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Simple Summary: Although tremendous advances in diagnosis and treatment, pancreatic cancer
still remains one of the lethal diseases with an overall survival rate of 10~15%. Early detection and
diagnosis of pancreatic cancer is very important in improving the prognosis of patients. The aim of
our study was to find new biomarkers, using microbiomes based on bacteria-derived extracellular
vesicles, extracted from blood serum. With 38 patients with pancreatic cancer and 52 healthy
controls with no history of pancreatic disease, we identified several compositional differences of
microbiome between them. Using various combinations of the metagenomic markers which made the
compositional differences, we also built a pancreatic cancer prediction model with high area under
the receiver operating characteristic curve (0.966 at the phylum level and 1.000 at the genus level).
These microbiome markers, based on bacteria-derived extracellular vesicles acquired from blood,
show demonstrate the potential of candidate biomarkers for early diagnosis of pancreatic cancer.

Abstract: Novel biomarkers for early diagnosis of pancreatic cancer (PC) are necessary to improve
prognosis. We aimed to discover candidate biomarkers by identifying compositional differences
of microbiome between patients with PC (n = 38) and healthy controls (n = 52), using microbial
extracellular vesicles (EVs) acquired from blood samples. Composition analysis was performed using
16S rRNA gene analysis and bacteria-derived EVs. Statistically significant differences in microbial
compositions were used to construct PC prediction models after propensity score matching analysis
to reduce other possible biases. Between-group differences in microbial compositions were identified
at the phylum and genus levels. At the phylum level, three species (Verrucomicrobia, Deferribacteres,
and Bacteroidetes) were more abundant and one species (Actinobacteria) was less abundant in PC
patients. At the genus level, four species (Stenotrophomonas, Sphingomonas, Propionibacterium, and
Corynebacterium) were less abundant and six species (Ruminococcaceae UCG-014, Lachnospiraceae
NK4A136 group, Akkermansia, Turicibacter, Ruminiclostridium, and Lachnospiraceae UCG-001) were more
abundant in PC patients. Using the best combination of these microbiome markers, we constructed a
PC prediction model that yielded a high area under the receiver operating characteristic curve (0.966
and 1.000, at the phylum and genus level, respectively). These microbiome markers, which altered
microbial compositions, are therefore candidate biomarkers for early diagnosis of PC.
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1. Introduction

Pancreatic cancer (PC) is the leading cause of cancer-associated mortality world-
wide [1]. Despite advances in diagnosis, surgical technique, perioperative care, and
chemoradiotherapy regimens, the 5-year survival rate for PC patients remains 10–15%
due to difficulties with early detection. Only 20% of PC patients are considered to have
“early-stage” PC at the time of diagnosis, when curative-intent surgery is possible [2].
Research seeking to discover novel biomarkers for early diagnosis is on-going.

To date, several studies have reported that dysbiosis of the human body microen-
vironment can increase the risk of inflammation or malignant tumor development [3].
The gut microbiota has been reported to affect the risk of adverse health outcomes, in-
cluding that of liver cirrhosis/hepatocellular carcinoma [4,5], cardiovascular disease [6],
breast cancer [7], and colorectal cancer [8]. Moreover, previous studies have suggested
an association between PC and the presence of gut bacteria, such as Helicobacter pylori,
and salivary microbiota have been shown to be associated with chronic pancreatitis or
PC [9–11]. However, alterations of blood microbiota in patients with PC remain unknown.

Microbiota produce large quantities of bacteria-derived extracellular vesicles (EVs),
which allow interaction with human cells [12]. EVs contain bacteria-derived genomes and
are detectable in human blood, urine, bile, and stool samples. They can help evaluate
microbiota composition [13–15]. A recent study, aimed to develop a diagnostic model
for ovarian cancer, used microbiome profiles from serum bacteria-derived EVs alongside
clinicopathologic data [16]. However, to the best of our knowledge, the association between
the blood microbiome, assessed with bacteria-derived EVs, and PC has not been previously
studied. This is the first study to identify candidate biomarkers for the diagnosis of early-
stage PC, by comparing the differences in microbiome compositions using blood microbiota
between patients with PC and healthy controls.

2. Results

After quality control of samples, 82 patients with PC and 116 healthy controls were
identified as eligible for this study. However, the age and sex of the two groups were
different enough to discriminate PC patients from controls with a high area under the
ROC curve (AUC) of 0.882. After propensity score matching (PSM), only 38 patients
with PC (17 men and 21 women) and 52 controls (17 men and 35 women) were selected.
As a result, the covariates could no longer contribute to predicting PC (AUC of 0.571,
Appendix A Figure A1).

