5%

stacking gel. The samples were mixed with equal volume of loading buffer and heat denatured

before loading into the wells. The proteins were separated at 100V using Mini Protean II unit

(Bio-Rad, USA). After complete resolution, the gel was taken off the cast followed by staining

in Coomassie Brilliant Blue. Protein standard (10 to 250 kDa) was used for the determination

of molecular mass of ASPI. The purity was checked by visualizing the number of bands of the

sample run.

Protein identification by MALDI-TOF-TOF

The protein band from SDS gel was cut and picked in 0.2 ml micro centrifuge tube. Trypsin

digestion of excised protein was done by the method of Bagheri et al. [29]. The peptide mass

fingerprinting was performed on a MALDI-TOF-TOF MS analyzer (ABSCIEX TOF/TOF

5800, Applied Biosystems, USA) and the protein identification (ID) was made using result-

dependent analysis (RDA) by ProteinPilot™ software (Version 3.2, USA). Data was analyzed as

MS/MS ion search, and preliminary identification of protein was performed by searching the

NCBI database, using the MASCOT (http://www.matrixscience.com) algorithm. To evaluate

the protein identification, protein with significant score was considered.
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Trypsin inhibitory activity determination

The trypsin-inhibitory activity of ASPI was determined by measuring the residual enzymatic

activity towards the substrate 1.5 mM BAPNA–HCl in 20% Glycerol [30]. The total reaction

mixture contained ASPI and trypsin in a ratio of (2:1) and incubated for 15–30 min at room

temperature. The chromogenic substrate i.e. BAPNA was added and the reaction mixture was

further incubated at room temperature to analyze the reaction of unbound trypsin with

BAPNA. The reaction was arrested by adding acetic acid. The enzymatic hydrolysis of BAPNA

was determined by visualizing the intensity of yellow color which corresponded to the release

of p-nitroaniline and trypsin activity at 410 nm. Activity was defined by the activity of test (PI

+ trypsin)—Activity of negative (trypsin alone). Activity of trypsin was calculated by the for-

mula:

Activity ðUÞ ¼ 4A � Total volumeðmlÞ �D:F: � 1000000=xBAPNA � Sample volumeðmlÞ

Where, ΔA = change in absorbance at 410 nm, D.F. = Dilution Factor, εBAPNA = Molar extinc-

tion coefficient of BAPNA

Stability studies

Effect of pH on ASPI. The effect of pH on the inhibitory potential of ASPI were also

checked by pre-incubating it with the enzyme at the desired pH (1–12) for 30 min and then

assaying for residual enzyme activity. 100 mM solutions of the following buffers were used to

get the desired pH: KCl-HCl (1.0), Gly-HCl (pH 2.0–4.0), sodium acetate (5.0–6.0), sodium

phosphate (pH 7.0–8.0) and Gly-NaOH (pH 9.0–12.0). The test sample showing maximum

inhibitory activity was taken to be as 100%. Rest of the samples was compared to calculate per-

centage residual activity.

Thermal stability of ASPI. The thermal stability test of ASPI was done in Tris buffer by

treating the sample for 30 min at various temperatures, ranging 10–100˚C in a thermostat. The

samples were then adjusted to 37˚C and checked for residual inhibitory activity.

Effect of detergents, reducing and oxidizing agents. ASPI was incubated with non-ionic

and ionic detergents (Triton X 100, SDS and Tween-80) at 0.5 and l% each w/v for 30 min fol-

lowed by dialysis against Tris buffer. The residual inhibitory activities were calculated at

410nm by observing chromogenic change after adding trypsin followed by substrate.

The effect of reducing agents β-mercaptoethanol and like Dithiothreitol (DTT) on ASPI

activity was analyzed by incubating ASPI with 1, 2 and 3 mmol/L agents for 3 h and their resid-

ual inhibitory activities were estimated.

Similarly, the effect of oxidizing agents such as Dimethyl sulphoxide and hydrogen peroxide

on ASPI activity was studied by incubating them with ASPI in varied concentrations of 0.5, 1,

2, 3 and 4% (v/v) for 30 min. Later, residual trypsin inhibitory activities were estimated.

