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Abstract

Background: Natural products are the source of various functional materials such as medicines, and understanding
their biosynthetic pathways can provide information that is helpful for their effective production through the
synthetic biology approach. A number of studies have aimed to predict biosynthetic pathways from their chemical
structures in a retrosynthesis manner; however, sometimes the calculation finishes without reaching the starting
material from the target molecule. In order to address this problem, the method to find suitable starting materials is
required.

Results: In this study, we developed a predictive workflow named the Metabolic Disassembler that automatically
disassembles the target molecule structure into relevant biosynthetic units (BUs), which are the substructures that
correspond to the starting materials in the biosynthesis pathway. This workflow uses a biosynthetic unit library
(BUL), which contains starting materials, key intermediates, and their derivatives. We obtained the starting materials
from the KEGG PATHWAY database, and 765 BUs were registered in the BUL. We then examined the proposed
workflow to optimize the combination of the BUs. To evaluate the performance of the proposed Metabolic
Disassembler workflow, we used 943 molecules that are included in the secondary metabolism maps of KEGG
PATHWAY. About 95.8% of them (903 molecules) were correctly disassembled by our proposed workflow. For
comparison, we also implemented a genetic algorithm-based workflow, and found that the accuracy was only
about 52.0%. In addition, for 90.7% of molecules, our workflow finished the calculation within one minute.

Conclusions: The Metabolic Disassembler enabled the effective disassembly of natural products in terms of both
correctness and computational time. It also outputs automatically highlighted color-coded substructures
corresponding to the BUs to help users understand the calculation results. The users do not have to specify starting
molecules in advance, and can input any target molecule, even if it is not in databases. Our workflow will be very
useful for understanding and predicting the biosynthesis of natural products.
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Background
Plants biosynthesize various natural products that pro-
tect them from being eaten by herbivores. Herbivore in-
sects can detoxify these phytotoxic molecules and can
biosynthesize various molecules including pheromones.
Fungi are also a source of valuable natural products such
as antibiotics. Secondary metabolites are species-specific
natural products that are not directly involved in the

species survival. Secondary metabolites and their deriva-
tives are used widely in medicines, cosmetics, and agri-
culture. For example, penicillin, which was discovered by
Fleming in 1928 [1], was widely used as an antibiotic
against infectious diseases, and avermectin, which was
discovered by Omura in 1979 [2], is widely used as an
anti-parasite drug for pets.
Identifying the biosynthetic route of natural products is

not only of pharmacological interest, but is also required
by engineers and biologists who use synthetic biology
techniques [3–8]. Synthetic biologists aim to synthesize
desired molecules enzymatically by introducing foreign
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genes into an organism such as Saccharomyces cerevisiae.
The biosynthesis need not necessarily mimic the actual
biosynthetic pathway of the target molecule, but knowing
the actual metabolic pathway can be very useful when
constructing the pathway in a model organism.
However, although the chemical structures of a large

number of metabolites are known, the metabolic path-
ways that lead to their synthesis are not yet known.
Moreover, the recent development of high-throughput
sequencers and metabolome analysis technology has re-
vealed a large number of natural products for which the
biosynthetic metabolic pathways are unknown. Cur-
rently, the identification of relevant enzymes in a puta-
tive pathway is carried out by trial and error based on
knowledge and experience; therefore, an information
science-based approach is highly desirable.
A large variety of natural products are produced from a

limited variety of starting materials [9]. In this paper, we

define a biosynthetic unit (BU) as a chemical substructure
that is part of the starting material. Natural products can
be disassembled into the same BUs or into several differ-
ent BUs to help elucidate their biosynthetic pathways.
In organic synthesis, retrosynthetic analysis is used to de-

sign the synthetic route of a target molecule. The retrosyn-
thetic analysis method uses the target molecule and
constructs the route backward from the target molecule to
the starting material. A similar approach can be applied to
metabolic pathway prediction; however, the number of it-
erations required to generate all virtual reactions can easily
explode, making it difficult to find an optimal solution in a
finite time. In a previous study, machine learning was ap-
plied to decide whether a pair of metabolite molecules
could form an enzymatic reaction, thereby showing the po-
tential to predict the metabolic pathway [10]. Another pre-
vious study [11] is based on similarity search to find
potential precursors, i.e., the compounds that are possibly