The age and sex of the patients before and after PSM are described in Table 1A.
Table 1B shows the clinicopathologic characteristics of the PC group after PSM. Most PC
patients were pathologically confirmed as having advanced stage cancer (68.4% had stage
II and 29.0% had stage III/IV, as defined by the seventh American Joint Committee on
Cancer). Although all 38 patients underwent surgery, 6 of them received palliative-intent
surgery owing to inoperable primary lesions or metastases identified during the procedure.
Two patients had histological findings other than adenocarcinoma, including one patient
with colloid carcinoma and another with adenosquamous cell carcinoma.

2.1. Microbiome Composition Comparisons

Using 21 phyla and 353 genera based on 90 samples, we assigned 1118 and
978 operational taxonomy units (OTUs) at the phylum and genus levels, respectively.
The number of OTUs was 789 and 850 in the PC and control groups, respectively. Figure 1a
shows between-group differences in α-diversity (within-sample diversity) based on the
Shannon index. Although there were no significant differences at the genus level (p = 0.14,



Biology 2021, 10, 219 3 of 21

Wilcoxon rank-sum test), the median Shannon index was higher for the PC than for the
control group at the phylum level (p = 0.0084, Wilcoxon rank-sum test). An overview
of each level’s composition is shown in Figure 1b. Figure 2 shows the multidimensional
scaling plots at the OTU and genus levels, which capture β-diversity (between-sample
variability). principal coordinate analysis (PCoA) based on the Aitchison and Bray-Curtis
distances revealed dot patterns, suggesting that the PC patients and controls were distinct
at both levels.

Table 1. Basic characteristics of patients.

(A) Age and sex of entire patients before and after PSM

Before PSM (n = 198) After PSM (n = 90)

Pancreatic Cancer
(n = 82)

Controls
(n = 116) p-Value * Pancreatic Cancer

(n = 38)
Controls
(n = 52) p-Value *

Sex
Male 55 (67.1%) 19 (16.4%) 1.131 ×

10−12
17 (44.7%) 17 (32.7%)

0.35
Female 27 (32.9%) 97 (83.6%) 21 (55.3%) 35 (67.3%)

Age
(mean ± SD) 63.07 ± 9.83 49.28 ± 12.45 1.4 ×

10−12 57.24 ± 8.38 57.63 ±
10.50 0.51

(B) Clinicopathologic characteristics of patients with pancreatic cancer after PSM

Pancreatic Cancer (n = 38)

Age, Mean ± SD 57.2 ± 8.4

Sex, M:F 17:21
CEA > 5 5 (13.2%)
CA 19-9 > 37 30 (78.9%)
Neoadjuvant chemotherapy 7 (18.4%)
Neoadjuvant radiotherapy 5 (13.2%)

Operation
R0 26 (68.4%)
R1 6 (15.8%)
R2 6 (15.8%)

Size, mean ± SD 3.9 ± 1.7
Histology Adenocarcinoma 36 (94.7%)

Others 2 (5.3%)
Stage (AJCC stage, 7th) I 1 (2.63%)

II 26 (68.4%)
III 5 (13.2%)
IV 6 (15.8%)

(A): PSM: propensity score matching, SD: standard deviation. * Chi-square test or Wilcoxon rank-sum test. (B): SD: standard deviation,
CEA: carcinoembryonic antigen, CA 19-9: carbohydrate antigen 19-9, AJCC: American Joint Committee on Cancer.

2.2. Biomarker Selection

Depending on the statistical method that was used, between-group differences in
microbial composition at the phylum level included Verrucomicrobia (significant differ-
ence by nine methods), followed by Deferribacteres and Actinobacteria (significant by seven
methods), and Bacteroidetes (significant by six methods) (Table 2). At the genus level,
using more than six methods, differences in the following communities were found:
Stenotrophomonas/Sphingomonas/Ruminococcaceae UCG-014/Propionibacterium/Lachnospiraceae
NK4A136 group (significant by eight methods), Akkermansia (significant by seven meth-
ods), and Turicibacter/Ruminiclostridium/Lachnospiraceae UCG-001/Corynebacterium (sig-
nificant by six methods). Figure 3 shows the overall log2 counts of each marker, selected
through statistical methods for the PC and control groups. At the phylum level, the
abundance of Verrucomicrobia/Deferribacteres/Bacteroidetes was more and that of Actinobac-
teria was less in the PC group than in the control group. Moreover, the abundance of
Stenotrophomonas/Sphingomonas/Propionibacterium/Corynebacterium was decreased and
that of the other six microbiota increased in the PC compared with the control group at the
genus level.
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Figure 1. Alpha diversity (a) and overall microbiome composition analysis at phylum and genus level (b).