Kinetic analysis

Kineticanalysis of ASPI activity was carried out to calculate Km and Vmax values of ASPI

activity. The inhibitory potential of ASPI was analyzed for trypsin using BAPNA (0.005

and0.01 mmol/L). The initial slope “v” was determined for each inhibitory concentration. The

velocity of ASPI (V) versus BAPNA concentration (S) was also plotted. The rate of reaction

was symbolized as V(OD410mM/min/mL). The Vmax and Km values were calculated from the

graph. The amidolytic activity of trypsin (30 μg) was determined with various concentrations

of BAPNA (1.2 to5.0μM) in the absence of ASPI. The assays were then repeated in the presence

of 5 and 15 μg of ASPI. The Ki values were calculated from Lineweaver-Burk plot.
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Structure determination of ASPI

The secondary structure determination of ASPI was determined by Circular Dichorism (CD).

Far UV CD spectra were recorded on a J-1500 Jasco spectropolarimeter, equipped with a Pel-

tier-based computer-driven temperature control, and analyzed by means of Jasco software.

The cell path was 0.1 cm for measurements in the range of 200–250 nm.

Statistical analysis

The experiments were done in triplicates. Results were expressed as graphs representing

Mean ± SD using the software Graph Pad Prism 5. The results thus confirm the reproducibility

of the data.

Results

Purification of ASPI

The purification process yielded ~10 mg of protein from 100 g of peeled fresh garlic bulbs. The

sample obtained after ammonium sulphate precipitation and dialysis was subjected to trypsin

inhibitory activity. The fractionate thus obtained showed trypsin inhibitory activity and was

loaded onto a Hi Trap DEAE FF column. Gradient elution was performed and the fractions

were eluted with range of NaCl concentrations (Fig 1). The peaks collected were again assayed

for activity against trypsin. The purified ASPI showed 30376.1371 U/mg specific activities with

a fold purity of 159.92 and the yield obtained was ~93% (Table 1). The active fraction thus

obtained was used further for various biophysical activities.

Fig 1. FPLC chromatogram of ASPI after ammonium sulphate saturation and dialysis, the sample was

loaded on Hi Trap DEAE FF column and eluted using gradient of NaCl (0–100% in Tris buffer). The

chromatogram represents concentration of ASPI eluted (milliabsorbance mA280 at 280 nm) on Y axis with amount

of eluted fraction (ml) on Y axis. The second curve represents the gradient of NaCl (0–100% of B) where buffer A is

25 mM Tris–HCl (pH 8.2) and B is 1.0 M NaCl in the same buffer.

doi:10.1371/journal.pone.0165572.g001
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Protein Estimation

The protein concentrations and trypsin inhibitory activity were determined and compared at

each step of purification (Table 1). The results depicted downhill slope of concentration and

total protein with each passing step whereas an increase in specific activity and fold purifica-

tion. The results are interpreted in Table 1.

SDS-PAGE analysis

SDS polyacrylamide gel electrophoresis of the eluted ASPI yielded a single thick band demon-

strating purity and molecular weight of the protein. The ASPI showed a clear band corre-

sponding to a molecular weight of approximately ~15 kDa (Fig 2, lane 2).

Protein identification by MALDI-TOF-MS/MS analysis

The band excised from SDS-PAGE (Fig 2 Lane 2) was identified through MALDI TOF-TOF.

A band at ~15-kDa was digested with trypsin into 5 fragments in the range of 997.1549–

Table 1. Protein Estimation and activity profile at each step of purification.

Step Activity (U/

ml)

Protein

Conc.

Amount

(ml)

Total Protein

(mg)

Total Activity

(U)

Specific Activity

(U/mg)

Fold

Purification

Yield

(%)

Homogenate 30229.746 1.061 150 159.15 4534461.9 189.945 1 100

30–50% (NH4)2SO4

precipitate

164449.82 2.095 26 54.47 4275695.3 3019.0898 15.894 94.293

FPLC eluent 301088.27 0.708 14 9.912 4215235.8 30376.137 159.92 92.96

doi:10.1371/journal.pone.0165572.t001

Fig 2. ASPI was run on 12% resolving, 5% stacking SDS PAGE. 20μl of sample with loading buffer was

loaded in each well. The bands were visualized using Coomassie staining. Lane 1: standard proteins, Lane 2:

Akta-DEAE eluent, Lane 3: 30–50% ammonium sulfate saturated sample (dialyzed).

doi:10.1371/journal.pone.0165572.g002
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1762.4725 Da as shown in the peptide mass fingerprint (Table 2). These fragments were found

to be the part of Truncated Trypsin Inhibitor (gi|13375351) with maximum mascot score of 92

with the gi|1370187 is the sequence of truncated TI from Glycine max with a molecular mass of

16,124 Da and 27% protein sequence coverage. Since the gene sequence of PI from A. sativum
was not determined so far; we considered the purified protein as PI specifically TI of the said

plant. Other hits also resembled with the PIs of different plants substantiated the identification

of the purified protein. The scoring was based on the “Probability based MOWSE score” i.e.