Fig. 1 Example of a basic set of selected biosynthetic units (BBUs). BBUs were defined as important intermediates in the biosynthetic pathways.
In this context, the important intermediates are the molecules in the starting point of the pathway map, the molecules at the branches of the
pathway, and the molecule generated immediately after the large structural change. We followed the distinction of solid and dashed arrows as
drawn in the KEGG PATHWAY database. In general, solid arrows represent the reactions for which enzymes and reactions have been well
characterized, and dashed arrows represent connections to other pathway maps, or reactions that are not yet well characterized
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reachable in artificially designed pathway in one step. How-
ever, these approaches only deal with one-step reactions in
the metabolic pathways, and therefore do not consider the
putative intermediates between the target molecule and
the starting material. In other studies, retrosynthetic ap-
proach often failed to reach the starting material [3–8, 12].
To use the retrosynthetic approach for natural product
biosynthesis, it is important to develop a workflow that can
identify the appropriate starting materials.
In this study, we developed a workflow named the

Metabolic Disassembler to automatically identify the BUs
that corresponded to the starting materials of a given nat-
ural product. One of the important characteristics is that
our method “disassembles” a given molecule into sub-
structures that imply the starting materials. The aim was
to provide support for identifying biosynthesis pathways.
We evaluated the performance of the Metabolic Disas-
sembler using datasets of secondary metabolites acquired
from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [13], and showed the effectiveness of the
workflow in terms of both accuracy and computational
time. The users of the Metabolic Disassembler do not
have to specify starting molecules in advance, and can in-
put any target molecule, even if it is not in databases.

Methods
Chemical structures of natural products
The goal of the Metabolic Disassembler is not to con-
struct artificial pathways, but is to know the actual

metabolic pathways of natural products. In order to
achieve our goal, compounds and reactions in primary
(central) metabolism are not needed. Rather, they are a
hindrance to the calculation. Also, if a secondary me-
tabolite is not associated with known biosynthetic path-
way, no one would estimate if the prediction is true.
Therefore, we need to collect secondary metabolites for
which biosynthetic pathways are already known. We
surveyed databases including MetaCyc [14] and Rhea
[15], and concluded that KEGG [13] (as of November
2018) is the one that stores necessary and sufficient
amount of information.
In KEGG, metabolic compounds are given identifiers

that contain the letter “C” and a five-digit number (e.g.,
“C00078” for L-tryptophan). We also used KEGG PATH-
WAY secondary metabolism maps to evaluate the accur-
acy of disassembly. In KEGG PATHWAY, secondary
metabolism is classified as 1.9 “Metabolism of terpenoids
and polyketides” (hereafter referred to as the 1.9 class) and
1.10 “Biosynthesis of other secondary metabolites” (here-
after referred to as the 1.10 class). The 1.9 class contains a
group of molecules that are biosynthesized through meva-
lonate or non-mevalonate pathways, and BUs in these
pathways are mostly limited to C2 and C5 units. This
means that it is not difficult to identify these BUs because
they are already quite obvious, and it is more important to
analyze how the BUs form complex rings. Therefore, in
this study, we focused on the 1.10 class, which contains
1111 molecules in 28 metabolic pathway maps. Molecules

Fig. 2 Set of preferential biosynthetic units (PBU)
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that had an “R” group, indicating they contained un-
defined structures, caused errors when using RDKit [16],
and therefore were not used. The remaining 943 mole-
cules were used in this study. Note that we used KEGG
just because it covers all known pathways, and used
KEGG PATHWAY just to test the performance. We de-
signed the Metabolic Disassembler so that the users can
input any molecule even if it is not found in any database.
Note again that we did not focus on the primary (central)
metabolites, because all secondary metabolites originate
from the starting compounds in the secondary pathway
maps. Therefore, in order to find the starting materials of
unknown secondary metabolites, it is more practical to
use them, rather than the primary (central) metabolites.

Chemical structure manipulation and computing
environment
We implemented our application software using Py-
thon programming language (version 3.6.6) on Ana-
conda3 (version 5.3.0) [17], NetworkX (version 2.2)
[18], RDKit (version 2018.09.1.0) [16], Pycairo (version

1.18.0) [19], and CairoSVG (version 2.2.1) [20]. Net-
workX is a graph calculation library that we used to
produce the chemical structure graphs. RDKit is used
widely in chemoinformatics, and we used it when re-
trieving chemical structures and conducting maximum
common substructure searches. Pycairo and CairoSVG
were used to render images of the molecules. The
chemical structure of a molecule was represented as a
chemical graph with atoms as nodes and chemical
bonds as edges. Chemical structures described in
MDL Molfile V2000 [21] were retrieved using RDKit
and converted to chemical graphs using NetworkX.
All calculations were conducted on a computer with
an Intel Core i7-9700K 3.6 GHz CPU and 16 GB
RAM in Windows 10 OS.