Biology 2021, 10, 219 5 of 21

Figure 2. The beta diversity using multidimensional scaling (MDS) plot at OTU (a) and genus level (b).

Figure 3. Log2 counts of abundant OTUs in PC and control group.
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Table 2. Selected biomarkers at phylum and genus level using 9 statistical methods. Markers were organized in the order that were significant in many methods.

(A) Phylum (L2) level

Phylum CLR_Perm DESeq2_LRT DESeq2_Wald edgeR Wilcoxon ZIBSeq ZIG_Gaussian ZIG_log_Normal ANCOM Freq Sig.

Verrucomicrobia 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 Verrucomicrobia case 9
Deferribacteres 0.0000 0.0000 0.0000 0.2083 0.0019 0.5871 0.0000 0.0343 Deferribacteres case 7
Actinobacteria 0.0000 0.0016 0.0011 0.0512 0.0204 0.0001 0.0057 0.5981 Actinobacteria control 7
Bacteroidetes 0.0588 0.0210 0.0222 0.8176 0.0317 0.0021 0.0087 0.8280 Bacteroidetes case 6
SR1 (Abscon-
ditabacteria) 0.7637 0.0000 0.0000 0.8176 0.4562 0.9999 0.0379 0.7192 - control 3

Spirochaetae 0.1657 0.0022 0.0018 1.0000 0.5852 0.9999 0.0000 0.7192 - control 3
Proteobacteria 0.0525 0.0032 0.0023 0.2005 0.1705 0.0013 0.0872 0.7192 - control 3
Planctomycetes 0.2538 0.0026 0.0021 1.0000 0.5852 0.9999 0.0000 0.7192 - control 3
FBP 0.1628 0.0019 0.0015 1.0000 0.5852 0.9999 0.0000 0.7192 - control 3
Cyanobacteria 0.2538 0.0001 0.0000 0.1059 0.4562 0.5871 0.0010 0.5981 - control 3
Chloroflexi 0.2682 0.0002 0.0001 1.0000 0.9513 0.0763 0.0000 0.7192 - control 3
Armatimonadetes 0.1050 0.0001 0.0000 1.0000 0.1153 0.9999 0.0005 0.7192 - control 3
Acidobacteria 0.7637 0.0009 0.0011 1.0000 0.4562 0.9999 0.0379 0.7192 - control 3

(B) Genus (L6) level

Genus CLR_Perm DESeq2_LRT DESeq2_Wald edgeR Wilcoxon ZIBSeq ZIG_Gaussian ZIG_log_Normal ANCOM Freq Sig.

Stenotrophomonas 0.0159 0.0000 0.0000 1.0000 0.0095 0.0028 0.0000 8.82474E-06 Significant control 8
Sphingomonas 0.0000 0.0002 0.0000 1.0000 0.0042 0.0020 0.0000 0.000394665 Significant control 8
Ruminococcaceae
UCG-014 0.0159 0.0000 0.0000 1.0000 0.0006 0.0000 0.0001 4.27329E-07 Significant case 8

Propionibacterium 0.0000 0.0000 0.0000 1.0000 0.0004 0.0251 0.0000 0.000131155 Significant control 8
Lachnospiraceae
NK4A136 group 0.0000 0.0032 0.0030 1.0000 0.0043 0.0001 0.0009 0.000453009 Significant case 8

Akkermansia 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.278837499 Significant case 7
Turicibacter 0.0000 0.0000 0.0000 1.0000 0.0052 0.7879 0.0109 0.043444196 - case 6
Ruminiclostridium 0.0000 0.0015 0.0011 1.0000 0.0306 0.1365 0.0000 0.049630223 - case 6
Lachnospiraceae
UCG-001 0.0422 0.0000 0.0000 1.0000 0.0361 0.9999 0.0004 0.043444196 - case 6

Corynebacterium
1 0.0159 0.0003 0.0000 1.0000 0.0131 0.8506 0.0126 0.159296954 Significant control 6
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2.3. Development of PC Prediction Model

We developed prediction models using statistically significant microbiome markers
(Figure A2). After an exhaustive search that considered all possible combinations using
randomly separated model development (MD) and test sets, we arrived at the best models
for the phylum and genus levels, respectively (Table A1). Figure 4 shows the overall perfor-
mance of the model. The selected markers in the best fitting models were Verrucomicrobia
and Actinobacteria at the phylum level and Sphingomonas, Ruminococcaceae UCG-014, Propi-
onibacterium, Akkermansia, Ruminiclostridium, Lachnospiraceae UCG-001, and Corynebacterium
1 at the genus level. Sensitivity, specificity, and accuracy estimates were average values
calculated by 2-fold cross validation. In the test set, the AUC of these best models was
0.966 at the phylum level and 0.913 at the genus level. The receiver operating characteristic
(ROC) curves of these models are shown in Figure 5.

