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Regulatory agencies around the world have committed to reducing or eliminating animal
testing for establishing chemical safety. Adverse outcome pathways can facilitate
replacement by providing a mechanistic framework for identifying the appropriate non-
animal methods and connecting them to apical adverse outcomes. This study separated
11,992 chemicals with curated rat oral acute toxicity information into clusters of structurally
similar compounds. Each cluster was then assigned one or more ToxCast/Tox21 assays
by looking for theminimum number of assays required to record at least one positive hit call
below cytotoxicity for all acutely toxic chemicals in the cluster. When structural information
is used to select assays for testing, none of the chemicals required more than four assays
and 98% required two assays or less. Both the structure-based clusters and activity from
the associated assays were significantly associated with the GHS toxicity classification of
the chemicals, which suggests that a combination of bioactivity and structural information
could be as reproducible as traditional in vivo studies. Predictivity is improved when the
in vitro assay directly corresponds to the mechanism of toxicity, but many indirect assays
showed promise as well. Given the lower cost of in vitro testing, a small assay battery
including both general cytotoxicity assays and two ormore orthogonal assays targeting the
toxicological mechanism could be used to improve performance further. This approach
illustrates the promise of combining existing in silico approaches, such as the Collaborative
Acute Toxicity Modeling Suite (CATMoS), with structure-based bioactivity information as
part of an efficient tiered testing strategy that can reduce or eliminate animal testing for
acute oral toxicity.

Keywords: acute oral systemic toxicity, adverse outcome pathway, new alternative methods, tiered testing, in vitro
bioactivity assays, chemical structure-based clustering, tiered testing strategy

INTRODUCTION

An international workshop was held in 2015 to evaluate the state of the science supporting the
replacement of animals for acute systemic toxicity testing (Hamm et al., 2017). As part of that
workshop, the participants considered alternative test methods including in vitro methods and fish
embryo models in addition to in silico options such as (Q)SAR (Table 1) and read-across. A tiered
testing approach originally proposed by the National Academy of Sciences for the Department of
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Defense was evaluated as an organizing framework for this
alternative testing strategy (National Academies of Sciences,
2015). The workshop concluded with eight general
recommendations: 1) evaluate the suitability of in vivo
reference data as the “gold standard” for validating NAMs, 2)
continue mechanistic research to improve confidence in NAMs,
3) address the lack ADME of chemicals in non-animal tests, 4)
develop IATA to better utilize all available evidence, 5) increase

education and training to increase adoption of NAMs, 6) identify
opportunities such as waivers under existing regulatory
requirements and assemble the data to support policy changes
where needed, 7) promote international harmonization of
regulatory testing requirements, 8) encourage data curation
and sharing.

There has been considerable progress on all the goals set forth
during that workshop including research efforts on inhalation

TABLE 1 | Summary of abbreviations and assay names used in the text.

Abbreviation Definition

AC50 Active Concentration 50
ACE Angiotensin converting enzyme
ADME Absorption, distribution, metabolism, and excretion
AOP Adverse Outcome Pathway
ATP adenosine triphosphate
ATWG Acute Toxicity Working Group
CASRN Chemical Abstracts Service Registry Number
CATMoS Collaborative Acute Toxicity Modeling Suite
DNA deoxyribonucleic acid
DSSTox Distributed Structure-Searchable Toxicity
DT40 chicken B cell line
EPA Environmental Protection Agency
FDR False Discovery Rate
FP, FN False positive, False Negative
GABA Gamma-aminobutyric acid
GHS Globally Harmonized System
HTS High Throughput Screening
IATA Integrated Approach to Testing and Assessment
ICCVAM Interagency Coordinating committee for the Validation of Alternative Methods
LD50 Lethal Dose 50
MCC Matthew’s Correlation Coefficient
NAM New Approach Methodology
NMDA N-methyl-D-aspartate
OECD Organisation for Economic Cooperation and Development
PPAR δ Peroxisome Proliferator Activated Receptor Delta
PPAR γ Peroxisome Proliferator Activated Receptor Gamma
(Q)SAR (Quantitative) Structure Activity Relationship
SMILES simplified molecular-input line-entry system
tcpl ToxCast Analysis Pipeline
Tox21 Toxicology in the 21st Century
ToxCast Toxicity Forecaster
TP, TN True Positive, True Negative
Assay Abbreviation Assay Name
ATG_ERa_TRANS_up Attagene TRANS-FACTORIAL HepG2 Human Estrogen Receptor Alpha Activation Assay
ATG_NRF2_ARE_CIS_dn Attagene HepG2 Human Nuclear factor-erythroid factor 2-related factor 2 antioxidant response element Inhibition

Assay
ATG_VDR_TRANS_up Attagene HepG2 Human Vitamin D Transactivation Assay
BSK_LPS_PGE2_down Bioseek Human Primary Vascular Prostaglandin E2 Inhibition Assay
BSK_Sag_Eselectin_up Bioseek Human Primary Vascular Superantigen E-Selectin Activation Assay
NCCT_TPO_AUR_dn National Center for Computational Toxicology Thyroperoxidase Inhibition Assay
NHEERL_ZF_144hpf_TERATOSCORE_up National Health and Environmental Effects Research Laboratory
NVS_ENZ_hAChE Novascreen Human Acetylcholinesterase Enzyme Assay
NVS_ENZ_rAChE Novascreen Rat Acetylcholinesterase Enzyme Assay
NVS_GPCR_gOpiateK Novascreen Guinea Pig Cerebellar Membrane Opiod Receptor Assay
NVS_LGIC_rGlyRStrSens Novascreen Norway Rat Spinal Cord Membrane Glycine Receptor Assay
TOX21_AR_LUC_MDAK_B2_Agonist_3uM_Nilutamide Tox21 Human Breast Cancer Cell Line Androgen Receptor Agonist Assay
TOX21_DT40 Tox21Chicken B Cell Line Assay
TOX21_DT40_100 Tox21Chicken B Cell Line Gene Deletion Assay
TOX21_DT40_657 Tox21Chicken B Cell Line Gene Deletion Assay
TOX21_PPARg_BLA_Agonist_ch2 Tox21 Basolateral Human Kidney Cell Line PPAR gamma Agonism Assay
TOX21_PR_BLA_Agonist_ch1 Tox21 Basolateral Human Kidney Cell Line Progesterone Agonism Assay
TOX21_VDR_BLA_agonist_ch2 Tox21 Basolateral Human Kidney Cell Line Vitamin D Receptor Agonism Assay
UPITT_HCI_U2OS_AR_TIF2_Nucleoli_Agonist University of Pittsburgh Human Bone Cell Line Androgen Receptor Agonism Assay

Frontiers in Toxicology | www.frontiersin.org March 2022 | Volume 4 | Article 8240942

Edwards et al. Mapping Acute Oral Toxicity Pathways

https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles


toxicity (Clippinger et al., 2018) and oral toxicity (Sullivan et al.,
2021) as well as regulatory policies focused on waiving acute
dermal toxicity testing (EPA, 2016; Health Canada, 2017; EPA,
2020). For acute oral toxicity, an evaluation of the variability for
the traditional in vivo tests found that repeat measurements from
the same assay predict the same hazard category less than 80% of
the time, though the two predictions differ by no more than one
level more than 90% of the time (Karmaus et al., 2022). These
results are consistent with previous evaluations of other guideline
studies (Browne et al., 2015; Luechtefeld et al., 2016; Kleinstreuer
et al., 2018a; Browne et al., 2018; Pham et al., 2020; Rooney et al.,
2021). Research supporting the use of existing data and in silico
approaches to predict acute oral toxicity of mixtures has been
successful as well (Chushak et al., 2021; Hamm et al., 2021).
Computational modeling was a key focus area (Kleinstreuer et al.,
2018b) and a large international effort resulted in CATMoS
(Mansouri et al., 2021). The Department of Defense has begun
implementation of the tiered testing paradigm recommended by
the National Academy (National Academies of Sciences, 2015;
Sullivan et al., 2021). By coupling in silico predictions with
in vitro measurements from tiered testing it should be possible
to achieve reproducibility comparable to that seen with repeated
animal studies. To support the development of the relevant
in vitro assays, there have been several efforts to
comprehensively identify mechanisms of acute toxicity
(Wijeyesakere et al., 2018; Wilson et al., 2018; Prieto et al.,
2019; Sullivan et al., 2021).

AOPs have been proposed as the ideal framework for
organizing the mechanistic information (Hamm et al., 2017;
Prieto et al., 2019; Sullivan et al., 2021) to support the use of
new alternative methods for predicting acute toxicity. AOPs
describe the toxicological mechanism as a series of key events
that start from the initial interaction of a chemical with the
biological system (molecular initiating event) and progresses
through to an adverse outcome for an organism (Ankley et al.,
2010; Villeneuve et al., 2014; Ankley and Edwards, 2018). The
LD50 is the most common endpoint used to measure the adverse
outcome in traditional oral acute toxicity studies. New alternative
methods tend to target the molecular initiating event or other
early key events as those are amenable to quantification by in vitro
methods. In addition to their role in summarizing our
understanding of the biological processes of particular
pathways, a key feature of AOPs is that they provide a
scaffold for the data to link these disparate endpoints that
often occur in separate studies (Maxwell et al., 2014; Ankley
and Edwards, 2018). This enables a variety of quantitative
modeling approaches that can integrate data from in silico,
in vitro, and in vivo testing (Jaworska et al., 2013; Foran et al.,
2019; Perkins et al., 2019; Zgheib et al., 2019; Spinu et al., 2020;
Paini et al., 2021).

