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Abstract

Background: The membrane arm of Complex I (NADH:ubiquinone oxidoreductase) contains three large, and closely related
subunits, which are called L, M, and N in E. coli. These subunits are homologous to components of multi-subunit Na+/H+

antiporters, and so are implicated in proton translocation.

Methodology/Principal Findings: Nineteen site-specific mutations were constructed at two corresponding positions in
each of the three subunits. Two positions were selected in each subunit: L_K169, M_K173, N_K158 and L_Q236, M_H241,
N_H224. Membrane vesicles were prepared from all of the resulting mutant strains, and were assayed for deamino-NADH
oxidase activity, proton translocation, ferricyanide reductase activity, and sensitivity to capsaicin. Corresponding mutations
in the three subunits were found to have very similar effects on all activities measured. In addition, the effect of adding
exogenous decylubiquinone on these activities was tested. 50 mM decylubiquinone stimulated both deamino-NADH
oxidase activity and proton translocation by wild type membrane vesicles, but was inhibitory towards the same activities by
membrane vesicles bearing the lysine substitution at the L236/M241/N224 positions.

Conclusions/Significance: The results show a close correlation with reduced activity among the corresponding mutations,
and provide evidence that the L, M, and N subunits have a common role in Complex I.
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Introduction

Complex I (NADH:ubiquinone oxidoreductase) is the initial

electron acceptor of the mitochondrial respiratory chain, and it is a

key member of the electron transport chains of many bacteria (for

a review see [1]). It is a membrane-bound, multi-subunit enzyme,

and as found in mitochondria it is composed of up to 45 distinct

protein chains [2]. It contains one flavin mononucleotide and up

to 9 Fe-S centers. Functionally, the core enzyme has three discrete

roles: (1) It regenerates NAD+ from NADH, thereby allowing the

citric acid cycle to continue. (2) It reduces ubiquinone so that the

electron transport chain can function. (3) It conserves energy by

translocation of protons, or possibly other cations, across the

membrane. The mitochondrial enzymes are likely to be involved

in several other activities.

Complex I from various species has been shown to have an ‘‘L’’

shape, consisting of a membrane arm and a peripheral arm [3,4].

Physically and conceptually, they can be separated: a peripheral

arm that contains all of the prosthetic groups involved in electron

transport, and a membrane arm that contains all of the integral

membrane proteins. In the bacterium E. coli, the peripheral arm

comprises 6 subunits called B, CD, E, F, G and I, where CD can

be considered the result of a fusion of 2 genes that are distinct in

many other organisms. The membrane arm comprises 7 subunits

called A, H, J, K, L, M, and N, which are homologous to the

mitochondrially coded subunits of Complex I in mammals. In E.

coli, all 13 genes constitute the nuo operon [5].

The properties of the Fe-S centers have been studied primarily

by EPR spectroscopy [6,7,8,9,10]. They were first visualized by

crystallography in 2006, following the solution of the structure of a

bacterial peripheral arm from Thermus thermophilus [11]. FMN is

bound near one end of the complex, adjacent to the NADH

binding site. A series of seven Fe-S centers are found along a

nearly linear path. The center most distal from the FMN is the N2

site, which is found in subunit B, and adjacent to subunit CD. An

eighth center is on the opposite side of the FMN, the N1a center.

A ninth center was found in subunit G, at some distance from any

other Fe-S, and it is thought not to be part of the electron

transport pathway [12]. This center is also present in the E. coli

enzyme, but not in mitochondrial ones. The N2 Fe-S center has

the highest redox midpoint potential of the prosthetic groups in

Complex I, and is thought to directly reduce ubiquinone [10,13].

Mutagenic analysis has supported this view [14,15].

The membrane arm has been visualized at low resolution by

cryoelectron microscopy [16], and more recently at higher

resolution by X-ray diffraction at 3.9 Å [17] and 6.3 Å [18].

PLoS ONE | www.plosone.org 1 February 2011 | Volume 6 | Issue 2 | e17420



Subunit H is thought to provide the greatest interaction with the B

and CD subunits of the peripheral arm. Analysis of sub-complexes

has indicated that subunit J is associated with H, and that subunits

L, followed by M, are at the distal end of the membrane arm [19].