Figure 4. The bar plot describes the overall performance of models at phylum and genus level.
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2.4. In Vitro Experiments to Determine the Biological Functions of Bacteria-Derived EVs

As a previous result, we found several microbiome markers that decreased from the PC
patients. From this, to elucidate the role of decreased markers from PC patients, we gener-
ated and isolated the EV from C. glutamicum culture medium that almost same the selected
marker bacteria Corynebacterium 1. Transmission electron microscopy image (Figure 6a),
Dynamic light scattering (Figure 6b) and nanoparticle tracking analysis (Figure 6c) show
that the EV from C. glutamicum was averagely 133. 3 nm size and the 7.85 × 1011 parti-
cles were in the 1 mg/mL of the samples. Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis was performed to determine protein patterns and protein size distribution
(Figure 6d). Furthermore, to evaluate its functional efficacy to inhibit expression of tumor
necrosis factor-α (TNF-α), which related the carcinogenesis, we used an EV obtained from
E. coli as a stimulant to trigger the secretion of TNF-α. As a result, the amount of secreted
TNF-α was reduced in all samples prepared with C. glutamicum EV at a concentration of 0.1
to 10 µg/mL (Figure 6e). The amount of TNF-α showed a tendency to decrease depending
on the concentration of C. glutamicum EV.

Figure 5. ROC curve of prediction model: (a) phylum level, (b) genus level. Logistic regression model was built using
microbiome markers and covariates (age, gender) to distinguish PC and control groups.

2.5. Sensitivity Analysis According to Various Matching Conditions

At the phylum level, the markers (Verrucomicrobia and Actinobacteria) that were used
in the final prediction models were consistently selected regardless of the changes in the
calipers (Figure A3). However, among the seven markers used at the genus level, only
four (Akkermansia, Sphingomonas, Ruminococcaceae UCG-014, and Propionibacterium) were
selected consistently according to the changes in the calipers.

To identify the performance of the prediction models under the various calipers, we
also analyzed the AUCs of the other best models that were independently selected in each
condition of changed calipers, in addition to investigating the changes of the AUCs of the
selected best model (with 2 markers at the phylum level and 7 at the genus level) found
in this study (Figure A4). As a result, under various conditions, the testing AUCs of the
microbial marker models were quite constant compared with those of the covariate model.
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Figure 6. Cont.
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Figure 6. Biologic characteristics of C. glutamicum EV through in vitro experiment: (a) TEM, (b) Dynamic Light Scattering
(DLS), (c) Nanoparticle Tracking Analysis (NTA), (d) Sodium Dodecyl Sulfate-PolyAcrylamide Gel Electrophoresis (SDS-
PAGE), (e) The amount of TNF-α secretion according to the concentration of C. glutamicum EV, using E. coli EV as stimulant.

3. Discussion

This is the first study to investigate the altered composition of microbiomes in patients
with PC and to evaluate the relationship between microbiota and PC, using bacteria-derived
EVs. We performed 16S rRNA gene analysis and compared microbiome composition
between patients with PC and healthy controls. Some of the compositional differences
identified in this study might be candidate biomarkers of early-stage PC; using these
candidate biomarkers, we proposed and validated a PC prediction model.

Previous studies have reported on the relationship between microbiota and PC or
chronic pancreatitis. Microbial composition in patients with PC is known to be altered
at several sites, including the oral cavity, gastrointestinal tract, and pancreatic tissues.
Microbial risk factors for PC include oral microbiota in periodontal disease, altered pres-
ence of H. pylori, and hepatotropic viruses. Periodontitis is a form of chronic gingival
inflammation and a common type of oral infection, previously linked to the risk of pan-
creatic [11,17–20] and other organ [8,21,22] malignancies. Several pathogens, including P.
gingivalis, N. elongata, Fusobacterium, and S. mitis have been reported. Evading the host
immune system, these pathogens can trigger the Toll-like receptor signaling pathways and
promote pancreatic carcinogenesis in animal models [23].