Our work builds upon the previous efforts to create a
comprehensive list of AOPs covering acute oral toxicity
(Prieto et al., 2019; Sullivan et al., 2021) by mapping structural
classes of chemicals and new alternative methods to these
mechanisms. This process will identify data gaps in the
existing catalog of acute oral toxicity AOPs and link in silico
and in vitro data to AOPs related to acute toxicity. By linking the

new alternative methods to specific AOPs, our work will facilitate
the tiered testing paradigm proposed by the National Academy
(National Academies of Sciences, 2015). This should enhance the
ongoing work by the Department of Defense as well as other
related efforts.

MATERIALS AND METHODS

The code for all analyses described below is available here: https://
github.com/RTIInternational/acute-tox-aop-testing.

Abbreviations used throughout the paper are summarized in
Table 1.

Data Sources
Acute Toxicity Dataset
The rat acute oral systemic toxicity dataset assembled by the
ICCVAM ATWG was used as the reference upon which the
analyses in this study were conducted.

A detailed summary of the data compilation and curation
process is available on the collaborative modelling page of the
ATWG (NTP, 2020). Briefly, the U.S. National Toxicology
Program Interagency Center for the Evaluation of Alternative
Toxicological Methods and the U.S. EPA’s Center for
Computational Toxicology and Exposure collated 21,200
LD50 values (both point estimate and limit test values) for
15,688 unique substances. For this curation effort, the LD50
values represent the dose that is lethal for 50% of the animals in
a rat acute oral toxicity study (Karmaus et al., 2019).
These data were collected from a variety of publicly
available data sources, including, but not limited to
ChemIDplus, the European Commission Joint Research
Council’s Acutetoxbase, and OECD’s eChemPortal
(Kleinstreuer et al., 2018b; NTP, 2018; Karmaus et al., 2019;
Mansouri et al., 2021).

These data underwent further processing to remove duplicate
study values, amend obvious transcription errors (e.g., limit test
LD50 value of “20005000 mg/kg”), definition of a representative
LD50 value for chemicals with 3 or more point estimate values,
and the retrieval of chemical structure information from the
EPA’s CompTox Chemicals Dashboard and other public
resources. After all of the processing steps, the final acute
toxicity dataset (herein termed the ATWG dataset) consisted
of 11,992 unique substances with at least one toxicity outcome, of
which 8,979 had a processed LD50 value.

ToxCast Data
In vitro bioactivity data were aggregated for the approximately
4,000 ATWG chemicals tested in at least one of the almost
1,600 high-throughput screening assays that comprise the
EPA’s ToxCast/Tox21 program. These data were obtained
from invitroDB v3.3 using the tcpl R package (v2.0) (Filer
et al., 2016). The chemical-assay data that were extracted
included: 1) whether a chemical was tested in a particular
assay, 2) the AC50 values (i.e., the 50% of maximal activity
concentration), and 3) the binary hit calls (i.e., whether a
chemical was active [1] or inactive [0] within a given assay).
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Additionally, the chemical-specific cytotoxicity and lower bound
of cytotoxicity values were extracted.

Subsequently, we compared the AC50 with the lower bound
estimate of cytotoxicity defined by Judson et al. to develop a hit
call matrix whereby the cytotoxicity-associated burst
phenomenon was taken into account (Judson et al., 2016). To
generate this burst hit call matrix, we compared chemical-assay
AC50 values against the chemical-specific lower bound of
cytotoxicity as calculated by the tcplCytoPt function in the
tcpl R package (Filer et al., 2016). Chemical-assay
combinations whereby the AC50 was below the lower bound
of cytotoxicity for the chemical were considered active and
assigned a value of 1. Meanwhile, chemical-assay combinations
whereby the AC50 value was above the lower bound of
cytotoxicity for the chemical were considered inactive and
assigned a value of 0.

Chemical Structure Data
To perform the chemical clustering and subsequent data analyses
in this study, defined chemical structure information was
required. To ensure consistency and reliability in the chemical
structures we utilized the EPA’s DSSTox database to retrieve
QSAR-ready SMILES. In addition to the QSAR-ready SMILES,
we extracted the DSSTox substance identifier, preferred chemical
name, and regular SMILES for each substance.

To obtain this information, we performed a batch search of the
EPA CompTox Chemicals Dashboard (www.comptox.epa.gov/
dashboard, accessed June 2021) using the CASRN as the input.
The search of the CompTox Chemicals Dashboard returned a
total of 10,886 chemicals with QSAR-ready SMILES (Richard
et al., 2016;Williams et al., 2017; Grulke et al., 2019; Richard et al.,
2021).

Structure-Based Clustering
Prior to clustering, we used the publicly available ChemoTyper
software (https://chemotyper.org) and ToxPrint chemotype
feature set (v2.0_r711, https://toxprint.org) to create a binary
molecular fingerprint for each chemical with a QSAR-ready
SMILES string. The ToxPrint fingerprints identify whether the
729 specific substructural features that comprise the ToxPrint
feature set are present in a molecule.

The complete fingerprint matrix was subsequently utilized to
calculate the pairwise Tanimoto distance between all 10,886
chemicals. The Tanimoto distance is computed as the inverse
of the Tanimoto similarity coefficient. The Tanimoto similarity
coefficient is calculated as the ratio of bits present in the
molecular fingerprint of both chemicals (i.e., the size of the
intersection) divided by the number of bits present in the
molecular fingerprint of one or both chemicals (i.e., the size of
the union). Next, the resulting distance matrix was used within a
hierarchical clustering algorithm implementing Ward’s
agglomerative clustering method. To create the final chemical
clusters a cut height of 0.7 was chosen. The distance calculations
and hierarchical clustering were undertaken using the
philentropy and cluster R packages, respectively, as
implemented in R version 4.0.3 (2020-10-10) (R Core Team,
2020).

Enrichment Analysis
Three separate enrichment analyses were conducted in this study.
The first involved investigating which, if any, ToxCast assays are
enriched for activity below cytotoxicity in the acutely toxic
chemicals (i.e., those not identified as nontoxic in the ATWG
set, or those with rat oral LD50 ≤ 2,000 mg/kg) relative to the full
set of ATWG chemicals. The second involved investigating
which, if any, ToxCast assays are enriched for activity below
cytotoxicity in the very acutely toxic chemicals relative to the
combined set of very acutely toxic and nontoxic ATWG
chemicals. The final enrichment analysis involved
investigating which, if any, ToxCast assays are enriched for
activity below cytotoxicity for the acutely toxic chemicals within
a cluster relative to the acutely toxic chemicals in all clusters.
For each analysis, chemicals identified as being active (in the
case of ToxCast assays) or (very) acutely toxic were indicated by
a value of 1, while chemicals identified as being inactive (in the
case of ToxCast assays) or nontoxic were indicated by a
value of 0.

A ToxCast assay was considered enriched if the computed
MCC was ≥ 0.1, a p-value ≤ 0.05, and at least 3 chemicals were
toxic/in the cluster and active in the ToxCast assay. TheMCCwas
calculated based upon the following formula:

MCC � (TP · TN) − (FP · FN)
����������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√

Where, TP = True Positive, i.e., the chemical is toxic/in the cluster
and active in the ToxCast assay; TN = True Negative, i.e., the
chemical is nontoxic/not in the cluster and inactive in the
ToxCast assay; FP = False Positive, i.e., the chemical is toxic/
in the cluster and inactive in the ToxCast assay; and FN = False
Negative, i.e., the chemical is nontoxic/not in the cluster and
active in the ToxCast assay. Additionally, the p-value was
calculated using the Fisher’s exact test; thereby, indicating the
level of significance of the enrichment.

Identifying the Minimum Number of Assays
to Identify all Toxic Chemicals
The activity of the toxic chemicals in the various in vitro assays
was used to identify the minimal set of assays required to provide
full coverage of the toxic chemicals within the set. This was
performed on all toxic chemicals together and then repeated for
the chemicals within each cluster as illustrated in Figure 1. The
activity of a chemical was determined using the burst hit call
matrix described above, which indicates activity below
concentrations expected to cause cytotoxicity (Judson et al.,
2016). When processing all chemicals, any assay with activity
for at least one acutely toxic chemical was included. When
performing the analysis for a single chemical cluster, the
assays that were enriched for each cluster as defined above
were used as the starting point. The assays were sorted by the
number of acutely toxic chemicals identified by the assay minus
the number of nontoxic chemicals with activity in the assay. In
the case of a tie, the assays were then sorted by the total number of
toxic chemicals with activity in the assay. If more than one
chemical still had the same top value, then assays that were
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enriched for toxic chemicals in general (see previous section)
were sorted by the false discovery rate of the assay in that
analysis. For ties at this stage, the same process was
applied using the enrichment for the very toxic chemicals.
Once an assay was identified, all acutely toxic chemicals with
activity in that assay were removed and the process was
repeated until all chemicals in the set showed activity in at
least one assay.