Based on this information, and the size of the L, M, and N

subunits, it is likely that the membrane arm that protrudes from

the junction consists primarily of subunits N, M and L, in that

order. In E. coli, the M and N subunits are very similar in size, 485

and 509 amino acids, while subunit L has 613 amino acids. The

additional, nonhomologous, residues of L are clearly located at the

C-terminus. The recent crystal structure suggests that each of the

three subunits contains fourteen similarly oriented transmembrane

helices [17]. The C-terminal region of subunit L appears to

contain two additional transmembrane helices connected by a

lateral helical segment that extends parallel to the membrane

surface, at the cytoplasmic side. One transmembrane helix is

found at the distal end of the membrane arm, while the other is

located near the N subunit at the junction of the two arms. The

overall membrane topology of subunits M (E. coli) and subunit L

(Rhodobacter capsulatus) had been addressed experimentally earlier

[20,21], but some questions remained. An analysis of the

membrane topology of subunit N from E. coli was recently

reported [22] that supports a 14 transmembrane helix model.

The mechanism of proton translocation by Complex I is not

clear, but surely must involve ubiquinone/ubiquinol and the

membrane subunits. The L, M, and N subunits are primary

candidates for this function because they are homologous to two

proteins, MrpA and MrpD, in a multi-subunit Na+/H+ antiporter

complex found in bacteria [23,24]. Subunit K, the smallest of the

E. coli subunits, is homologous to MrpC, of the same antiporter

family [25]. Evidence indicates that there are two binding sites in

Complex I for ubisemiquinone [8,13,26]. One site, QNf, is within

12 Å of the N2 Fe-S center, and the other, QNs, is at a rather

greater distance, presumably within the membrane arm. One

possibility that has been considered is that the ubiquinone

functions as a mobile proton carrier, similar to the Q cycle in

Complex III [27,28]. The difference with Complex I is that there

are no known prosthetic groups in the membrane subunits to

couple proton and electron transfer. While there is no direct

evidence for quinone binding sites in the membrane subunits of

Complex I, indirect evidence has suggested that the L, M, N

subunits might interact with quinones. Several studies have found

that photo-affinity cross-linkers that are derivatives of ubiquinone,

or of inhibitors of Complex I, can form covalent bonds to subunits

L [29], M [30], or N [31].

Complementary to these studies was a mutagenic analysis of

subunit N in E. coli [32]. About twenty site-specific mutations were

constructed among conserved residues. Among these, several were

particularly interesting, in that deamino-NADH oxidase activity in

membrane vesicles from several mutants was not stimulated by

addition of decylubiquinone. In particular, mutations at residues

E154, K158, H224, and Y300 showed no stimulation, or even

inhibition. The current work was motivated by the questions: Do

the L, M, and N subunits all function in a similar way, and do they

respond similarly to decylubiquinone. To answer these questions, a

series of mutations was constructed in all three subunits at

positions corresponding to N_K158 and N_H224.

Results

In a previous study [32], mutations at numerous positions of

subunit N of the E. coli Complex I resulted in the loss of enzyme

activity, but several mutations at E154, K158, H224 and Y300

also caused reduced ability to utilize exogenous decylubiquinone

Figure 1. Comparison of subunits L, M and N in the central regions of the proteins. Four corresponding transmembrane helices of each
subunit are shown, with the cytoplasm above and the periplasm below. The sites of mutations generated in this study are the two residues shaded
black in each protein: L_K169, L_Q236, M_K173, M_H241, N_K158, N_H224. Two residues, shaded red, are highly conserved among Complex I
homologues: one glutamic acid (L_E144, M_E144, and N_E133) and one lysine (L_K229, M_K234, and N_K217). Other residues that are conserved
among all three subunits in E. coli are indicated by circles shaded in blue.
doi:10.1371/journal.pone.0017420.g001

Common Role of the L, M, and N Subunits
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in NADH oxidase activity. In this study, the residues homologous

to K158 (position 1) and H224 (position 2) were selected in subunit

L (K169, Q236) and in subunit M (K173, H241), as shown in

Figure 1. These residues are highly conserved among bacterial L,

M and N subunits. They were selected in part because of their

proximity to two residues that are highly conserved in Complex I

subunits from nearly all species, and which might be involved in

proton translocation: E (L144, M144, N133) and K (L229, M234,

N217) [32,33,34,35,36]. At least three mutations were constructed

at each of the six sites, resulting in 19 in total. Each mutation was

transferred to the nuo operon expression vector, pBA400, and the

resulting plasmids were used individually to transform the nuo

deletion strain BA14. All of the mutants, which are listed in

Table 1, could grow on minimal medium plates with acetate as the

sole carbon source, indicating a functional, or partially functional,

Complex I. Each of the mutant strains was further analyzed by

immunoblotting of membrane vesicle preparations for all three

subunits L, M, and N. Peptide-based antibodies were used to

detect subunits L and M, and subunit N was detected via an

engineered HA epitope tag at its C-terminus. The results, shown in

Figure 2, indicate that the levels of all of the subunits are very

similar to the strain with the wild type plasmid.