H. pylori is a gut microbe that can reach the pancreas through the circulatory sys-
tem or the pancreatic/biliary duct. However, the relationship between H. pylori and PC
remains controversial. To date, it has been suggested that this relationship is mediated
by specific risk factors, including infection with cytotoxin-associated gene A-negative H.
pylori strain [24], non-O blood type [25], and smoking [26]. Moreover, hepatotropic viruses,
including hepatitis B virus and hepatitis C virus, have been associated with direct and
indirect (via pancreatitis) development of PC [27–29].

Previous studies of microbiota composition used fecal, salivary, biliary, or tissue sam-
ples. Findings obtained from samples collected of the digestive system might reflect the
genome profiles of gut microbiota. Meanwhile, several recent studies reported on the
presence of EVs that contain bacterial genome DNA fragments in serum. The size of EVs
from either gram-negative or gram-positive bacteria are very small (10 to 300 nm in diam-
eter) [30,31], allowing them to cross intestinal cellular membrane and travel throughout
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the blood system [32]. Based on these findings, subsequent microbiome analyses using
bacteria-derived EVs extracted from serum were undertaken [5,33].

In the present study, at the phylum level, Actinobacteria were less and Verrucomi-
crobia were more abundant in the PC group than in control group. At the genus level,
Akkermansia/Ruminococcaceae UCG-014/Ruminiclostridium were more abundant and Sphin-
gomonas/Propionibacterium/Corynebacterium 1 were less abundant in PC patients than in
the control group. Some of these findings are consistent with those from previous studies,
which involved fecal microbiome analysis of PC patients [34].

Some species of Actinobacteria are known to produce butyrate and modulate immune
function. Reduction of butyrate levels can promote inflammation, which acts as an anti-
inflammatory agent mainly by blocking the activation of nuclear factor kB in intestinal
epithelial cells [35]. Consistent with our findings, abundance of Actinobacteria in colorectal
cancer patients has been reported to be lower than that in the control group [36]. In addition,
while the exact mechanism remains unclear, Akkermansia (in Verrucomicrobia phylum) is
known as an immune modulator, likely related to the programmed cell death protein
1 blockade pathway [37]. Finally, some Sphingomonas species are known to have the ability
to stimulate natural killer T cells, which suppress tumor progression [38]. However, the
specific function and exact mechanism associated with carcinogenesis in most taxa remain
poorly understood. Future preclinical research is necessary to understand the relationship
between these microbiota and PC.

As stated, few previous studies have evaluated bacteria-derived EVs acquired from
blood samples; our report is the first such study on PC patients. Although we found
some differences in the microbiome profiles of PC patients, we were unable to determine
their biological function or behavior. Future metagenomic research should endeavor to
elucidate the role of microbiota in the transition from normal to malignant tissue. In in vitro
experiments, we found that the amount of acute phase inflammatory cytokines tended to
decrease depending on the concentration of C. glutamicum EV. Therefore, for PC patients, a
low level of C. glutamicum might be associated with inflammation, which can trigger cancer
development.

Alongside its novelty, this study has some limitations. First, the number of samples
was relatively small. We performed PSM and sensitivity analysis with various calipers
to increase the generalizability of our findings. Second, although we performed internal
validation with randomly separated MD and test sets, external validation with a larger
cohort is required. Third, we could not explain the composition of gut microbiota directly
through this study. Bacteria-derived EVs present in blood samples are believed to mostly
originate from the gut microbiota. However, factors such as gut barrier, host immunity,
and organ status can alter the composition of microbiota detected in the blood, making it
distinct from that concurrently present in the gut. Further studies are required to describe
and explain these suspected differences and their implications, alongside the functional
interchangeability of gut and blood microbiota.

4. Materials and Methods

This study included patients diagnosed with PC between 2009 and 2015 at the Seoul
National University Hospital and healthy controls who received regular checkups at the
Seoul National University Boramae Hospital and Inje University Haeundae Paik Hospital.
All patients with PC underwent surgical resection, and final pathology reports were
confirmed. The control group included healthy adults without any clinical or imaging
evidence of pancreatic disease or history of other cancers. Following data collection,
including blood samples, the final study population was selected based on PSM analysis to
reduce selection bias by equating the groups based on the covariates. This study complied
with the principles of the Declaration of Helsinki and was approved by the institutional
review board of Seoul National University Hospital (1601-137-739). The informed consent
requirement was waived due to the retrospective nature of the study and use of anonymous
clinical data.
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4.1. Blood Sample Preparation and DNA Extraction