Final Activity Assessment
All ATWG chemicals were assigned a composite AC50 value
based on the activity of the chemical in the cluster-specific acute
toxicity-relevant assay(s) and the ToxCast cytotoxicity value. The
cluster-specific AC50 value was obtained by taking the minimum
AC50 for each chemical based on the assays defined for the
structural cluster containing that chemical. The cytotoxicity point
defined by ToxCast using the activity from a set of 88 cytotoxicity
assays was used to define the AC50 value for cytotoxicity (Judson
et al., 2016). The final AC50 value was considered the minimum
between the cluster-specific and cytotoxicity AC50 values.
Chemicals having no activity in the cluster-specific assay(s) or
for which no cluster-specific assays exist were assigned the
cytotoxicity AC50. If a chemical had no assigned cytotoxicity
value or cluster-specific activity, no AC50 value was assigned for
that chemical.

The final activity of a chemical was then determined from the
composite AC50 value. Chemicals with a composite AC50 below
1 mM were considered active, and the other chemicals that were
tested in either the cluster-specific assay or with a ToxCast-
defined cytotoxicity point were considered inactive. Out of
11,992 chemicals in the ATWG set, 7,997 chemicals had not
been tested in ToxCast. An additional 38 chemicals were not
tested in the assay corresponding to their structural cluster and
had no assigned cytotoxicity point. The remaining 3,957
chemicals were used to evaluate how in vitro activity compares

with the previously determined acute oral toxicity of those
chemicals.

Two different measures of toxicity were compared against the
ToxCast activity. The first was a binary determination of toxicity
with chemicals having an LD50 > 2,000 mg/kg classified as
nontoxic(18). The second measure used the five United
Nations Globally Harmonized System (GHS) categories for
acute oral toxicity (United Nations, 2021). For the binary
analyses, 2 chemicals had no toxicity designation resulting in a
total of 3,955 chemicals evaluated. For the GHS analysis, an
additional 5 chemicals had no GHS classification resulting in a
total of 3,950 chemicals. Statistical significance of the association
between ToxCast composite activity or structural cluster and
toxicity was determined using Fisher’s Exact Test as implemented
in R version 4.0.3 (2020-10-10) (R Core Team, 2020). For the
multiclass GHS comparisons, the p-value was estimated byMonte
Carlo simulation based on 20,000 replicates.

RESULTS

This study demonstrates the utility of combining in vitro
bioactivity data with chemical structure information to help
improve oral acute systemic toxicity predictions. To ensure
that the chemical activity used to identify the minimal assay
sets was more likely to represent target-mediated effects, we used
filters to remove chemical-assay results that could, potentially, be
confounded by non-specific cytotoxicity. This filtering involved
utilizing the chemical-specific lower bound cytotoxicity values.
Whilst this is likely to have resulted in a relatively high false
negative rate, it also increases our confidence that an active hit call
is due to a target-mediated mechanism. For chemicals with no
activity below the cytotoxicity range, the mechanism was
considered to be cytotoxicity and the cytotoxicity point was
used to determine the AC50 value for the chemical.

FIGURE 1 | Workflow undertaken for the assay analysis both with and without use of the chemical clusters generated based upon structural similarity.
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Mapping ATWG Chemicals to ToxCast
Assays
As illustrated in Figure 2A, the vast majority (11,974, 99.8%) of
the 11,992 chemicals in the ATWG dataset had a logical (i.e., true
or false) designation of whether the chemical was identified as
being nontoxic. Of these, 3,993 (33.3%) ATWG chemicals have
been tested in at least one ToxCast assay. Of the 3,993 ATWG
chemicals tested in ToxCast 3,563 were active in at least one assay,
with 3,039 chemicals having activity below cytotoxicity in at least
one assay. In this study, chemicals with a nontoxic designation of
“false” (or those with rat oral LD50 ≤ 2,000 mg/kg) were
considered to be toxic and will be referred to as such
throughout. Approximately 43% (5,129) of the ATWG
chemicals with a toxicity designation were identified as
nontoxic with the remaining 57% (6,845) identified as toxic
(Figure 2A). Of the chemicals with ToxCast/Tox21 data, the
toxic and nontoxic chemicals were evenly split with anywhere
from 52 to 54% of the chemicals classified as toxic at each stage.

The assay analysis conducted without considering structural
clustering was able to identify all 1,627 acutely toxic chemicals
with activity below cytotoxicity; however, it also captures 1,338
nontoxic chemicals (Figure 2B). This is almost the same number
of nontoxic that have activity below cytotoxicity in at least one
ToxCast assay; therefore, this approach performs only marginally
better than using the ToxCast data for all assays directly. The
assay analysis conducted with the structural clustering taken into
consideration, meanwhile, performs drastically better in this
respect: identifying only 34 nontoxic chemicals. However, it
also identifies slightly fewer acutely toxic chemicals: 1,139 of
the 1,627 acutely toxic chemicals with activity below cytotoxicity
(Figure 2B).

Using the analysis workflow without structure-based
clustering, a minimal set of 177 unique assays were needed to
cover all 1,627 acutely toxic chemicals; however, the false
discovery rate (FDR) is quite high at 45% (Figures 3A,B).
Meanwhile, when the assay data were combined with the
structural clustering the minimum number of unique assays
needed to cover the 1,139 acutely toxic chemicals increased to
300; however, this coincided with a considerable decrease in FDR
to 3% (Figures 3A,B). It should be noted that the FDRs reported
here are based on our analysis of the existing data and is not an
indication of how predictive the assays are for unknown
chemicals. Nevertheless, these results illustrate the value of
combining bioactivity data with structural information.

A further benefit of the approach incorporating structural
clustering can be observed when we consider the number of
assays a novel chemical would be required to be tested in to be
covered by both approaches (Figure 3C). Under the analysis
workflow without structural clustering, a novel chemical would
need to be tested in all 177 assays that comprise the minimal
assay set to predict its acute oral toxicity. However, when using
the workflow with structural clustering a novel chemical would need
only be tested in, at most, 4 assays with the specific assays being
determined by the structural cluster to which the novel chemical is
assigned (Figure 3C). Furthermore, 98% of chemical clusters
required only one or two assays to cover all acutely toxic
chemicals within the cluster that had been tested within ToxCast,
with the vast majority needing only one assay (Figure 3D).

Evaluation of ToxCast Assay Mapping
The full list of the ATWG chemicals with their structural cluster
designation is provided in Supplementary Table S1. When a

FIGURE 2 | Pyramid plots showing: (A) The number of nontoxic (blue) and toxic(red) ATWG chemicals that meet each criterion and (B) The number of nontoxic and
toxic chemicals identified by the minimum ToxCast assays generated by the assay analysis workflow both without and with using the structural clustering information.
The number of nontoxic chemicals identified by the minimum assays is drastically reduced when the clustering information is used with only a slight loss in the number of
toxic compounds.
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ToxCast/Tox21 assay was assigned to the cluster, that
information is provided as well. Not all chemicals in the
cluster necessarily showed activity in the assay, however. The
ToxCast/Tox21 activity of the individual chemicals is
summarized in Supplementary Datasheets S2, S3.
Supplementary Datasheet S2 shows only those assays that
were enriched for the given chemical cluster along with all
chemicals from the cluster that showed activity below the
cytotoxicity range in at least one assay. Supplementary
Datasheet S3 shows all assays for which at least one chemical
in the cluster had activity and all chemicals from the cluster that
were active in at least one assay. Five chemical clusters will be
discussed in detail to evaluate the findings as well as to highlight
several of the different situations we observed.

Cluster 678: Carbamate Pesticides
A total of six carbamate-containing chemicals were assigned to
this cluster (Figures 4A–C). Four are pesticides, and the other

two appear to be early-stage compounds with insecticidal
properties that have not yet been developed into a commercial
product. All the chemicals are acutely toxic with LD50 values
ranging from 0.5 to 400 mg/kg. Three of the six chemicals
(aldicarb, methomyl, and oxamyl) have been tested in at least
1,350 of the almost 1,600 ToxCast assays, with all three chemicals
exhibiting activity below the level of cytotoxicity within
three assays: namely, NVS_ENZ_hAChE, NVS_ENZ_rAChE,
and NHEERL_ZF_144hpf_TERATOSCORE_up. Of the
assays in which at least one chemical had been tested, 58
were enriched for activity compared to the acutely toxic
chemicals not in this cluster. Two of the top three enriched
assays, in terms of their MCC, for this cluster were the
NVS_ENZ_hAChE and NVS_ENZ_rAChE assays: with
MCC values of 0.396 and 0.352, respectively. In theory, any
of the three assays in which all the chemicals were active could
have been chosen; however, the minimal assay identified by the
analysis workflow was the NVS_ENZ_rAChE assay. Together,

FIGURE 3 | (A) Bar plot illustrating the minimum number of assays required to identify all acutely toxic chemicals after performing the assay analysis workflow
without (177 assays) and with (300 assays) the structure-based clustering, and (B) bar plot illustrating the false discovery rate (FDR) associated with theminimal assay set
without (45%) and with (3%) the structure-based clustering. A larger number of assays are required to capture all acutely toxic chemicals with the structure-based
clustering, but the FDR is dramatically reduced when compared with not using the structure-based clusters. (C)Bar plot highlighting the number of assays required
to assess the potential acute toxicity of a single chemical without using the structural clustering compared with when the structural clustering is used, and (D) Bar plot
illustrating the number of chemical clusters requiring testing in 4 or fewer assays to cover all acutely toxic chemicals, with bioactivity data in ToxCast. Without structural
clustering a novel chemical would be required to be tested in all 177 assays in the minimal assay set. With the cluster information fewer than 5 assays would be required:
98% of clusters would only need testing in 1 or 2 assays.
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these results suggest that the chemicals act via inhibition of
acetylcholinesterase activity.