“Ion score” being equal to 10 x Log (P), where P is the probability observed and match was an

event occurring randomly. The Peptide sequences obtained after MALDI-TOF-TOF analysis

were searched against Swiss-Prot database and MASCOT search which confirmed that the

purified protein was trypsin inhibitor.

Trypsin inhibitory activity determination

ASPI was checked for trypsin inhibition using BAPNA as substrate. Activity and Specific activ-

ity of PI were calculated at each step of purification. The total activity (activity of protein x

total volume of protein) was calculated at each step. The specific trypsin inhibitory activity i.e.

total activity of protein/ total amount of protein in fraction increased with each step of purifi-

cation from ~190 U/mg to 30376.13711 U/mg in 159.15mg homogenate and 9.912 mg FPLC

eluent fraction respectively. The purified ASPI showed several fold purification of ~160 com-

pared to crude garlic extract (Table 1).

Stability studies

Effect of temperature and pH on ASPI. The ASPI was incubated with buffers of pH 1–12

for 12 hrs at 4˚C. Data presented in Fig 3 indicated percentage residual activity of ASPI over a

wide range of pH recording maximum drop in activity at pH 4 (~61% activity) compared to

the activity observed at other pH. Thus ASPI showed high stability at extreme pH conditions

suggesting that ASPI was resistant to pH fluctuations.

The residual inhibitory activity of ASPI was measured after pretreatment of ASPI at differ-

ent temperatures for 30 min. ASPI was found to be resistant to thermal denaturation showing

that itretained its activity upto 80˚C. The ASPI showed highest activity at the temperatures

ranging from 30–40˚C (Fig 4). It was noted that activity of ASPI was dropped beyond 80˚C

and it became totally inactive at 100˚C (~21% inhibition). We construe that ASPI is quite heat

stable as shown in Fig 4.

Effect of detergents, oxidizing and reducing agents on ASPI activity. The results

depicted that ionic and nonionic detergents except SDS have negative effect on PI activities.

There was an increase in residual activity of ASPI to ~143% in the presence of 1% SDS as com-

pared to control. In case of Tween 80 and Triton X 100, the residual inhibitory activities

decreased to ~35% and ~58% respectively (Fig 5).

Table 2. List of peptide fragments obtained after tryptic digestion.

S.No. Mass Mr. Range Peptide Sequence

1. 1762.4725 73–88 R.NELDKGIGTIISSPYR.I

2. 1163.3301 78–88 K.GIGTIISSPYR.I

3. 1211.3467 91–101 R.FIAEGHPLSLK.F

4. 1538.2931 132–144 K.IGENKDAMDGWFR.L

5. 997.1549 137–144 K.DAMDGWFR.L

doi:10.1371/journal.pone.0165572.t002
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Fig 3. Stability of ASPI was measured at different pH by incubating it in buffers with pH ranging from

0.5–12 for 12 hours.

doi:10.1371/journal.pone.0165572.g003

Fig 4. Thermal stability studies of ASPI was done by incubating it at different temperatures ranging

from 10–100˚C for 30min. Following this, ASPI was assayed for residual inhibitory activity at room

temperature.

doi:10.1371/journal.pone.0165572.g004
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Oxidizing agents such as H2O2 and DMSO reduced ASPI activity in concentration depen-

dent manner. The results showed that 5mM H2O2 almost completely inhibited ASPI activity

whereas 5mM DMSO reduced ASPI activity to ~21% (Fig 6). We can suggest that oxidation

can be a key element for ASPI activity regulation.

Moreover, reducing agent like DTT also reduced the residual inhibitory activity of ASPI in

concentration dependent manner. The activity was reduced to 8% at 5mM DTT concentra-

tion. Whereas, β-ME (1.0–3.0 mM) after 3 hours of incubation barely affected ASPI activity as

it remained 99%-93%. Further, an increase in β-ME concentration too could not inhibit ASPI

activity to an appreciable level showing maximum drop to ~85% at 5mM β-ME (Fig 7).