Enzyme activity of each mutant was measured in preparations

of membrane vesicles, using deamino-NADH as the substrate for

NADH oxidase activity. Deamino-NADH is the hypoxanthine

variant of NADH, which cannot be utilized by the alternative

NADH dehdyrogenase (NDH-2) that is also found in the

membranes of E. coli [37]. For each mutant, a second deamino-

NADH assay was performed, using potassium ferricyanide as the

terminal electron acceptor. The results of this assay provide an

indication of the quantity of the peripheral arm of Complex I in

preparations of membrane vesicles, and so is complementary to

immunoblots of the membrane subunits. The results of these

enzyme assays are shown in Table 1. Also shown are the results of

testing sensitivity to capsaicin for most of the mutants. The

ferricyanide reductase activities of the mutants were all between

about 70 and 120% of the wild type rate. Similarly, the sensitivity

of deamino-NADH oxidase activity to capsaicin of the thirteen

mutants tested were all similar to the wild type.

The rates of deamino-NADH oxidase activity among the

nineteen mutants ranged from 32 to 94% of the wild type rate.

The trends can be better observed in Figures 3 and 4. In Figure 3,

the rates of the L_K169, M_K173, and N_K158 mutants are

expressed as a percentage of the wild type rate. In each subunit,

the KRR substitution has the highest rate, while the KRC and

E substitutions are lower, and more similar, in each case.

Consistent trends can also be observed among the substitutions

for L_Q236, M_H241, and N_H224, shown in Figure 4. Results

for the wild type strain, and for the null strain, BA14, are also

shown in this figure. Substitutions of HRE had the least effect in

each subunit. Note that in subunit L this residue is Q, but that

substitutions to H and to C also had little effect on the activity.

Table 1. Activity measurements of nineteen mutants of the L, M, and N subunits.

Mutation

Deamino-NADH oxidase
activity (nmoles/mg
protein/min) a

% Deamino-NADH
oxidase activity b

Ferricyanide reductase
activity (nmoles/mg
protein/min) a

% Ferricyanide
reductase activity b

Capsaicin
sensitivity (IC50) c

wild type 231616 (18) d 100 16906120 d 100 ,25 mM

L_K169C 151613 (4) 65 14396300 87 ND e

L_K169E 155618 (4) 67 19896200 117 ,50 mM

L_K169R 217616 (3) 94 20016320 118 ND

L_Q236C 199615 (5) 86 17906100 106 ,25 mM

L_Q236E 193613 (4) 84 19906130 117 ,50 mM

L_Q236H 19868 (6) 86 18306150 108 ,50 mM

L_Q236K 13269 (8) 57 16806260 99 ND

M_K173C 162614 (3) 70 1320640 78 ,25 mM

M_K173E 11669 (5) 50 17206120 102 ,25 mM

M_K173R 21066 (5) 91 15806200 94 ,25 mM

M_H241E 16362 (3) 71 1340630 79 ND

M_H241K 93616 (3) 40 1590630 94 ND

M_H241R 107614 (4) 46 1360680 81 ,25 mM

N_K158C 11767 (7) 51 1460680 86 ,25 mM

N_K158E 10969 (4) 47 12006180 71 ,25 mM

N_K158R 16168 (5) 70 16106160 95 ,25 mM

N_H224E 155614 (4) 67 16906140 100 ,25 mM

N_H224K 86612 (6) 37 1610650 95 ,50 mM

N_H224R 7363 (3) 32 1170670 69 ND

BA14 1061 (17) 4 520690 30

aActivity was measured in membrane preparations as described in ‘‘Materials and Methods’’.
bActivity is expressed as a percentage of the wild type value.
cAn upper limit is estimated for the IC50 values based on two sets of inhibition data.
dThe means, standard deviations and (number of measurements) are shown. For ferricyanide reductase, 2–3 measurements were made.
eND, not determined.
doi:10.1371/journal.pone.0017420.t001
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Substitutions to K or to R had more significant effects on activity

in all three subunits.