This is corroborated by the literature-reported mechanism for
the four chemicals in the cluster for which information on a
mechanism could be identified. Each of the four chemicals
(aldicarb, butocarboxim, methomyl, and oxamyl) are
recognized as acting by inhibiting the enzyme
acetylcholinesterase. Acetylcholinesterase is responsible for the
termination of impulse transmission at various nerve endings in
the central and peripheral nervous systems by catalyzing the
breakdown of the neurotransmitter acetylcholine into choline
and acetic acid (Risher et al., 1987; U.S. EPA, 2007; National
Advisory Committee, 2009; Costa et al., 2010; Colovic et al.,
2013). These chemicals, along with other carbamate pesticides,
prevent acetylcholinesterase from catalyzing this reaction;

thereby, increasing the amount and/or duration acetylcholine
is present causing a hyperstimulation of the cholinergic receptors
and disrupted neurotransmission.

This cluster is an example of the ideal scenario where a
consistent mechanism could be identified across multiple
chemicals and where the biological target of the minimal assay
identified by the analysis workflow corresponds to the literature-
reported mechanism. It should be noted that a priori knowledge
of the mechanism of action of the chemicals within a cluster could
also be utilized to assist in prioritizing/identifying the most
appropriate assay(s) for testing.

Additionally, we can use the literature-reported mechanism(s)
and minimal assay(s) associated with a cluster to help guide the
testing of a similar chemical (in terms of chemical structure and/
or physicochemical properties) outside the cluster. For example,

FIGURE 4 | Cluster 678 structure and activity information. (A) Structures for chemicals in cluster 678. (B) Heatmap showing activity below the cytotoxicity range in
the assays that were enriched for this cluster. Only chemicals with activity in at least one assay are shown. (C) Heatmap showing activity for all assays where at least one
chemical from the cluster was active. Not all assay names are shown. (D) Structure of tirpate compared with chemicals from clusters 390 and 678. Heatmap colors: blue
= active below cytotoxicity, light blue = active above cytotoxicity, white = inactive, grey = not tested. Top of heatmap: red = toxic, blue = nontoxic. Red asterisks
identify the assay(s) selected for that cluster.

Frontiers in Toxicology | www.frontiersin.org March 2022 | Volume 4 | Article 8240948

Edwards et al. Mapping Acute Oral Toxicity Pathways

https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles


tirpate (Cluster 390) is approximately 86% similar to two
chemicals (in terms of chemical structure): 1) 1,3-dithiolan-2-
one O-[(methylamino)carbonyl]oxime, which is in Cluster 390
along with tirpate, 2) aldicarb from Cluster 678 (Figure 4D). As
tirpate, along with the other chemicals in Cluster 390, has not
been tested in ToxCast we can use its similarity to aldicarb to
prioritize the assay(s) in which tirpate should be tested. In this
case it would be the NVS_ENZ_rAChE assay.

Cluster 1860: Indole Alkaloids
Cluster 1860 consists of three indole alkaloids (brucine,
strychnine, and strychnine nitrate), all of which are very
acutely toxic (Figures 5A,B). Brucine and strychnine have
been seen to have pharmacological effects at a variety of
receptors of neurotransmitters and as such have been used as

medicines to treat a wide range of ailments (Jensen et al., 2006;
Teske et al., 2011). However, these uses were discontinued due to
the narrow therapeutic window. More recently, strychnine has
been used as a rodenticide. Two of the three chemicals
(strychnine and brucine) are well studied, having been tested
in 312 and 470 ToxCast assays, respectively. Unlike the previous
cluster, no one assay captures the activity across both chemicals.
Therefore, the analysis workflow identified two minimal assays
for this cluster: namely, the NVS_GPCR_gOpiateK and the
UPITT_HCI_U2OS_AR_TIF2_Nucleoli_Agonist assays. There
were a total of 4 assays enriched for activity in this cluster
compared to the acutely toxic chemicals not in this cluster,
with MCC values ranging from 0.097 to 0.212. Both of the
assays identified as the minimal assays for this cluster have
different biological targets: the target for the

FIGURE 5 | Clusters 1860 and 1223. A/C. Heatmap showing activity below the cytotoxicity range in the assays that were enriched for clusters 1860 (A) and 1223.
(C) Only chemicals with activity in at least one assay are shown. B/D. Heatmap showing activity for all assays where at least one chemical from the clusters 1860 (B) or
1223 (D)was active. Heatmap colors: blue = active below the cytotoxicity point, light blue = active above the cytotoxicity point, white = inactive, grey = not tested. Top of
heatmap: red = toxic, blue = nontoxic, aquamarine = undefined. Red asterisks identify the assay(s) selected for that cluster.
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NVS_GPCR_gOpiateK assay being the kappa 1 opioid receptor
and the target for the
UPITT_HCI_U2OS_AR_TIF2_Nucleoli_Agonist assay being
the androgen receptor.

Meanwhile, the predominant mechanisms for these chemicals
identified in the literature are as antagonists of glycine receptor
and cholinergic receptor signaling. The post-synaptic glycine
receptor is a ligand-gated ion channel that is a member of the
acetylcholine receptor family and is well known to function as an
inhibitor of neurotransmission in the spinal cord and brain stem
(Lynch, 2004). Strychnine is an extremely potent competitive
antagonist of the glycine receptor with inhibitory constant values
in the nanomolar region (Rajendra et al., 1997; Laube et al., 2002;
Lynch, 2004; Jensen et al., 2006). Strychnine appears to bind to
the glycine receptor at a similar, but not identical, site as glycine.
Once bound, strychnine and brucine block glycine from binding
to the glycine receptor and exhibiting its inhibitory effects on the
post-synaptic neuron, leading to hyperexcitability and,
subsequently, death by asphyxiation. Additionally, these
chemicals can act on the nicotinic and muscarinic
acetylcholine receptors as antagonists and allosteric
modulators, respectively (Kuijpers et al., 1994; Jensen et al., 2006).

Even though the two minimal assays identified for this cluster
and the literature reported mechanisms of action do not appear
wholly related to one another, the reason for this discrepancy can
likely be explained by the fact that none of the chemicals in this
cluster have been tested in the glycine receptor-related assay in
ToxCast: NVS_LGIC_rGlyRStrSens. However, strychnine nitrate
is used as the positive control within the
NVS_LGIC_rGlyRStrSens assay. As such, it is probably
reasonable to hypothesize that if these chemicals were tested
in the NVS_LGIC_rGlyRStrSens assay they would all likely be
active. Therefore, this cluster is an example of how the minimal
assay(s) chosen are a result of which assays the chemicals have
been tested in and don’t necessarily correspond with the
mechanism of acute toxicity.

Cluster 1223: Corticosteroids
Cluster 1223 consists of 15 corticosteroid chemicals, of which 5
are acutely toxic and 10 are not acutely toxic (Figures 5C,D).
Eleven of the 15 chemicals have been tested in a large number of
ToxCast assays ranging from 79 to 413 endpoints per chemical,
with the vast majority being tested only in the Tox21 assays. All
10 of the chemicals tested in the glucocorticoid receptor assay
exhibited activity below cytotoxicity, including three acutely toxic
and seven nontoxic chemicals. As with Cluster 1860, more than
one assay was chosen as part of the minimal assay set, in this
instance three assays were required: ATG_NRF2_ARE_CIS_dn,
TOX21_AR_LUC_MDAKB2_Agonist_3uM_Nilutamide, and
TOX21_PR_BLA_Agonist_ch1. Even though each of the
acutely toxic chemicals were active in the glucocorticoid
receptor-related assays, these were not identified as part of
the minimal assay set because of the high number of false
positives (i.e., the high number of nontoxic chemicals that were
also active in these assays). A total of 17 assays were enriched for
activity in the acutely toxic chemicals in this cluster when
compared against the remaining acutely toxic chemicals. As

expected, six of the top seven enriched assays were related to the
glucocorticoid receptor, which is the target mechanism of
corticosteroids.

While the long-term use of glucocorticoid agonists can lead to
a variety of adverse effects such as adrenal atrophy,
immunosuppression, hypertension, and hyperglycaemia
(Wallace et al., 2004); less appears to be known about the
mechanism by which these chemicals elicit toxicity after acute
exposure. Without this information it is difficult to verify whether
the assays identified in the minimal assay set are mechanistically
relevant. As such, this cluster is an example of how it can be
difficult to ascertain whether the minimal assay(s) identified are
relevant to the mechanism of acute toxicity. Additionally, this
cluster demonstrates how information on a structural class,
particularly one with pharmacological uses, can be integrated
with bioactivity information to identify assays that are likely not
informative for the acute toxicity mechanism.