Generating a biosynthetic unit library (BUL)
Some minimal units for the biosynthesis of natural
products are known, including the acetate-C2 unit in
the malonic acid pathway and the C5 unit in the
isoprenoid pathway. The goal of this study was to

Fig. 3 The flowchart for generating a query-specific biosynthetic unit library (BUL)
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identify the starting materials and to provide informa-
tion that can be used to predict the biosynthesis
pathway; therefore, it is more useful practically to
deal with substructures that are larger than the min-
imal units, which correspond to the metabolites lo-
cated near the boundary area of primary and

secondary metabolism. We defined three types of bio-
synthetic units (BUs), basic BUs (BBUs), derivative
BUs (DBUs), and preferential BUs (PBUs), and stored
them in a biosynthetic unit library (BUL).
The BBUs were defined as important intermediates

in biosynthetic pathways and included the molecules

Fig. 4 Distinguishing stereoisomers and double and aromatic bonds. (a) Example of distinguishing stereoisomers by RDKit.D-glucose with unclear
stereoisomerism at 1-OH and α-D-glucose were regarded as being included in the target structure, whereas β-D-Glucose and α-D-Mannose were
not. (b) Example of distinguishing double and aromatic bonds. Structure 1 was not regarded as being included in Structure 2 when using the
HasSubstructMatch method in RDKit, because it distinguishes double and aromatic bonds (in red)

Fig. 5 Example of the fragmentation process. One of the BUs is used in a substructure search against the target molecule to identify the bond to
digest. Splitting the identified bond yields fragmentation
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in the starting point of a pathway map, the molecules
at the branches of a pathway, and the molecule gener-
ated immediately after a large structural change.
Examples of BBUs are shown in Fig. 1. The DBUs were
identified as derivatives of BBUs by applying 14 chem-
ical transformation rules (i.e., dehydroxylation,

decarboxylation, deamination, decarbonylation, oxida-
tive deamination, amino transfer, dentrolation,
dephoshorylation, dihidrogenation/de-dihydrogena-
tion, de-CoA, denucleotidylation, ring opening, ring
closure, and hydrolysis). We obtained a set of 765 BUs
from 257 BBUs and 542 DBUs. The final number was

Fig. 6 The flowchart for obtaining the fragment network
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less than the sum of BBUs and DBUs because there
were some common structures.
Some substructures, such as the glucose residue in

glucosides, remain unchanged downstream in the bio-
synthetic pathway. To avoid an unnecessary increase in
computational costs, we defined a set of PBUs that con-
tained five monosaccharide residues, a shikimic acid
moiety, and a betalamic acid moiety (Fig. 2).

The metabolic disassembler workflow
The workflow consists of five steps: (1) input the target
molecule as a query, (2) generate a query-specific BUL,
(3) generate the fragment network, (4) generate and sort
the BU combination candidates, and (5) output the cal-
culation result.
First, a user inputs the target molecule as a query. Ac-

ceptable file formats are Molfile, SMILES (Simplified

Fig. 7 Example fragment network. (Top) Schematic diagram where the same molecules or fragments are given the same IDs. (Bottom) The same
diagram where the detailed chemical structures are described
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Molecular Input Line Entry System) [22], InChI (Inter-
national Chemical Identifier) [23], and the KEGG com-
pound identifier [13]. The input chemical structure is
converted to the Mol object of RDKit [16] and is subse-
quently processed using NetworkX [18].
Second, each BU in the BUL is compared with the

query structure. If the BU is part of the query struc-
ture, it is placed in the query-specific BUL. The aim

of this process is to avoid unnecessary computation
cost by removing BUs not included in the query
molecule. The flowchart for generating a query-
specific BUL is shown in Fig. 3. We used the Has-
SubstructMatch method in the RDKit library with
the following option:
rdkit.Chem.HasSubstructMatch((Mol)self, (Mol)query,

useChirality = True).