Proton translocation assays were also carried out in preparations

of membrane vesicles. The rates of deamino-NADH driven proton

translocation were assessed by the quenching of fluorescence of the

acridine dye ACMA (9-amino-6-chloro-2-methoxyacridine). For

each of the 19 mutants the rate of proton translocation closely

paralleled the rate of deamino-NADH oxidase. The rates for all

three mutations at residues L_K169, M_K173, and N_K158, are

shown in Figure 5, panels A, B, and C, respectively. Each assay is

initiated by the addition of deamino-NADH, and completed with

the addition of FCCP (carbonyl cyanide p-(trifluoromethoxy)

phenylhydrazone), which collapses any proton gradient that has

formed. In each panel, the rate of the wild type is rather more than

that of the highest mutant, which is the KRR substitution. In each

case, the other two substitutions, C and E, have lower rates than

R. For comparison with deamino-NADH oxidase rates, see

Figure 3.

The effect of decylubiquinone on Complex I activities was

examined. The addition of decylubiquinone will increase the

wild type rate of NADH oxidation because the endogenous

ubiquinone is limiting, and decylubiquinone can be reduced at

the normal ubiquinone site [38]. In previous work it was shown

that 100 mM decylubiquinone inhibited deamino-NADH oxi-

dase by two mutants, N_K158C and N_H224K, while the wild

type was stimulated [32]. This inhibition suggested that

quinones might interact with subunit N. In this work similar

effects were found with mutations at the L_Q236, M_H241 and

N_H224 positions using 50 mM decylubiquinone. In Table 2,

the results of deamino-NADH oxidase assays in the presence of

50 mM decylubiquinone are shown. While the wild type is

stimulated about 10%, each of the three mutants is inhibited

about 10%.

A fluorescence quenching assay was developed to test the

ability of the Complex I mutants to utilize decylubiquinone for

proton translocation. When decylubiquinone is added to

membrane vesicles it supplements the endogenous ubiquinones,

and in principle, it can be utilized by both Complex I and by the

quinol oxidases. If KCN is added, the quinol oxidases become

inhibited, and Complex I will continue to function only if the

supply of quinones is high enough to support multiple turnovers

of the enzyme. In this situation one can test whether an

exogenous quinone can be utilized by Complex I. As shown in

Figure 6A, proton translocation driven by deamino-NADH in

wild type membrane vesicles can be stimulated by the addition of

Figure 2. Immunoblots of membrane preparations from all
nineteen mutants. Three independent blots were performed with
each mutant, using antibodies against subunits L, M, or for detection of
N, anti-HA antibodies. For comparison, the null strain, BA14, and the
wild type strain, BA14/pBA400, were included in each blot. Each lane
contained 40 mg of protein. (A) Seven L mutants. (B) Six M mutants. (C)
Six N mutants.
doi:10.1371/journal.pone.0017420.g002

Figure 3. Comparison of mutations at the first site: L_K169, M_K173, and N_K158. Membrane vesicles were prepared and assayed for
deamino-NADH oxidase activity. Each assay was initiated with 250 mM deamino-NADH, and included 1 mM FCCP and about 150 mg/ml membrane
protein. The rates are plotted relative to the wild type rate, which was typically about 230 nmoles/min/mg protein. The rates shown are the means of
3–7 measurements 6 standard deviation. (A) L subunit mutations K169C, E, R. (B) M subunit mutations K173C, E, R. (C) N subunit mutations K158C, E,
R.
doi:10.1371/journal.pone.0017420.g003

Common Role of the L, M, and N Subunits
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50 mM decylubiquinone. In the presence of 10 mM KCN, the

proton translocation is nearly completely inhibited. However, if

decylubiquinone is added to the KCN-inhibited membrane

vesicles, the proton translocation rate is nearly the same as the

original wild type rate. This indicates that Complex I can utilize

decylubiquinone for proton translocation. In all cases tested, the

fluorescence quenching can be abolished by the addition of

capsaicin, indicating that it is dependent upon the function of

Complex I.

Proton translocation by three mutants, L_Q236K, M_H241K,

and N_H224K, is shown in Figure 6, panels B, C and D,

respectively. In each case, decylubiquinone does not stimulate the

rate of proton translocation driven by deamino-NADH. In the

presence of KCN, the addition of decylubiquinone provides little

or no fluorescence quenching, indicating the inability of those

membrane vesicles to utilize that quinone for proton translocation.