Cluster 217: Methylphenols
A total of 24 methylphenol chemicals were assigned to Cluster
217, of which half were considered acutely toxic (Figures 6A,B).
Methylphenols are commonly used as precursors or
intermediates in the production of a variety of substances
including antioxidants, pesticides, and pharmaceuticals
(Thompson et al., 1996). Fifteen chemicals, ten acutely toxic
and five nontoxic, have been tested in between 250 and 1,206
ToxCast assays, with a median of 638. Three assays were required
to cover all acutely toxic chemicals within this cluster: namely,
ATG_ERa_TRANS_up, BSK_LPS_PGE2_down, and
BSK_Sag_Eselectin_up. Additionally, 34 assays were enriched
for activity in the toxic chemicals in Cluster 217 compared to
those not in Cluster 217 with MCC values ranging from 0.053 to
0.256. The enriched assays cover a wide variety of different
biological endpoints, including but not limited to the arginine
vasopressin receptor, the estrogen receptor, matrix
metallopeptidase, and the change in the transcription factor
activity of the SP1 gene.

While there is limited information about the potential toxic
mechanism of methylphenols, effects have been observed in the
liver, kidney, gastrointestinal tract, and central nervous system
(Thompson et al., 1996; U.S. EPA, 2000; Agency for Toxic
Substances and Disease Registry, 2008; National Center for
Biotechnology Information, 2021). Several methylphenols
(such as meta-, ortho-, and para-cresol present in this cluster)
are known chemical irritants and corrosives at high
concentrations that appear able to denature and precipitate
proteins leading to coagulative necrosis (Agency for Toxic
Substances and Disease Registry, 2008). After studying the
hepatotoxic effects of p-cresol and other substituted cresols
within rat liver slices, Thompson and colleagues (1996)
hypothesized a cytotoxic mechanism whereby p-cresol is
bioactivated to a quinone methide intermediate, which can
covalently bind to cellular macromolecules via Michael
addition (Thompson et al., 1993; Thompson et al., 1996;
Agency for Toxic Substances and Disease Registry, 2008;
Bolton, 2014). An alternative hypothesis was suggested by
Kitagawa (2001) that cresol may exhibit their hepatotoxicity
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by inhibiting mitochondrial respiration and/or causing/
accelerating mitochondrial swelling (Kitagawa, 2001).
Additionally, quinone methides may alter the redox balance
within cells through the depletion of glutathione (Bolton, 2014).

Given the sparsity and inconsistency in activity within the
ToxCast assays and the diversity of hypothesized mechanisms,
this cluster is an example of a cluster where there does not appear
to be a clear, coherent mechanism across the chemicals. As these
chemicals are corrosive irritants, they are likely to have a broad
range of non-specific effects. Alternatively, it may be that the
cause of the activity across different assays is due to assay
interference via the hypothesized protein binding mechanism
from the literature.

Cluster 773: Benzothiazoles
This cluster consists of seven benzothiazole-containing
chemicals. Five of these seven chemicals are considered acutely
toxic (Figures 6C,D). Benzothiazoles can occur naturally as
constituents of tea leaves, but are mainly manufactured for a
variety of industrial and consumer purposes, including as
corrosion inhibitors, fungicides, and insecticides, as well as
vulcanization accelerators in the production of rubber and
within the paper and pharmaceutical industries (De Wever
and Verachtert, 1997; Liao et al., 2018). Four chemicals [2,2′-
dithiobisbenzothiazole, benzothiazole, 2-mercaptobenzothiazole,
and 2-(thiocyanomethylthio) benzothiazole] have been tested in
between 235 and 1,383 ToxCast assays. All three of the acutely

FIGURE 6 | Clusters 217 and 773.A/C. Heatmap showing activity below the cytotoxicity range in the assays that were enriched for clusters 217 (A) and 773 (C).
Only chemicals with activity in at least one assay are shown. B/D. Heatmap showing activity for all assays where at least one chemical from the clusters 217 (B) or 773 (D)
was active. Heatmap colors: blue = active below the cytotoxicity point, light blue = active above the cytotoxicity point, white = inactive, grey = not tested. Top of heatmap:
red = toxic, blue = nontoxic, aquamarine = undefined. Red asterisks identify the assay(s) selected for that cluster.
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toxic chemicals were active below cytotoxicity in the
NCCT_TPO_AUR_dn assay, which measures a loss of activity
in the thyroid peroxidase enzyme. Consequently, this assay was
identified as the minimal assay for this cluster. Additionally,
inhibition of activity in the thyroid peroxidase enzyme has been
observed within other studies (Hornung et al., 2015). The
mechanism of acute toxicity for benzothiazoles is unclear;
however, it is unlikely that inhibition of thyroid peroxidase
activity is the mechanism as this does not correspond to any
known pathways associated with acute toxicity.

Catalog of AOPs Associated With Acute
Systemic Toxicity
We identified previously published mechanisms (Prieto et al.,
2019; Sullivan et al., 2021) associated with our chemical clusters
(Table 2) to evaluate the breadth of acute toxicity mechanisms

across the clusters. A comprehensive evaluation of known
mechanisms of action was performed for chemical clusters
that included extremely toxic chemicals with an acute oral
LD50 of 25 mg/kg or less and which had one or more
ToxCast assay assigned to the cluster (108 clusters met these
criteria). Importantly, given the emphasis on collecting known
mechanisms associated with the chemicals in the clusters, the
resulting list in Table 2 includes mechanisms that are not likely to
lead to acute toxicity, such as endocrine system disruption and
inflammation inhibition. The previous publications collectively
covered 69% of the precise known mechanisms identified within
the extremely toxic chemicals. In most cases where the
mechanism wasn’t previously described, the broader
mechanism was captured but the specific mechanism was
missed. For example, Prieto and colleagues identified
hemorrhage as a mechanism of acute toxicity but didn’t
specify the inhibition of vitamin-K recycling as one of the

TABLE 2 | Summary of previously published mechanisms for selected chemical clusters. Extremely Toxic Chemicals: LD50≤25 mg/kg. Options for inclusion of the
mechanism in the AOP-Wiki are as follows: AOP = An AOP exists that includes the key event corresponding to this mechanism and an adverse outcome of death
(mortality). Key Event = A key event corresponding to this mechanism exists but no AOPs containing that key event have an adverse outcome of death (mortality). No = No
key event was found that matches the mechanism.*Cardiac channel blocking includes several different channels, but the AOP is specifically focused on the Ether-a-go-go
channels, which have not been definitively mapped to a cluster from our analysis at this time.

Known mechanisms Associated
with Clusters including
Extremely Toxic Chemicals

Associated with Extremely
Toxic Chemicals

Reported
in Sullivan et al

Included
in the AOP-Wiki

Reported
in Prieto et al

Adrenergic receptor interaction X X Key Event X
Cholinergic signaling X X AOP X
Histaminergic signaling — X AOP X
Dopamine receptor interaction X X Key Event X
GABA receptor signaling X — AOP X
Glycine receptor signaling X — No X
NMDA receptor signaling X X Key Event X
Norepinephrine reuptake inhibition — X No X
Opioid receptor interaction X X Key Event —

Serotonin reuptake inhibition — X Key Event X
Steroid receptor signaling X — Key Event —

Endocrine system disruption X — Key Event —

Cardiac ATPase inhibition X — No X
Cardiac channel blocking X X AOP* X
Alkali-associated toxicity X — No —

ACE inhibition X — Key Event —

Vitamin-K recycling inhibition X — AOP —

TRPA1 interaction — X Key Event —

Prostaglandin synthesis inhibition X — Key Event X
Inhibition of inflammation (anti-inflammatory agents) X — Key Event X
Vitamin D receptor inhibition X — Key Event —

Aconitase inhibition X X No —

Aldose Reductase inhibition X X No —

Alkylation of biomolecules (alkylating agents) X — Key Event X
Aryl hydrocarbon receptor activation X — Key Event —

Dihydrofolate reductase inhibition — X No —

DNA damage X — AOP X
Heme biosynthesis inhibition — X Key Event —

Oxidative phosphorylation inhibition X X AOP X
Oxidative phosphorylation inhibition via cytochrome-C oxidase X X No —

Ion balance disruption (ionophores) X — No —

Mitochondrial inhibitors X X AOP X
PPAR signaling inhibition X — Key Event —

Protein synthesis inhibition — X No X
Tubulin binding — X Key Event X
Voltage-gated ion channel interference X X AOP X
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upstream events leading to hemorrhage. There are also a number
of acutely toxic chemicals for which the mechanism of toxicity is
still unknown. As previously noted, traditional in vivo testing
methods do not provide the information needed to define a
mechanism for chemicals lacking this information from other
sources (National Academies of Sciences, 2015).

A comparison with key events in the AOP-Wiki (https://
aopwiki.org/) showed similar results. While 75% of the
mechanisms associated with extreme toxicity had a relevant
key event in the AOP-Wiki, only 29% had the full AOP
leading to acute mortality. Of those AOPs, the majority were
applicable to fish and invertebrates and may not be relevant for
mammalian toxicity. Of interest, there are only two cases (alkali-
associated toxicity and ion balance disruption by ionophores)
where no mechanistic information was present across all data
sources. This suggests that a great deal of the needed information
is available and just has not been formally assembled in the AOP-
Wiki at this stage.