Fig. 8 Relationship of parent and child fragments and an example of the queue structure. (a) Example of the parent-child relationship from the fragment
network. Panel A shows the initial fragmentation; panel B shows the further fragmentation. (b) Queue-based procedure to obtain BU candidates
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This method returns True if the query contains the given
substructure, and returns False if not. Stereoisomers are
distinguished, as shown in the example in Fig. 4a. Aromatic
bonds are strictly distinguished from other conjugated
double bonds, as shown in the example in Fig. 4b. This is
an advantage in many cases; however, it is not useful in this
study because aromatization and de-aromatization reac-
tions are observed more frequently in biosynthetic reactions
than in organic synthesis. To rescue such cases, we applied
some empirical rules as follows. If the query molecule con-
tains ≥17 aromatic bonds, the Metabolic Disassembler uses
the FindMCS method [16] and rescues the falsely judged
substructures.
rdkit.Chem.rdFMCS.FindMCS(mols, bondCompare =

rdkit.Chem.rdFMCS.BondCompare.CompareAny).
The FindMCS method finds the maximum common

substructure (MCS) in two or more molecules. Using
the options as described above, bond orders such as
aromatic and double bonds are ignored, thereby enab-
ling an ambiguous MCS search. However, allowing
too many ambiguous bonds produces an excessive
number of candidate units. Therefore, the Metabolic
Disassembler rescues a substructure only if the ratio
of the number of ambiguous bonds to conjugated
double bonds in the resulting MCS is ≤0.2. After

collecting the units for the query-specific BUL, the
units are sorted in decreasing order of the number of
the atoms they contain.
Third, the query molecule is divided repeatedly until

every fragment matches a BU in the query-specific BUL,
and a fragment network is generated to represent the re-
lationship between the query molecule and the obtained
fragments (Fig. 5). The fragment network is traversed to
find the optimal combination of BUs. The MCS result is
used to identify the bond that needs to be digested for
fragmentation. The MCS for this process is:
rdkit.Chem.GetSubstructMatch((Mol)self, (Mol)query,

useChirality = True).
The flowchart used to obtain the fragment network has

two stages (Fig. 6). In the first stage (“A” in Fig. 6), the first
fragmentation is carried out by MCS against all the query-
specific BUs or PBUs to find the digested bond. The second
stage (“B” in Fig. 6) consists of a nested loop, which repeats
digestion until every fragment matches a BU. To reduce
the number of candidate BU combinations, the maximum
number of selected BUs is decided by eq. (1), where N is
the total number of BUs in the query-specific BUL.
n = ⌈ N/2 ⌉ (1).
An example of a fragment network produced by the

above process is shown in Fig. 7. The fragment network

Table 1 Example of the sorted biosynthetic unit (BU) candidate list. The red dotted lines indicate the bond to be digested. NaN
means there are no corresponding substructures or fragments. In this example, the top candidate is the best because it contains the
largest fragment, and the number of the fragment is also the largest

The red dotted lines indicate the bond to be digested. NaN means there are no corresponding substructures or fragments. In this example, the top candidate is
the best because it contains the largest fragment, and the number of the fragment is also the largest
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represents the relationship between parent (i.e., before
the split) and child (i.e., after the split) fragments. An ex-
ample of this relationship is shown in Fig. 8a.
Fourth, using the parent-child relationship, a parent

fragment can be replaced by child fragments, and this
process can be iterated using the queue data structure
(Fig. 8b). The fragment combination retrieved from the
queue is checked to find whether it is identical to any
one of the BUs in the query-specific BUL. If it is not, the
replaced combination is again inserted into the queue
structure as long as the number of fragments does not
exceed the upper limit, which is determined in advance
by the number of atoms included in the query molecule,
as defined by eq. (2).
limitinit = ⌈ N/k ⌉ (2).
where, k = {1 if N ≤ 4; 3 if 5 ≤N ≤ 24; 4 if 25 ≤N ≤ 53; 6

if 54 ≤N}.
If every fragment is identical to one of the BUs in the

query-specific BUL, the combination is added to the
candidate list. The obtained candidate combinations are
sorted in descending order of the size of the largest frag-
ment as the first priority, and ascending order of the
number of fragments as the second priority. An example
of a sorted candidate list is shown in Table 1.
Finally, to easily understand the optimized BU com-

bination, the Metabolic Disassembler outputs a colored
image describing the fragmentation, as shown in the ex-
ample in Fig. 9. Each of the split fragments is linked to
the starting material.