One possible issue is that the mutant membranes could be

particularly permeable to protons, and therefore cannot maintain

a significant proton gradient. This possibility was eliminated by

control experiments in which proton translocation was measured

using regular NADH, which is used by the alternative NADH

dehydrogenase (ND-2). All 3 mutants showed the same rapid

Figure 4. Comparison of mutations at the second site: L_Q236,
M_H241, and N_H224. Membrane vesicles were prepared and
assayed for deamino-NADH oxidase activity. Each assay was initiated
with 250 mM deamino-NADH, and included 1 mM FCCP and about
150 mg/ml membrane protein. The rates are plotted relative to the wild
type rate, which was typically about 230 nmoles/min/mg protein. The
rates shown are the means of 3–7 measurements 6 standard deviation.
(A) L subunit mutations Q236C, E, H, K. Also shown are rates for the wild
type and the null strains. (B) M subunit mutations H241E, K, R. (C) N
subunit mutations H224E, K, R.
doi:10.1371/journal.pone.0017420.g004

Table 2. The effect of exogenous decylubiquinone on
deamino-NADH oxidase activity.

deamino-NADH oxidase activity a

wild type 11165.5% b

L_Q236K 8763.5%

M_H241K 8764.1%

N_H224K 8861.2%

aActivity was measured in membrane preparations as described in ‘‘Materials
and Methods’’.
bActivities are expressed relative to the rates measured in the absence of decylu-
biquinone. The means and standard errors from 3–4 measurements are shown.
Typical values of the rates can be found in Table 1.
doi:10.1371/journal.pone.0017420.t002

Figure 5. Comparison of proton translocation rates with mutations at the first site: L_K169, M_K173, N_K158. The reactions were
initiated with deamino-NADH (dNADH) to 250 mM final concentration. The fluorescence of ACMA (1 mM) was followed for several minutes. The
uncoupler FCCP was added (1 mM) to collapse the generated proton gradient. In each panel the wild type strain is shown for comparison. The traces
shown are representative of 2–3 experiments. (A) L subunit mutations K169C, E, R. (B) M subunit mutations K173C, E, R. (C) N subunit mutations
K158C, E, R.
doi:10.1371/journal.pone.0017420.g005

Common Role of the L, M, and N Subunits
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quenching of fluorescence as did the wild type (results not shown).

In a second set of control experiments, the wild type membranes

were inhibited by 100 mM capsaicin, so that the rate of proton

translocation mimicked that of the 3 mutants. Under these

conditions, the ability of decylubiquinone to support proton

translocation in the presence of KCN and deamino-NADH was

greatly diminished (results not shown). This indicates that low rates

of proton translocation may compromise the ability to detect

utilization of decylubiquinone in preparations of membrane

vesicles.

Discussion

The similarity of the three largest membrane-bound subunits of

Complex I is an intriguing aspect of its function. Recent

crystallographic analysis [17] indicated that there is an almost

identical three dimensional mapping of 14 transmembrane helices

of the L, M and N subunits from E. coli. Nevertheless, only about

10% of the residues are conserved among the three subunits in the

E. coli enzyme, while about 20% of the residues are conserved in

each pair wise alignment. Furthermore, the crystallographic

analysis [17] confirmed that the subunits are arranged sequen-

tially, from the peripheral arm and Fe-S centers, and L is most

distal. The most interesting finding is related to the structure of

subunit L, which has two additional transmembrane helices in the

C-terminal region that are not found in subunits M or N. These

two helices were shown to be connected by a long, nearly

continuous alpha-helix that runs along the cytoplasmic surface of

the membrane, and in contact with subunits M and N. However,

the resolution of the recent crystal structures is not sufficient to

identify side chains or transmembrane helix connectivity, and so it

is not currently possible to locate any of the mutated amino acids

in these structural models.

In this study, two questions were addressed. First, do the three

subunits each function in a similar way, and second do mutations

in the M and L subunits cause a response to decylubiquinone that

is similar to that previously seen in subunit N? In previous studies,

individual subunits have been subjected to mutagenesis, such as

nuoN [32], nuoM [33,34], and recently nuoL [35]. The earlier

studies have included mutagenesis of the two residues highly

conserved among all species: a lysine and a glutamic acid.

Mutations at the conserved lysine residue, N_K217, M_K234, or

L_K229 (see Figure 1), resulted in loss of function, suggesting a

similar mechanism among the three subunits. In the case of the

conserved glutamic acid, N_E133, M_E144, and L_E144,

mutation to A or Q in subunits M or L caused total loss of

activity [33,35], but mutation to A in subunit N had only modest

effects [32]. This highlights one difference in function between the

subunits.