Fig 5. Effect of detergents on inhibitor activity of ASPI by incubating it with detergents for 30 min at

room temperature. ASPI was then assayed for residual inhibitory activity at room temperature.

doi:10.1371/journal.pone.0165572.g005

Fig 6. Effect of oxidizing agents on inhibitory activity of ASPI by incubating it with oxidizing agents

for 30 min at room temperature. ASPI was then assayed for residual inhibitory activity at room temperature.

doi:10.1371/journal.pone.0165572.g006
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Kinetic studies

The inhibitory graph with variable ASPI: trypsin concentration with fixed BAPNA volume

suggests steep drop in trypsin activity with increasing ASPI/trp ratio. This could be determined

spectrophotometrically at 410 nm by observing the decrease in chromogenic substance (Fig 8).

The velocity of ASPI was determined by taking variable substrate (BAPNA) concentration.

The velocity showed sigmoidal relationship with substrate concentration with the curve

Fig 7. Effect of reducing agents on inhibitor activity of ASPI by incubating ASPI with reducing agents

for 30 min at room temperature. ASPI was then assayed for residual inhibitory activity at room temperature.

doi:10.1371/journal.pone.0165572.g007

Fig 8. Residual trypsin inhibitory activity in percent with variable function of molar ratio (ASPI:

trypsin) using BAPNA at fixed concentration.

doi:10.1371/journal.pone.0165572.g008
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meeting, extrapolating X–axis at a point equivalent to -1/km. ASPI showed Vmax 240.8 (μM/

min) and Km value of 0.12 μM (Fig 9). The low Km value suggests higher affinity of enzyme

(trypsin) towards substrate (BAPNA).

Residual trypsin activity in the absence and presence of 2.5 μg, 5 μg and 7.5 μg ASPI was cal-

culated at different substrate (0.8–5 μM BAPNA) concentration. The double reciprocal plot of

kinetic data is depicted in Fig 10. In the presence of ASPI, there was a decline in Vmax value

and the curves intersecting each other on X axis at -1/km. The mode of trypsin inhibition by

ASPI was non-competitive. The Ki value calculated from Dixon plot was 0.08±0.01 nM).

Structure determination

ASPI is an α+β protein at pH 8.2, demonstrated by far UV spectrum measured by circular

dichroism (Fig 11). Secondary structural content was determined from the CD spectrum of

native protein using K2D2 server, which revealed 2.0% α -helices and 51% β -sheets in Tris

buffer (20 mM, pH 8.2).

Discussion

Several plant sources were screened for the presence of PI and the results showed that the sam-

ples possess highly stable PI after ammonium sulphate saturation. Selection of Allium sativum
(garlic a member of the Liliaceae (Amaryllidaceae) family) was based on the fact that it has a

potent PI with highest medicinal values useful in pharmaceutical, biotechnological and indus-

trial applications. It is known to have lesser amount of protein as compared to legumes [31].

The present work becomes significant and novel because no PI has ever been described from

Allium sativum so far.

In our study, SDS-PAGE analysis proved that the eluted protein possess a molecular mass

of ~15 KDa against the protein standard. Serpins are a superfamily consisting of proteins

which inhibit serine protease (trypsin, chymotrypsin etc.) and ASPI being a potent trypsin

Fig 9. Trypsin inhibitory activity of ASPI showing residual inhibition activity in percent as function of

the inhibitor dose at a fixed concentration using BAPNA as variable substrate.

doi:10.1371/journal.pone.0165572.g009
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Fig 11. Representative far-UV CD spectra of ASPI in native state at pH 8.2 and 25˚C.

doi:10.1371/journal.pone.0165572.g011

Fig 10. Trypsin inhibition by ASPI was calculated by incubating 30 μg of trypsin with variable ASPI

amount (0, 2.5, 5, 7.5 μg) and BAPNA solution (0.8 to 5.0 μM).

doi:10.1371/journal.pone.0165572.g010
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inhibitor tends to fall in serpin family. Also, the observed molecular mass of the ASPI showed

high homology with Kunitz type of inhibitors because members of this family are believed to

have molecular mass upto ~16–26 kDa [32–33]. Hence, on the basis of molecular weight of the

novel PI we report, it can be inferred that ASPI is a member of family of Kunitz type inhibitor

and a member of serpin family. The ability of ASPI to inhibit trypsin proved that it is a strong

trypsin inhibitor and being novel. This was further confirmed by MALDI TOF-TOF which

matched the database with TI from Glycine max.