The effort to inventory mechanisms associated with extremely
toxic chemicals helped us to evaluate the extent to which assays
selected for a cluster align with what is already known about
mechanisms of action for the chemicals in a cluster. The cluster-
to-assay relationships can be organized into the following bins: 1)
Cluster where the selected assay aligns with the best-known
mechanisms associated with the chemicals in the cluster, 2)
Cluster where the selected assay is indirectly associated with the
best-knownmechanisms for chemicals in the cluster, 3) Clusters that
did not get assays assigned, and 4) Clusters where a relationship
between the selected assay(s) and what is already known about the
MOA for chemicals in the cluster was not readily apparent.

Example where a selected assay aligns with best-known
Mechanisms for Chemicals in the Cluster. Vitamin-D

analogs—Clusters 1798 and 1964 (Figure 7): Two clusters
were enriched for chemicals known to be Vitamin-D analogs
(1798 with 6 chemicals and 1964 with 2 chemicals) and each
cluster had a single chemical (Vitamin D–Cluster 1798,
Ergocalciferol–Cluster 1964) that was tested in the
Tox21 Vitamin-D receptor assays. Ergocalciferol (CAS# 50-14-
6) was also tested in the ToxCast Attagene assay. None of the
other chemicals were tested in any of the vitamin-D receptor
assays. Both chemicals showed activity in all vitamin-D receptor
assays in which they were tested, but some activity was within the
cytotoxicity range. The TOX21_VDR_BLA_agonist_ch2
endpoint was selected for cluster 1798 and showed activity for
both of the tested chemicals below the cytotoxicity point. The
ATG_VDR_TRANS_up assay was selected for cluster 1964.
While it is encouraging that the correct assays were selected
when only a single chemical was tested from each cluster, the
algorithm is designed to use the aggregate signal across multiple
chemicals in the cluster. For this reason, the results found in this
study could be dramatically improved if the assay coverage for the
chemicals was more extensive. We are also evaluating the
clustering to determine why these chemicals were split into
two clusters and whether other similar examples exist.

Another interesting observation from this pair of clusters is the
activity of all toxic compounds in the Tox21 DT40 assays with no
activity for the nontoxic compound (Figure 7). These assays all
use the CellTiter-Glo (Promega) method to measure cytotoxicity
(Yamamoto et al., 2011). Two of the assays (TOX21_DT40_657,
TOX21_DT40_100) rely on DT40 cells with mutations that
induce deficiency in DNA repair, and comparison of
cytotoxicity between those cell lines and the isogenic wild-type
cells (TOX21_DT40) is used to evaluate chemicals as DNA
damaging agents. Our results suggest that these cells may also

FIGURE 7 | Vitamin-D analogs.Combined heatmap showing chemicals from clusters 1798 and 1964 containing vitamin-D analogs. All assays corresponding to the
vitamin-D receptor and any other assay with activity below the cytotoxicity point for at least one chemical are shown. Heatmap colors: blue = active below the cytotoxicity
point, light blue = active above the cytotoxicity point, white = inactive, grey = not tested. Top of heatmap: red = toxic, blue = nontoxic, aquamarine = undefined. Red
asterisks identify the assay(s) selected for that cluster.
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provide a sensitive assay for cytotoxicity, which has been
previously shown as a good predictor of acute systemic
toxicity (Prieto et al., 2013). This is consistent with previous
characterization of these cell lines (Yamamoto et al., 2011).
Activity in this highly sensitive cytotoxicity assay below the
cytotoxicity range established by the aggregate signal across
many assays was common across the different chemical
clusters (examples in Figures 5, 6), but the specificity for
acutely toxic chemicals is not universal. It could, however,
represent an interesting addition to a multi-assay testing battery.

Examples where the selected assay is indirectly linked with the
best-known mechanisms for chemicals in the cluster.
Prostaglandin Receptor Agonist—Cluster 941 (Figure 8):
Cluster 941 drew our attention because all three chemicals are
known to be prostaglandin receptor agonists (Beraprost sodium,
Beraprost, and Latanoprost). None of the chemicals were tested in
ToxCast, but Beraprost sodium had been tested in 79 Tox21
assays, none of which are specific for prostaglandin receptors.
Based on this chemical, the assay selected for the cluster was
TOX21_PPARg_BLA_Agonist_ch2.While PPAR γ is not a direct
target of prostaglandins, there is documented bidirectional
communication between PPAR γ and different prostaglandin
signaling pathways (Koeffler, 2003; Fujimori, 2012; Evans et al.,
2019; Lee et al., 2021) and 15-deoxy-Δ12,14-prostaglandin J2 is the
endogenous ligand for this receptor (Kliewer et al., 1995; Lee et al.,

2021). Beraprost is an analog for prostaglandin I or prostacyclin,
which has been shown to modulate PPAR δ (Forman et al., 1997;
Lim et al., 1999). Since prostacyclin has not shown activity for
PPAR γ (Forman et al., 1997), the activity picked up in the
ToxCast assay could be off-target effects of beraprost or a
consequence of micromolar concentrations applied directly to
the receptor. Either way, the expectation would be that activity in
the PPAR δ assay would occur at lower concentrations and the
activity for the prostaglandin I receptor at lower concentrations
still. While the AC50 values used in our analysis are a good
starting point, they are not indicative of what could be achieved
with a tailored tiered testing strategy that uses mechanism-based
targets.

Vitamin-K Epoxide Reductase Inhibitor—Clusters 296, 700,
928, 1080 (Figure 9): Four clusters containing extremely toxic
chemicals consisted mostly of rodenticides that work by
inhibiting the recycling of vitamin K, which is required for
synthesis of coagulation factors VII, IX, X, and thrombin. The
target of these chemicals is vitamin K epoxide, which is not a
target in any ToxCast or Tox21 assays. In the absence of the
primary target for these chemicals, the assays identified for all
clusters related to PPAR γ signaling (Figure 9). As with the
prostaglandin receptor agonists, there is evidence of an off-target
impact on PPAR γ signaling for this chemical class. Warfarin,
which is the prototypical chemical for this class has been

FIGURE 8 | Prostaglandin receptor agonists. (A) Heatmap showing activity for all assays where at least one chemical from cluster 941 was active. (B) Dose
response curve for beraprost sodium in selected assay showing modest activity. From https://comptox.epa.gov/dashboard/dsstoxdb/results?search=
DTXSID2048585#invitrodb-bioassays-toxcast-tox21. Accessed 11/19/2021. Heatmap colors: blue = active below the cytotoxicity point, light blue = active above the
cytotoxicity point, white = inactive, grey = not tested. Top of heatmap: red = toxic, blue = nontoxic, aquamarine = undefined. Red asterisks identify the assay(s)
selected for that cluster.
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previously shown to inhibit PPAR γ signaling (Tew et al., 2017).
In the case of the Tox21 results, we identified both PPAR γ
agonist (clusters 296, 700, and 928) and antagonist (cluster 1080)
activity. This could mean that members of this class of
compounds are partial agonists for the PPAR γ receptor. This
is consistent with a general observation of low efficacy in the
agonist assays. There were two assays identified for cluster 296
based on two chemicals within that cluster with activity below
cytotoxicity in ToxCast/Tox21. One assay targets PPAR γ signaling
and the other targets PPAR δ signaling. The chemical for which
PPAR δ was chosen was not tested in the PPAR γ assay, so it is
possible that this cluster would have been exclusive for PPAR γ had

the chemical been tested in that assay. Many of the chemicals
across all four clusters had activity in both the PPAR γ and PPAR δ
assays, however, suggesting that there is considerable crosstalk
among those assays. This is consistent with our conclusions for the
prostaglandin receptor agonist cluster above.

Example of a cluster that did not get an assay assigned.
Adrenergic Receptor—Cluster 803 (Figure 10): Cluster 803
came to our attention because it contained known alpha 1
adrenergic receptor agonists and “Adrenergic interaction” has
been defined as a mechanism of acute lethality for which further
assay development work is needed (Sullivan et al., 2021). When
ingested orally or taken in too large a dose, certain imidazoline-

FIGURE 9 | Vitamin-K epoxide reductase inhibitors. Heatmap showing activity below the cytotoxicity range in the assays that were enriched for clusters 296 (A),
700 (B), 928 (C) and 1080 (D). Only chemicals with activity in at least one assay are shown. Heatmap colors: blue = active below the cytotoxicity point, light blue = active
above the cytotoxicity point, white = inactive, grey = not tested. Top of heatmap: red = toxic, blue = nontoxic, aquamarine = undefined. Red asterisks identify the assay(s)
selected for that cluster.
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FIGURE10 | Adrenergic receptor agonists. Heatmap showing activity for all assays where at least one chemical from the cluster was active. Not all assay names are
shown. Heatmap colors: blue = active below the cytotoxicity point, light blue = active above the cytotoxicity point, white = inactive, grey = not tested. Top of heatmap: red
= toxic, blue = nontoxic, aquamarine = undefined.
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containing chemicals, such as alpha adrenergic receptor agonists,
can depress the central nervous system, reduce blood pressure,
and induce bradycardia (Lowry and Brown, 2014; Karpushkina
et al., 2021; Lionte et al., 2012; Norman and Nappe, 2021). This
may be due to a loss of selectivity of the chemical towards the
alpha-2 adrenergic receptor and/or via binding to the imidazoline
receptor (Lowry and Brown, 2014; Karpushkina et al., 2021). It
has been hypothesized that stimulation of either the alpha-2
adrenergic receptor or the imidazoline receptor can lead to
activation of the other receptor (Lowry and Brown, 2014).