The results here support the hypothesis that all three subunits, L,

M and N, have a common role in function, even though symmetry

considerations require that they also have distinct features. The

effects of the mutations are well-correlated among the three

subunits. For example, the mutation of the lysines (L_K169,

M_K173, and N-K158) to arginine had the least effect on activity

(Figures 3 and 5), while mutation to glutamic acid or cysteine had

more significant effects. The role of this lysine appears consistent

Figure 6. Comparison of the ability to utilize decylubiquinone
for proton translocation with mutations at the second site:
L_Q236, M_H241, and N_H224. The reactions were initiated by
addition of deamino-NADH (dNADH) to 250 mM final concentration.
Membrane preparations (150 mM/ml protein) were pre-incubated with
10 mM cyanide (KCN) or 100 mM decylubiquinone (DQ) as indicated in

the figure. KCN prevents recycling of the quinones by inhibiting the
quinol oxidases. The addition of FCCP (1 mM) collapses the proton
gradients, while pre-incubation with capsaicin (Cap) to 300 mM final
concentration prevents proton translocation (not shown for all traces).
The traces shown are representative of 2–3 experiments. (A) wild type.
(B) L_Q236K. (C) M_H241K. (D) N_H224K.
doi:10.1371/journal.pone.0017420.g006

Common Role of the L, M, and N Subunits
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with the positive-inside rule [39], since it is found at the cytoplasmic

surface of the membrane. At the other position (L_Q236, M_H241,

and N_H224), mutation to a positively charged residue, K or R, had

the greatest deleterious effect on activity, while mutation to glutamic

acid had little effect (Figure 4). Alanine can also be accommodated

without much loss of activity at this position in subunit N [32] or

subunit M [33]. Similar results were obtained in a study of the

MrpA protein from the Na+/H+ antiporter form Bacillus pseudofirmus

OF4 [40], which contains a very similar sequence to that of the

three nuo proteins. In that protein, H230A had little effect on

function, while H230K had only half of the normal transport

activity, and an increased Km for Na+ ions.

The effect of decylubiquinone on NADH oxidase activity

(Table 2) suggests that this water soluble quinone is inhibitory

towards the mutants tested, although the observed effects are

smaller than those previously reported [32]. There is still no

evidence to indicate whether this is the results of a direct interaction

between decylubiquinone and L, M, or N subunits. The inhibitory

behavior of decylubiquinone is consistent with its inability to be

utilized for proton translocation by the same mutants (Figure 6).

However, control experiments indicated that low rates of enzyme

activity could contribute significantly to that outcome. Therefore,

the primary conclusion is that corresponding mutations in all three

subunits have very similar effects on function.

Mechanisms of proton translocation by Complex I have been

outlined by several groups in recent years. The recent crystal

structures of Complex I by the Sazanov group have motivated

several proposals [41], including that the C-terminal helix of subunit

L acts as a piston to drive conformational changes in the L, M and N

subunits in response to redox reactions [17]. The conformational

changes would then lead to proton translocation. A recent proposal

by the Ohnishi group [42,43] incorporates the possibility of such

conformational changes, but emphasizes the redox reactions of two

ubiquinones within Complex I to translocate two of the four protons

per NADH by a direct proton pump mechanism. They proposed

that one quinone, QNf, accepts 2 electrons from the N2 Fe-S center

and 2 vectorial protons from the cytoplasmic surface (or

mitochondrial matrix). It then passes 2 electrons to the second

quinone and the 2 vectorial protons are released on the opposite side

of the membrane in a ‘‘direct’’ proton pumping process. The second

quinone, QNs, then accepts 2 scalar protons from the cytoplasmic

surface to become ubiquinol, and enters the Q-pool.

The results presented here support the view that the L, M and N

subunits have a common role in function. That might suggest that

each operates independently to translocate one proton per enzyme

cycle (NADH oxidation), as illustrated in Figure 7A. However,

other observations allow consideration of a slightly different

model. First is that mutagenesis of the highly conserved E133 in

subunit N [31] did not affect enzyme function as did comparable

substitutions of E144 in subunits L [35] and M [33,34]. Since this

residue is a prime candidate for proton translocation, it is possible

that subunit N is not fully functional in that process. Second, in a

recent analysis of subunit N (ND2) sequences, it was found that

many metazoans are lacking three N-terminal transmembrane

helices, and that a few are lacking the key glutamic acid (E133 in

E. coli). Finally, in the mrp family of seven subunit antiporters, there

are two subunits that are homologous to the L, M, and N subunits.

Therefore, it seems possible that two subunits work together for

ion translocation. Extending this view to Complex I, the steps of

proton translocation might be carried out by the interactions of

L:M and M:N. So, an alternative model is that the L, M, and N

subunits are tightly coupled, and undergo similar conformational

changes. In this model, they would work cooperatively to

translocate 2 protons per NADH. This is illustrated in Figure 7B.