The results of MALDI TOF-TOF depicted that the protein after tryptic digestion and

MALDI analysis matched the sequence of gi|1370187 which is TI from Glycine max with a

molecular mass of 16,124 Da and 27% protein sequence coverage. ASPI being novel protein

does not have its gene sequence available in NCBI database. Thus, the protein purified demon-

strating trypsin inhibitory activity is entitled to become ASPI. The results are supported and

further strengthened by the resemblance with sequence derived from other TIs of different

plants.

Stability of eluted protein was studied in the presence of several chemical and physical

denaturants such as pH, temperature and various chemical agents such as detergents, reducing

and oxidizing agents. It was assumed that the protein might be functionally stable due to the

presence of the intra molecular disulphide bridges in the PI [34]. When the protein was

exposed to harsh temperature conditions, it deactivated thermally due to the denaturation and

unfolding, because of the disturbance and breakage of covalent and non-covalent interactions

[35]. A number of PPIs from plant sources have been purified and found to be highly stable

and fairly active up to 70˚C [36]. Thermal denaturation of our protein i.e. ASPI at different

temperatures (10˚C-100˚C) depicted that ASPI is a high temperature tolerant protein. The pH

stability study of ASPI proved that it was functionally more stable at different pH rangefrom

5.0–10.0 but least stable near pH 4–5 and in highly acidic and alkaline conditions. Owing to

pH stability, it may be used as biopesticides. This is, because due to high pH tolerance, it inhib-

its the highly alkaline serine proteases found in gut flora of insects thereby deactivating the

mechanism of digestion of food material and hence kill them [37]. For most of the biotechno-

logical applications, highly thermostable proteins are a must as this boosts the efficiency which

is a key requirement for their commercial exploitation [38]. ASPI was also exposed to different

concentration of various detergents, oxidizing and reducing agents. Results suggested that

purified ASPI was highly active against trypsin even when subjected to high concentration of

chemical denaturants such as DTT, beta mercaptoethanol, Triton-X-100, Tween 80 etc. Deter-

gents are commonly involved in protein solubilization from lipid membranes and also sustain

protein solubility in solution. An increase in the ASPI activity in the presence of SDS as com-

pared to control suggests that it acts as stabilizer for PI. It has been suggested that oxidation of

methionine amino acid found in protein can be one of the reason for high protein activity

[39].

The purified ASPI was studied for its kinetics. When a range of variable concentrations of

ASPI: trypsin ratio with fixed concentration of substrate BAPNA was used and the inhibitory

graph was plotted, it resulted to a steep drop in trypsin activity on raising concentration of

ASPI/trypsin ratio. The maximum velocity and the substrate concentration at which the rate

of the reaction is suppose to be half of the maximum velocity i.e. Michaelis constant (Km) was

also calculated from the sigmoidal curve between velocity vs. substrate concentration. The

Vmax and Km value were found to be 240.8 (μM/min) and 0.12 μM respectively. In context to

the mechanism of action, ASPI has demonstrated non competitive inhibition which is in com-

pliance to majority of PIs showing non competitive inhibition kinetics [40]. The low Ki value

also indicates high affinity of ASPI towards trypsin and also homology with other kunitz-type

PIs possessing trypsin inhibitory nature [41].
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ASPI being novel protein lacks full protein sequence, therefore, the Multiple Sequence

Alignment and homology modeling of ASPI with other TIs could not be performed. However,

the structural analysis of ASPI was done by CD measurements which showed majority β-sheets

with few α-helix in the secondary structure. Kunitz-type PIs typically possess few α-helix struc-

tures and 12 antiparallel β-strands connected by long loops [42]. This confirms ASPI to be a

kunitz type serine protease inhibitor. The results obtained in this study suggest that ASPI

exhibited fair stability in a wide range of pH and temperature. The high thermal and pH stabil-

ity of ASPI testifies its applications in various industries including agriculture. In addition,

ASPI may further be explored for its clinical and biotechnological applications.
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