Comparison of the performance with the system that is
not knowledge-based
Since none of previous studies aimed to find starting
materials of secondary metabolites directly, it is difficult
to show the performance of our proposed workflow.
Here, the performance of our proposed workflow, which
is a knowledge-based system, was compared with that of
a baseline approach using a genetic algorithm, which is
not knowledge-based. We used the Python library
named DEAP [24] (version 1.1.2) to implement the gen-
etic algorithm. In the genetic algorithm, the disassembly
of the query molecule into BUs was solved as an
optimization problem of the digested bonds in the query
molecule (Fig. 10), as explained below.
First, N individuals are generated randomly as the first

generation, where an individual is represented as a bin-
ary (0 or 1) vector that represents whether or not the
corresponding bond should be digested. The fitness
function decides whether an individual survives, and
those that survive are subjected to any of three opera-
tions, namely the crossover of two individuals, mutation
of an individual, or simply the copy of an individual. The
generated N individuals are referred to as the next gen-
eration. This process is repeated until the predetermined
ending condition is reached, and the individuals with
highest fitness at the final generation are regarded as the
best solution.
In this study, we set the population (the number of indi-

viduals in a generation) to 300, the crossover probability
to 80%, and the mutation probability to 0.5%. The fitness
function was defined as the minimum similarity between
the fragments and the BUs in the query-specific BUL. We
used the Tanimoto coefficient of the Morgan fingerprint
(radius 2, 1024 bit) [25] as the similarity measure.

Results
Performance evaluation
A summary of the ratio of correct disassembly for the
respective pathway maps is shown in Table 2. Note that

Fig. 10 Baseline workflow using the genetic algorithm. An individual represents the combination of digested bonds, and the fitness function was
defined as the minimum similarity between the fragments and the BUs in the query-specific BUL

Fig. 9 Color-coded output representing the best fragmentation
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the Metabolic Disassembler inputs only the chemical
structure of the query molecule and does not require
any pathway information. We used the pathway maps
only for the performance evaluation. We found that 903
of the 943 molecules (approximately 96%) were disas-
sembled correctly. Detailed results are presented in
Additional file 1.

Computational time
We measured the computational time for the Metabolic
Disassembler with the 943 molecules, executed in the
computing environment described in Methods. We per-
formed the calculation five times for each molecule and
the obtained average values were recorded (Table 3).
The plot of the computational time for each molecule is
shown in Fig. 11. One of the molecules needed more
than one day for the calculation, so it was excluded from
the result. Therefore, the total number of molecules dis-
assembled was 942. Among them, 855 molecules (ap-
proximately 91%) were each disassembled within one
minute, indicating the processing speed was sufficiently
practical in the current implementation. Sixteen mole-
cules took more than 5min to disassemble (Table 4).
One of the causes of the increased execution time came
from the application of the FindMCS method in RDKit.

Comparison between the metabolic disassembler and the
baseline workflow using a genetic algorithm
For the fair comparison to our proposed workflow, we
measured the computational time of the baseline
workflow and decided the number of generations to
200, so that it takes approximately similar range of
computational time. The average and maximum run-
times were 252 and 1512 s, respectively, showing that
the computational time was not different significantly
from our proposed workflow. Also, in the evaluation
process of the baseline workflow, we took top five
most fitted individuals, and regarded as correct if one
of them is correctly disassembled. Table 5 shows the
comparison of our proposed workflow and the base-
line workflow, and details of the numbers of correctly
and incorrectly disassembled molecules using the
baseline workflow are shown in Table 6. Among the
molecules that were not correctly disassembled by the
Metabolic Disassembler, five were correctly disas-
sembled by the baseline workflow (Fig. 12). The base-
line workflow does not depend on the distinction of
aromatic bonds, which led to these successful cases.
However, our proposed workflow generally performed
better than the baseline workflow. The baseline work-
flow used the Tanimoto coefficient of Morgan finger-
print, which takes values from 0.0 (dissimilar) to 1.0
(similar). Importantly, 1.0 does not always mean iden-
tical. In addition, when the molecular similarity is low
it is more difficult to interpret the obtained fragment.
The proposed workflow performs exact matching,
which provides easier interpretation.

Discussion
Our proposed workflow correctly disassembled 903 mol-
ecules, but incorrectly disassembled 40 molecules. The
causes of the incorrect disassembly are given in Table 7.