We wanted to understand why cluster 803 was not assigned an
assay during our analysis despite having a previously defined
mechanism for acute toxicity. There are three chemicals in the
cluster known to impact adrenergic signaling (Oxymetazoline,
Xylometazoline hydrochloride, and Oxymetazoline hydrochloride),
but none of those chemicals were tested in any of the ToxCast assays
for alpha adrenergic receptors. They were tested in the Tox21 assays,
but those assays do not include measures of adrenergic signaling.
Whereas the three known alpha1 adrenergic receptor agonists all
have an imidazoline group, which is known to interact with the alpha
adrenoceptor as well as the imidazoline receptors (Hong et al., 1994;
Lowry and Brown, 2014), the other chemicals in this cluster lack that
chemical feature and may act via a different mechanism. This is
consistent with a lack of activity in adrenoreceptor assays for the one
chemical from the cluster that was tested in the ToxCast assays. In
this case, the original cluster should be split further based on the
presence or absence of the imidazoline group. This cluster
demonstrates how using the structure, bioactivity, and literature
data can help to further refine the clustering. The Tox21 DT40
assays show activity for all chemicals tested in this cluster, but they
are not eligible for a cluster-specific assay because they measure
cytotoxicity. As noted previously, however, these assays do hold
promise as a sensitive measure of cytotoxicity.

Summary of Mechanistic Classification of
ATWG Chemicals
The ToxCast activity for chemicals in the assays corresponding to
their structural cluster was combined with the cytotoxicity
activity from ToxCast to create a composite activity
assessment and corresponding AC50 value for comparison
with the previously defined toxicity classification for those
chemicals. The cytotoxicity activity was included along with
assays identified above because this readout has been
previously determined to be informative regarding acute
toxicity (Prieto et al., 2013; Prieto et al., 2019). Out of 11,992
chemicals in the ATWG set, 3957 chemicals had ToxCast data
deemed relevant for acute toxicity evaluation. Of these, 2028
chemicals were classified as active and 1929 showed no activity.
Comparison of the ToxCast activity assessment against a binary
classification of toxicity (Mansouri et al., 2021) showed a highly
significant association (Table 3).

A similar result was seen when comparing the activity in
ToxCast vs the GHS categories for the chemicals. While the
p-value from the Fisher’s Exact Test was higher than that for the
binary classification, it was still significant (estimated p-value =
5 × 10−4). Comparison of the AC50 values across the different

categories also shows a trend with higher AC50 values associated
with less toxicity (Figure 11A). However, there is a high degree of
overlap across the different categories making it impossible to
predict the acute toxicity category from the ToxCast activity
data alone.

The structural cluster to which a chemical belongs also
provides valuable information regarding the potential acute
toxicity potential of the chemical as expected (Figure 11B).
This trend was also significant when evaluated using the
Fisher’s Exact Test (estimated p-value = 5 × 10−5). A large
number of structural clusters are unique to a single GHS
category when considering only the ToxCast chemicals with
activity data (corresponding to the AC50 values plotted in
Figure 11A). Of the remainder, most clusters include
chemicals from two neighboring categories. If chemicals that
have not been tested in ToxCast are included, the distribution
across the categories is broader but still shows a similar pattern.
The use of in vitro-in vivo extrapolation to account for
toxicokinetics would be expected to improve the
correspondence between the bioactivity and in vivo-based
toxicity classifications as discussed below (Honda et al., 2019;
Ring et al., 2021).

DISCUSSION

Our results suggest that a combination of in silico and in vitro
approaches can be sufficient for determining acute oral toxicity
without the need for in vivo animal testing. We have identified a
set of in vitro assays from the ToxCast program that can be used
to evaluate toxicity and shown that coupling those assays with
structural information can improve their predictive capability.
Subsequent evaluation of the assays highlighted opportunities
and challenges associated with the use of the existing in vitro
assays for this purpose. The biggest issue was the lack of assay
data for many of the chemicals. In many cases, the minimal assay
chosen was based upon data availability rather than measured
activity. There were also many cases where a single chemical from
a cluster was solely responsible for the assay selection. The
methods employed are intended to leverage the aggregate
activity across the cluster and are not expected to perform
well when a single chemical is used for the selection.

The in vitro assays identified herein are not intended as a
definitive list but instead as a starting point for a mechanism-
driven approach to identifying and cataloging assays that cover
the acute oral toxicity space. Our approach looked for the best
assays to identify toxic chemicals within a cluster, but it was not

TABLE 3 | Comparison of ToxCast activity and acute oral toxicitySignificance
based on Fisher’s Exact Test: p-value = 2.2 × 10−16, odds ratio = 4.46.
Nontoxic chemicals are defined as LD50 > 2,000 mg/kg.

ToxCast Activity ATWG Toxicity Classification

Toxic Nontoxic

Active 1,406 621
Not Active 649 1,279
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FIGURE 11 | Comparison of ToxCast AC50 values and structural clusters with GHS Categories. (A) Boxplots show the median along with the first and third
quartiles, and outliers are shown via dots and whiskers. Median AC50 values (micromolar) for each GHS category are as follows: 1 = 5.97, 2 = 10, 3 = 27, 4 = 33, 5 =
1000. (B) Heatmap shows the percentage of the chemicals within a cluster having the specified GHS category. The majority of clusters span 1-2 neighboring GHS
categories.
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designed to evaluate the quality of those assays. Assays that only
identify a small percentage of the toxic chemicals within the
cluster or don’t discriminate between the toxic and nontoxic
chemicals will not be useful in a tiered testing paradigm. On the
other hand, assays that correspond to the known mechanism of
toxicity and correctly identified all toxic chemicals within a
cluster can be used with confidence. It is important to note
that not all assays need to be demonstrably tied to a precise
mechanism to be valuable. There are many reasons why an assay
may provide an accurate readout of the potential toxicity due to
indirect effects on the target of the assay. The key is to accurately
catalog those assays and include the necessary caveats for use
when interpreting the data from those assays.

The current results can be expanded in a variety of ways. This
study focused on data from the ToxCast screening program, but
this represents only a fraction of the available assay data. Previous
studies have evaluated results from the ACuteTox project
(Kinsner-Ovaskainen et al., 2013) and data collected in
PubChem (Russo et al., 2019), and there is a wealth of
information in the published literature outside of large
individual datasets. Combining the information from these
different approaches and applying our methods to additional
datasets should expand our coverage of the chemical space and
increase the number of clusters for which a relevant assay is
identified. The current analysis was intentionally data-driven and
relied exclusively on the chemical structure and bioactivity
information. The rationale for this choice was to complement
other recent efforts that attempted to approach the problem by
defining the biological mechanisms (Prieto et al., 2019; Sullivan
et al., 2021). There will be many cases where the ideal bioassay is
readily available and can be easily identified purely by identifying
the mechanism by which a given chemical cluster causes toxicity.
Many of these assays may not be amenable to high throughput
screening (HTS) and would therefore never be identified by
analyzing the results from HTS efforts.

Integration of information regarding the mechanisms of
toxicity should greatly improve our ability to identify and
verify the ideal in vitro assays for different structural classes of
chemicals. To this end, we catalogued known mechanisms of
acute oral toxicity from three sources and compared them with
the in vitro assays identified for the chemicals associated with
those mechanisms. Finally, we evaluated how well the ToxCast
in vitro activity and the structural clustering corresponded to the
known acute oral toxicity potential of the chemicals. These results
suggest that a combination of chemical structure and bioactivity
can be predictive of in vivo toxicity. For example, 73% of the
structural clusters containing at least one toxic chemical includes
chemicals from at most two GHS categories. These findings are
consistent with the previously published evaluations of the
CATMoS model (Mansouri et al., 2021) and the related QSAR
efforts (Alberga et al., 2019; Ballabio et al., 2019; Gadaleta et al.,
2019). They also highlight the potential value of mechanism-
based profilers (Wijeyesakere et al., 2018; Wilson et al., 2018).
We’ve shown that 98% of the clusters containing chemicals tested
as part of the ToxCast/Tox21 programs required two assays or less
to identify the toxic chemicals within those clusters (Figure 3D).
While the overlap in ac50 values (Figure 11A) is currently too great

for accurate discrimination, there are several obvious
improvements to be made: identifying assays more causally
associated with the toxicological mechanism, accounting for
toxicokinetics of the chemicals, testing chemicals in lower
throughput assays to potentially increase accuracy and precision.