The blood samples were placed into Vacutainer EDTA tubes, and serum was cen-
trifuged at 2000× g for 15 min at 4 ◦C to remove cell debris. The supernatant was collected
and incubated with proteinase K at 56 ◦C for 30 min. Subsequently, the samples were
boiled at 100 ◦C for 40 min to extract DNA from EVs; afterward, the supernatant was
collected by centrifugation at 10,000× g at 4 ◦C. A DNA isolation kit (DNeasy Blood &
Tissue Kit, QIAGEN, Hilden, Germany) was used to extract the total DNA from 1 mL of
supernatant. The quality and quantity of DNA were measured using the QIAxpert system
(QIAGEN, Hilden, Germany).

4.2. Microbiomic Sequencing

Bacterial genomic DNA was amplified with 16S_V3_F (5-TCGTCGGCAGCGTCAGAT
GTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3) and 16S_V4_R (5-GTCTCGTGGG
CTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3) primers, which
are specific to V3-V4 hypervariable regions of the 16S rDNA gene [39]. The libraries
were prepared using polymerase chain reaction products according to the MiSeq System
guide (Illumina, San Diego, CA, USA) and quantified using QIAxpert (QIAGEN, Hilden,
Germany). Each amplicon was then quantified and sequenced on MiSeq (Illumina, San
Diego, CA, USA) according to the manufacturer’s recommendations.

4.3. Taxonomic Assignment and Profiling

Raw pyrosequencing reads from the sequencer were filtered using MiSeq (Illumina,
SanDiego, CA, USA), according to the barcode and primer sequences. Taxonomic assign-
ment was performed by the profiling program MDx-Pro ver.1 (MD Healthcare, Seoul, Ko-
rea). After checking the read length (≥300 bp) and quality score (average Phred score ≥ 20),
high-quality sequencing reads were selected. OTUs were clustered using sequence cluster-
ing algorithms CD-HIT [40].

Subsequently, taxonomic assignment was performed using UCLUST and QIIME
against the GREENGENES reference database (gg_13_5_99) [41,42]. OTUs with sequences
< 0.005% of the total were removed from the OTU table; a total of 1134 OTUs were obtained.
Samples with a low number of read counts (<2500) were filtered during quality control
process. The resulting OTU table was used for predictive functional analysis with Tax4Fun
software (metagenomics package version 0.1.014) [43].

4.4. Propensity Score Matching and Statistical Analysis

We used PSM analysis to minimize the impact of covariates on effect estimates. The
propensity score is a probability that a unit with specific characteristic will be assigned to
treatment group. PSM is a statistical matching technique that uses the propensity score to
estimate the effectiveness of interventions, given particular covariates [44]. For example,
PSM was used to adjust non-random drug assignment to determine whether drugs have the
effects of protecting infants from apnea [45]. PSM was also applied to reduce the selection
bias for estimating breast cancer risk in relation to antidepressant medications [46]. While
PSM has been used for the case of large samples, it was shown by a simulation study that
PSM performed well for the case of small samples [47]. Recently, PSM was successfully
applied to fecal microbiota studies. PSM reduced the influence of lifestyle variables which
might attenuate the relevance between fecal bacteria and the risk of gastric cancer [48].
PSM was also used to control the effect of clinical variables on microbiota composition to
find the relationship between fecal microbiota and Parkinson’s disease [49].

We applied PSM to our case-control data to reduce heterogeneity of age and sex
between PC and control groups. We considered age and gender as potential confounders,
because those were highly unbalanced between PC and control groups. To evaluate the
consistency of estimates under varying matching conditions, sensitivity analysis was
performed at various levels of matching, using calipers [50], which are values that express
the strictness of covariate matching for a given propensity score. Small caliper values
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represent strict matching; in contrast, large caliper values represent models that are close
to those observed with random sampling. We measured trends of the selected markers and
their performances and built prediction models according to the change in calipers.

All statistical analyses of clinical data were performed in R version 4.0.2 on Windows
10 (Version 4.0.2, http://www.R-project.org (accessed on 15 December 2020)). Categorical
variables were presented as counts with percentages and compared using the chi-square
test. Continuous variables were compared using a Kruskal-Wallis test or one-way anal-
ysis of variance (ANOVA). A p-value < 0.05 was considered indicative of a statistically
significant difference.