Further work, including a higher resolution structure of Complex

I, will be required to reveal the role of the long helical segment of

subunit L, and the relative importance of subunit interactions in

proton translocation.

Materials and Methods

Materials
Deamino-NADH, capsaicin, and decylubiquinone were from

Sigma-Aldrich (St. Louis MO). DNA miniprep columns were

Figure 7. Two schematic views of the indirect proton translocation by Complex I. The peripheral arm is shown in thin wireframe with the
flavin (FMN) and Fe-S centers in colored, space filling. The membrane subunits are shown in color: H (red), N (violet), M (cyan), L (yellow), and subunits
A, J, and K are shown in blue. The protein structure is from the pdb file 3m9s for Complex I from Thermus thermophilus [17]. The C-terminal region of
subunit L can be seen to contain a lateral helix that interacts with subunits M and N, and a final transmembrane helix that interacts with N at the
junction with A, J or K subunits. (A) The L, M and N subunits are each suggested to translocate one proton per NADH. (B) An alternative view is that
proton translocation occurs through the interaction of two subunits, resulting in a ratio of only 2 protons per NADH. The movement of protons
would be facilitated by the conserved glutamic acids and lysines shown in Figure 1. The proton pathways would not necessarily occur along the
interfaces.
doi:10.1371/journal.pone.0017420.g007
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from Qiagen (Carlsbad CA). PVDF (polyvinylidene difluoride)

membranes, NBT (p-nitro blue tetrazolium chloride), BCIP (5-

bromo-4-chloro-indolphosphate p-toluidine salt), SDS-polyacryl-

amide gels, low range molecular weight standards and the DC

protein assay kit were from Bio-Rad (Hercules CA). ACMA was

obtained from Invitrogen (Carlsbad CA). Rat (high affinity) anti-

HA (hemagglutinin of influenza) monoclonal antibodies were

from Roche (Indianapolis IN). Custom polyclonal antibodies

against subunits L and M were prepared by Affinity BioReagents

(Golden CO). These antibodies were raised in rabbits against

peptide QTYSQPLWTWMSVGD (corresponding to residues

58–72) in subunit L and peptide GKAKSQIASQELPGM

(corresponding to residues 446–460) in subunit M. Enzymes for

molecular cloning were from New England Biolabs (Beverly

MA). Oligonucleotides for mutagenesis and sequencing were

synthesized by Operon Technologies, Inc (Huntsville AL).

Sequencing of DNA was performed by Lone Star Labs (Houston

TX). The QuikChange mutagenesis kit was from Stratagene (La

Jolla CA).

Plasmids, mutagenesis, growth and expression
Plasmids pLMN (8.10 kb) and pL’MN (6.57 kb) were used for

construction of mutants. Both plasmids are derivatives of pUC19

(AmpR). They differ only in that pLMN contains full length

genes of all three subunits (L, M, and N) where as pL’MN

contains a 39 truncated gene for L and full length genes for

subunits M and N. pL’MN was constructed by isolating the

3.73 kb Pst I-Bgl II fragment from pAJW104 [44] and ligating to

pUC19 digested with Pst I and BamH I at the polylinker region.

pLMN was constructed from pL’MN by first introducing a

unique BsrG I site between HinD III and Pst I using a linker

(AGCTttgtacagactgacTGCA, where the lower case letters

represent double-stranded nucleotides). Next, a 1.54 kb BsrG I-

Pst I fragment from the nuoL region of pBA400 was isolated and

ligated to pL’MN(BsrGI), previously digested with BsrG I and Pst

I. Mutations in the L subunit were constructed in pLMN, and

mutations in the M or N subunits were constructed in pL’MN.

Plasmid pBA400 (derived from pACYC184, CmR) was used as

the wild type plasmid and it contains a full size nuo operon [45].