Our findings highlight the value of incorporating mechanistic
information into any tiered testing strategy. Not only does the
information about mechanisms of toxicity for a certain structural
class aid in identifying the appropriate assay, but it also provides
the information to interpret the results from those assays. Assays
that focus directly on essential targets for the mechanism of
toxicity give more confidence in a hazard assessment than assays
that monitor tangential effects. Knowledge of the mechanisms of
toxicity also provide a framework for integrating data from
in silico, in vitro, and in vivo studies to more effectively
leverage all available information when assessing toxicity
(Tollefsen et al., 2014; Marshall et al., 2018). AOPs were
specifically designed for this purpose and offer the ideal
framework for assembling this type of information (Ankley
and Edwards, 2018; Watford et al., 2019). Our results show
that much of the relevant information is already included in
the AOP-Wiki, but inmany cases, the full AOPs relevant for acute
oral toxicity have not been defined.

A common misconception is that an AOP must be
exhaustively documented and reviewed in order to be used for
IATA development or toxicity assessment, but many acute
toxicity mechanisms are well known and would not require
extensive documentation for use in a tiered testing
environment. In fact, the assembly of the AOP often
highlights data gaps and aids in identifying mechanisms where
additional information is needed to increase the confidence. In
particular, if AOPs are developed in concert with the assay
identification and assembly of the tiered testing framework,
the information requirements for the AOPs will be driven by
the testing paradigm. This focuses the AOP development effort
and reduces the time and effort required to create a fit for purpose
AOP. Should those AOPs be needed for a different purpose down
the road, they can be more comprehensively reviewed to meet
those needs.

An AOP-driven integrated approach also reduces the reliance on
any single source of toxicity information. By tailoring the bioactivity
assays to the structural clusters, we can add an additional evidence
layer to the information provided by the chemical structure. The
additional information from a carefully selected bioactivity assay is
critical when defining mechanism-based profilers (Wijeyesakere
et al., 2018; Wilson et al., 2018) since small changes in structures
could lead to drastic changes in bioactivity. This integrated approach
can be used to support read-across and other related applications
(Prieto et al., 2013; Floris et al., 2014; De Abrew et al., 2019; Russo
et al., 2019; Karmaus et al., 2020). There are probabilistic approaches
such as Bayesian networks that allow simultaneous consideration of
all lines of evidence as well. By using AOPs as the organizing
framework, these data can be jointly utilized to support decision
making rather than considered individually within a tiered testing
paradigm.

While more work is needed to comprehensively cover the
entire chemical space associated with acute oral toxicity, there is
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pretty good coverage of known toxic chemicals today (Table 4).
The structural clusters include 92% of the known toxic chemicals,
and the structural information alone provides a good indication
of the GHS category for most of the chemicals (Figure 11B).
While Figure 11B is focused on those clusters that are linked to a
ToxCast assay, the results are similar when evaluating all of the
structural clusters. Looking at the toxic chemicals, 58% of the
structural clusters contain chemicals that all fall within the same
GHS category. Furthermore, 85% of the clusters include
chemicals from no more than two neighboring categories,
which means that information on the chemical cluster alone
could narrow the possible GHS categories considerably when
coupled with any other qualitative measure of toxicity.

Over half of the chemicals (54%) are in structural clusters for
which ToxCast assays were identified as having the potential to
provide a bioactivity readout. As discussed above, not all of the
ToxCast assays identified will be appropriate for future screening,
but in many of those cases the appropriate assay is readily
identified by looking at the shared target for the chemicals in
the cluster. Even where the existing assay is suboptimal, in many
cases it may be sufficient for estimating the GHS category with a
reasonable degree of accuracy.

The focus of this study was to better understand the options
for evaluating acute oral toxicity not to design new predictive
models. Because of this, all analyses performed were descriptive of
the existing chemicals and do not provide any information on the
actual performance of the approaches for new chemicals.
However, these results provide the information needed to
design such approaches with an emphasis on combining
multiple sources of information to predict acute oral toxicity
rather than reliance on a single measurement. The survey of the
existing data is encouraging, however, and suggests that
predictive models that combine structural and bioactivity
information could be successful. A large percentage of the
chemicals remain untested in the new alternative methods,
which presents a perfect opportunity to test predictive models
that combine in silico (e.g. QSAR) and in vitro data prospectively
as they are developed.

The Department of Defense has previously developed a tiered
approach to toxicity testing that could easily incorporate the
results from our study (National Academies of Sciences, 2015;
Sullivan et al., 2021). The first step is an in silico evaluation of
chemicals, which is easily covered by the CATMoS modeling
suite. Our structural clustering of over 11,000 chemicals builds
upon this work and provides a bridge to the second tier of testing.
Tier II of the testing paradigm is the use of high and medium
throughput screening assays. By explicitly connecting the in vitro
assays to the structural clusters from the in silico analysis, we are
able to dramatically reduce the number of assays needed for the

tier II screening. This not only saves time and money on
unnecessary testing, but it also allows assays that are not
amenable for high throughput screening to be used by limiting
the number of assays for each single chemical. By further
mapping our chemical clusters to biological mechanisms, we
help guide the selection of the assays for each cluster and
increase our confidence in the Tier II results. Utilizing the
AOP framework for defining the biological mechanisms also
provides a data integration platform to facilitate Tier III of the
testing paradigm. The AOP allows alignment of all data (in silico,
in vitro, in vivo data from read across) in a consistent manner for
all chemicals. This increases the confidence in qualitative
integration strategies and provides a framework for
quantitative integration. By enhancing each of the first three
tiers of the testing paradigm, we hope to reduce the number of
chemicals for which Tier IV in vivo testing is required.

For tier II screening, the cluster assignments can be used to
design a focused screening strategy with a small number of lower
throughput assays per chemical to emphasize precise estimates of
the dose response rather than screening large numbers of
chemicals. This should reduce the variability in the predicted
toxicity classification for chemicals within the cluster. This can be
further improved by using multiple orthogonal assays to evaluate
the toxicity. This can include both cluster-specific assays as well as
general assays such as cytotoxicity. For chemicals with no existing
assay, the knowledge of the chemical mechanism could be used to
identify the appropriate assay. In many cases, the assay will
already exist and has just not been adapted for high
throughput testing.

In the short term, additional chemicals from the cluster could
be run in parallel to further refine our knowledge regarding the
bioactivity for that cluster. Longer term, the previously evaluated
chemicals from the cluster could be used as positive controls for
the screening of new chemicals to account for batch effects.
Testing of 4-8 chemicals at the time would still allow for
higher assay volumes and increased replicates to improve the
precision of the results. Testing 8 chemicals across 4 or more
in vitro assays would be considerably cheaper than a
corresponding in vivo animal study for a single chemical and
is likely to provide more accurate results when the assays are
appropriately chosen.

There has been increased attention on the reproducibility of
the “gold standard” in vivo toxicity tests traditionally used for
both hazard assessment and the evaluation of new alternative
methods. When comparing alternative methods for assessing
endocrine disruption potential, it was found that models based
on alternative methods could predict the results of an in vivo test
with comparable accuracy to a secondary evaluation using the
same in vivo assay (Browne et al., 2015; Kleinstreuer et al., 2018a;

TABLE 4 | Coverage of the acute oral toxicity chemical spaceEvaluation of the percentage of toxic chemicals from the ATWG list covered by structural clusters and ToxCast
activity.

Number of Chemicals Percentage (%) Number of Clusters

Toxic ATWG Chemicals 6,845 100 N/A
Chemicals in clusters 6,299 92 1,810
Chemicals in clusters associated with ToxCast activity 3,723 54 990
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Browne et al., 2018). This led to an evaluation of the
reproducibility of guideline in vivo studies in general (Pham
et al., 2020) and of eye irritation (Luechtefeld et al., 2016),
skin irritation (Rooney et al., 2021), and oral toxicity
(Karmaus et al., 2022). These studies show a similar variability
when comparing two repeated tests using a standard in vivo assay
that is seen when evaluating in silico and in vitro methods based
both on our current results and previous reports (Nelms et al.,
2020; Mansouri et al., 2021).

A persistent limitation with non-animal testing is the
ADME for the chemicals. This can result in substantial over
or under prediction of toxicity depending on whether the
active chemical is rapidly eliminated or is created during
the metabolism of the parent chemical. While consideration
of the structural features within each cluster coupled with
computer-based metabolism predictions can provide some
insights regarding the potential for this confounding effect,
our work does not specifically address this outstanding issue.
There has been considerable progress in recent years both with
better in silico predictions (Pinto et al., 2016; Leonard et al.,
2018; Ring et al., 2021) and in vitro approaches (DeGroot et al.,
2018; Deisenroth et al., 2020; Franzosa et al., 2021). As these
efforts continue to progress in parallel with efforts such as
ours, the robustness of an in vitro testing paradigm should
rapidly increase.

By using the AOP framework to assemble the in silico,
in vitro, and existing in vivo data, the data integration tier can
fully leverage our knowledge of the biological mechanism
when integrating all toxicity data available for the chemical
in question and related chemicals. This will improve the
resulting decisions by providing qualitative evidence to
support the evaluation of the results and by providing a
framework on which to build quantitative models that
better account for the known biological mechanism.
Integrated models that include all existing information
relevant for assessing the toxicity of a chemical are
necessarily better than any single measure of toxicity. The
AOP framework provides a scientifically sound, biologically
based way in which to achieve this integration.
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