The α-diversity of microbiota for each sample was evaluated using the Shannon index.
The Wilcoxon rank-sum test was used to compare α-diversities between groups. More-
over, β-diversity was measured by Aitchison and Bray-Curtis distances with 90 matched
samples [51,52]. Based on these distance measures, PCoA was performed, and the cmd-
scale function in R was used to assess the statistical significance of separation among
groups. When comparing groups and constructing models using calculated relative abun-
dance, OTUs were used without those uncultured or unidentified. However, uncultured
or unidentified OTUs were included in the analysis to provide an overview of microbial
composition in each group.

4.5. Marker Selection and Prediction Model Development for PC

Using nine statistical methods, including microbiome-specific methods (metagenome-
Seq [Gaussian, Log Normal], ZIBSeq, ANCOM, CLR permutation), simple statistical test
(Wilcoxon rank-sum test), and conventional methods for identifying differentially ex-
pressed genes in RNAseq data (DESeq2 [LRT, Wald], edgeR), microbiome was sorted in
order of compositional proportion. The relative differences in OTUs abundances between
the PC and control group were investigated to identify candidate cancer biomarkers. We
selected the candidate OTUs with an average relative abundance of >1% and p-value < 0.05.

To develop a prediction model for PC, we randomly divided our samples into MD
and test sets to minimize selection bias. Logistic regression analysis was performed
using selected OTUs via an exhaustive search method. All possible combinations of
candidate OTUs were tested by repeating 10 times for 2-fold cross validation to find the
optimal variable combination to discriminate between the PC and control group. The final
model was selected based on the lowest Akaike’s information criteria from among the
development set; it was subsequently validated using ROC curves and the AUC calculation
based on the test set [53,54].

4.6. Additional In Vitro Experiments Using Corynebacterium glutamicum Strain

To identify the basic characteristics of bacteria-derived EVs, we performed additional
in vitro experiments using Corynebacterium glutamicum strain (which was the same as the
Corynebacterium 1, reported at the genus level), which was less in abundance in PC patients
than in the controls. C. glutamicum KCTC 9097 was cultured in LB medium for 15 h
at 37 ◦C. The cultured solution was collected and centrifuged at 10,000× g for 15 min.
After filtration (0.22 µm) of the supernatant separated from the cells, EVs were extracted
using ultrafiltration and ultracentrifugation methods. Five microliters of diluted EVs
were dropped on Formvar-carbon coated EM grids and left aside to allow membranes
adsorb for 2 min. The vesicle-coat grids were fixed with 0.25% glutaraldehyde for four
minutes and washed twice with distilled water for one minute each. The grids were
stained with 2% uranyl acetate at pH 7 for 5 min and viewed using a H-7650 transmission
electron microscope (Hitachi, Tokyo, Japan) at a voltage of 80 kV. To identify the size and
distribution of the particles of C. glutamicum EV, DLS and NTA were performed.

5. Conclusions

This study revealed compositional differences of microbiome between patients with
PC and healthy controls, following covariate matching that reduced the impact of selection

http://www.R-project.org
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bias. Among altered microbial communities, we identified candidate biomarkers such
as Verrucomicrobia and Actinobacteria at the phylum and Sphingomonas, Ruminococcaceae
UCG-014, Propiobacterium, Akkermansia, Ruminiclostridium, Lachnospiraceae UCG-001, and
Corynebacterium at the genus level, while developing prediction models for PC. Further
studies with larger cohorts are necessary to validate the present findings. Moreover,
research is required into rare microbial strains whose roles in the host immune system
function or in carcinogenesis remains unclear.
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Appendix A

Figure A1. AUC curves and violin plots before and after covariate matching (PSM using age and sex). Based on these plots,
we concluded that the balance between the two groups was achieved and matching was successful.

Figure A2. The scheme of prediction models. We built the models based on the statistically significant microbiome markers.
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Figure A3. Selected markers by sensitivity analysis at phylum level (a) and genus level (b), using various calipers. The bar
plot shows the selected frequency of each marker as the top 10 significant markers when using various calipers. The table
shows whether each marker was included in the list of top 10 significant markers when using each caliper. Under the given
caliper, the pink colored cells represent the significant markers, while the white cells do non-significant makers. Thus, for
each marker, the more pink cells, the more robust to the change of caliper.



Biology 2021, 10, 219 17 of 21

Figure A4. Testing AUCs of the prediction models under various conditions. Testing AUC of the discovered best model
(using 2 markers) according to every caliper at phylum level (a) and genus level (b). Testing AUC using different models
which are selected as best according to every caliper at phylum level (c) and genus level (d).
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Table A1. Combinations of top prediction models and their diagnostic performance in Train and CV set.