Mutations from the smaller plasmids (pLMN or pL’MN) were

subcloned into the nuo operon of pBA400 for analysis of function,

using Pst I and Asc I (2.81 kb fragment) for mutations in M or N,

and BsrG I and Pst I (1.54 kb fragment) for mutations in L. For

characterization of mutants pBA400 (mutant or wild type) was

transformed into strain BA14 (bglR, thi-1, rel-1, Hfr Po1, DnuoA-

N), a strain that lacks all subunits of Complex I [45]. For

subcloning and mutagenesis, XL1-Blue (recA, endA1, gyrA96, thi-1,

hsdR17, supE44, relA1, lac {F9 proAB, lacIq ZDM15 Tn10 (TetR)})

was used. Cultures were grown at 37uC in LB (1% tryptone,

0.5% yeast extract, and 0.5% NaCl) or 30uC in rich media (3%

tryptone, 1.5% yeast extract, 0.15% NaCl and 1% (v/v)

glycerol). Ampicillin (100 mg/l), tetracycline (12.5 mg/l), or

chloramphenicol (40 mg/l) was added to the media as appro-

priate. Growth on M63 minimal salt media was supplemented

with a single carbon source (acetate), to compare the growth of

mutants reletive to the wild type. Acetate plates contained 1.36%

KH2PO4, 0.2% (NH4)2SO4, 0.05% FeSO4N7H2O, 1.5% Agar,

0.02% MgSO4, 0.001% vitamin B1, and 0.2% potassium

acetate. Growth was observed by visual inspection after 48 hours

at 37uC.

Preparation of Membrane Vesicles and Enzyme Assays
Membrane vesicles were prepared from cultures of all mutants

and wild type grown in rich media at 30uC. Cultures were shaken

at ,230 rpm and harvested at A600 = 1.4. The cells were

harvested, as previously described [32,45]. For proton transloca-

tion assays membranes underwent a third centrifugation, 1 hour at

355,0006g. The membranes were tested for deamino-NADH

driven proton translocation by measuring the fluorescence

quenching of ACMA over the course of several minutes, using

excitation and emission wavelengths of 410 and 490 nm

respectively. Deamino-NADH oxidase activity assays and proton

translocation assays were performed after the second centrifuga-

tion in 50 mM MOPS, 10 mM MgCl2, pH 7.3 at room

temperature, using 150 mg/ml membrane protein. Deamino-

NADH oxidase activity was assayed using oxygen as a terminal

electron acceptor. The oxidase assays were started with 0.25 mM

deamino-NADH (extinction coefficient 6.22 mM21 cm21) and the

absorbance monitored at 340 nm for 2 minutes. Decylubiquinone

was added from an ethanol stock to the reaction cuvette containing

membranes, and the samples were incubated for several minutes at

room temperature before addition of deamino-NADH. Complex I

inhibitor capsaicin was added at 0.3 mM from a 100 mM ethanol

stock. The uncoupler FCCP was added to a final concentration of

1 mM from a 1 mM ethanol stock. For proton translocation assays,

ACMA was added to 1 mM, while other concentrations were the

same as for oxidase assays. Ferricyanide reductase assays were

conducted at room temperature and the absorbance monitored at

410 nm for 2 minutes in buffer containing 10 mM potassium

phosphate (pH 7.0), 1 mM EDTA, 1 mM K3FeCN6, and 10 mM

KCN [46]. 40–100 mg/ml of membrane protein was used in each

assay. Ferricyanide was used as the terminal electron acceptor

(extinction coefficient of 1.0 mM21 cm21). The assays were

started with 0.15 mM deamino-NADH.

Immunoblotting of mutants
40 mg of membrane fractions were incubated in 2% SDS (v/

v), and 8 ml of loading dye (60 mM Tris HCl (pH 6.8), 25%

glycerol, 14.4 mM 2-mercaptoethanol, 0.1% bromophenol blue)

for 15 minutes. These were then subjected to SDS-PAGE for

1.25 hours at 150 V using 12% acrylamide gels and transferred

to PVDF (polyvinylidene difluoride) membrane using a Trans-

Blot apparatus (Bio-Rad) for 1 h at 100 V. The PVDF

membrane was blocked with 5% powered milk in TBS/Tween

20 (0.05% Tween 20) for 1 h and then washed with TBS/Tween

20 three times. For subunit L, M, or N detection, the blocked

PVDF membrane was incubated at room temperature for

2 hours with the rabbit custom antibodies diluted 1:5000 for

L, 1:10,000 for M or with rat anti-HA serum, diluted 1:5000 for

subunit N detection. After washing three times with TBS/Tween

20, the blot was incubated with goat anti rabbit or anti-rat IgG-

alkaline phosphatase conjugate at a dilution of 1:1000 for

1 hour. After three more washings with TBS/Tween 20, color is

developed with BCIP (5-Bromo- 4-chloro-3-indolyl phosphate)

and NBT (nitro-blue tetrazolium) according to the manufactur-

er’s instructions.
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oxidoreductase (Complex I) at 22 Å in ice. J Mol Biol 277: 1033–1046.
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