(A) Phylum (L2) level

Number of
Variables Model

Train Set Cross-Validation (CV) Set

Sensitivity Specificity AUC Sensitivity Specificity AUC

0 class~age + sex 0.311 0.846 0.598 0.206 0.846 0.531

1 class~age + sex + p16 0.944 0.846 0.953 0.839 0.846 0.886

2 class~age + sex + p16 +
p6 1.000 0.846 0.966 1.000 0.846 0.962

3 class~age + sex + p16 +
p6 + p2 1.000 0.846 1.000 0.783 0.885 0.863

4 class~age + sex + p16 +
p6 + p2 + p11 1.000 0.846 1.000 0.833 0.885 0.897

5 class~age + sex + p16 +
p6 + p2 + p11 + p19 1.000 0.846 1.000 0.733 0.846 0.855

6
class~age + sex + p16 +
p6 + p2 + p11 + p19 +
p18

1.000 0.846 1.000 0.400 0.923 0.844

7
class~age + sex + p16 +
p20 + p6 + p2 + p11 +
p19 + p18

1.000 0.846 1.000 0.400 0.923 0.867

8
class~age + sex + p16 +
p20 + p6 + p2 + p13 +
p11 + p19 + p18

1.000 0.846 1.000 0.578 0.846 0.833

9
class~age + sex + p16 +
p20 + p6 + p2 + p13 +
p11 + p15 + p19 + p18

1.000 0.846 1.000 0.200 0.923 0.797

10
class~age + sex + p16 +
p20 + p6 + p9 + p2 + p13
+ p11 + p15 + p19 + p18

1.000 0.846 1.000 0.222 0.923 0.616

11

class~age + sex + p16 +
p20 + p6 + p9 + p22 + p2
+ p13 + p11 + p15 + p19
+ p18

1.000 0.846 1.000 0.100 0.923 0.658

12

class~age + sex + p16 +
p20 + p6 + p9 + p22 +
p10 + p2 + p13 + p11 +
p15 + p19 + p18

1.000 0.846 1.000 0.389 0.923 0.684

13

class~age + sex + p16 +
p20 + p6 + p9 + p22 +
p10 + p2 + p14 + p13 +
p11 + p15 + p19 + p18

1.000 0.846 1.000 0.000 1.000 0.654
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Table A1. Cont.

(B) Genus (L6) level

Number of
Variables Model

Train Set Cross-Validation (CV) Set

Sensitivity Specificity AUC Sensitivity Specificity AUC

0 class~age + sex 0.3111 0.8462 0.5976 0.2056 0.8462 0.5314

1 class~age + sex + g150 0.9444 0.8462 0.9615 0.9444 0.8462 0.9299

2 class~age + sex + g150 +
g64 1.0000 0.8462 1.0000 0.9500 0.9231 0.9515

3 class~age + sex + g150 +
g64 + g22 1.0000 0.8462 1.0000 1.0000 0.9231 0.9957

4 class~age + sex + g15 +
g150 + g64+g22 1.0000 0.8462 1.0000 0.9444 0.9231 0.9594

5 class~age + sex + g15 +
g150 + g64 + g225 + g22 1.0000 0.8462 1.0000 0.9444 0.9231 0.9594

6
class~age + sex + g210 +
g23 + g150 + g64 + g225
+ g22

1.0000 0.8462 1.0000 1.0000 0.9231 0.9829

7
class~age + sex + g49 +
g15 + g210 + g150 + g64
+ g225 + g22

1.0000 0.8462 1.0000 1.0000 0.9231 1.0000

8
class~age + sex + g19 +
g49 + g15 + g210 + g150
+ g64 + g225 + g22

1.0000 0.8462 1.0000 0.8444 0.8846 0.9034

9
class~age + sex + g19 +
g49 + g15 + g210 + g23 +
g150 + g64 + g225 + g22

1.0000 0.8462 1.0000 0.7944 0.8462 0.8613

10

class~age + sex + g19 +
g49 + g15 + g210 + g23 +
g150 + g59 + g64 + g225
+ g22

1.0000 0.8462 1.0000 0.3500 0.9231 0.8338

The finally selected model was highlighted as bold. The OTU symbols are as follows: p16, Verrucomicrobia; p6, Actinobacteria; g49,
Sphingomonas; g15, Ruminococcaceae UCG-014; g210, Propionibacterium; g150, Akkermansia; g64, Ruminiclostridium; g225, Lachnospiraceae
UCG-001; g22, Corynebacterium 1.
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