Fig. 11 Plot of computational time for each molecule. The computational time is given using a log scale

Table 3 Distribution of computational times for correct and
incorrect disassembly

Runtime (s)

Average Median SD Max Min

Correct answers (n = 903) 27.5 2.0 121.0 2566.0 0.3

Incorrect answers (n = 39) 4.0 1.2 7.8 37.1 0.1

All (n = 942) 26.5 2.0 118.6 2566.0 0.1
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The substructure search methods caused most of the in-
correct results. The HasSubstructMatch and GetSubstruct-
Match methods in RDKit were used for the substructure
search, and these methods distinguish aromatic bond from
conjugated double bonds. Our workflow allowed ambigu-
ous bonds in limited circumstances, making it possible to
cope with the metabolic reaction to form an aromatic ring
by ring closure. However, three molecules, coumestrol
(C10205), phenazine-1,6-dicarboxylic acid (C12119), and
papaverine (C06533), were incorrectly disassembled. We
decided not to apply this rule if the number of aromatic
bonds in the query molecule was ≤16 and because of this,
six molecules, anhydroglycinol (C10200), 2-heptyl-4-quin-
olone (C20643), 2-heptyl-3-hydroxy-4-quinolone (C20643),
coumarin (C05851), scopoletin (C01752), and scopolin
(C01527), were incorrectly disassembled. Among the nine
incorrectly disassembled molecules, coumarin, scopoletin,
scopolin, coumestrol, and papaverine were correctly disas-
sembled by the baseline approach, as explained above.
However, the other four molecules were incorrectly disas-
sembled by both workflows. We used the FindMCS method
in RDKit to allow ambiguous matching, but this method
easily leads to an increase in the calculation time and a
decrease in interpretability. Additionally, the five molecules
in map00960, slaframine (C06185), 13-(2-methylcrotonoy-
l)oxylupanine (C04170), 13-hydroxylupanine (C02621),
pseudopelletierine (C10865), and calystegin A3 (C10850),
were incorrectly disassembled despite of the presence of
relevant BUs. This was caused by the GetSubstructMatch
method in RDKit, which returns only the first found sub-
structure even if theoretically there are more substructures,
as shown in the example in Fig. 13. This problem could be
solved by using GetSubstructMatches in RDKit, which
returns all possible combinations, instead of GetSubstruct-
Match. However, this method easily causes an increase in
the calculation time and, thus, it is not efficient enough to
be applied in a simple way. Therefore, the future
improvement of these problems would include the develop-
ment of a more suitable method for the substructure
search.
Some of the other unsuccessful disassembles were

caused by rearrangements of the ring structures. For ex-
ample, the structures of the fused rings in aflatoxin B1
(C06800), B2 (C16753), G1 (C16755), and G2 (C16754)
were different from those of the respective precursors,
which caused the incorrect disassembly. This problem
could be remedied by adding more substructures to the
BUL; however, this is not realistic.
We introduced PBUs with the aim of shortening the

calculation time, especially for molecules that contain
sugar residues. We also compared the algorithms that
did and did not use PBUs, taking lampranthin II
(C08552), which has a betalamic acid (C08538) moiety
and saccharide residues, as an example (Fig. 14a). The

Table 4 The molecules that needed more than five minutes of
computational time for disassembly
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computational time was measured five times both before
and after the introduction of the PBUs. The computa-
tional times before and after the introduction of the
PBUs were 208.58 ± 2.46 s and 4.38 ± 0.11 s, respectively;
therefore, we concluded that introducing the PBUs sig-
nificantly improved the computational speed. We found

a case where introducing the PBUs led to an incorrect
disassembly (Fig. 14b, c); however, this is the only incor-
rect case that we found, implying this was not a major
problem.
In this study, we did not focus on terpenoids and polyke-

tides, which were mainly in the metabolism map 1.9 class.
The appropriate BUs of terpenoids and polyketides would
be acetyl-CoA and so on, however, adding these BUs could
not solve the problem. In this and other studies, manual
curations are important for good performance. BBUs and
DBUs were manually selected in order to appropriately dis-
assemble molecules, and PBUs were selected in order to
shorten the unnecessary computational time. Enhance-
ment of the BUL could improve the coverage but may

Table 5 Comparison of the performance of the proposed
Metabolic Disassembler workflow and the baseline workflows

Correct Incorrect Accuracy

Proposed workflow 903 40 0.958

Baseline workflow using
the genetic algorithm

490 453 0.520

Table 6 Accuracy of the baseline workflow for each metabolic map

Map number Name of the pathway map Correct Incorrect Number of molecules Accuracy

00231 Puromycin biosynthesis 4 6 10 0.400

00232 Caffeine metabolism 11 3 14 0.786

00254 Aflatoxin biosynthesis 13 8 21 0.619

00261 Monobactam biosynthesis 9 15 24 0.375

00311 Penicillin and cephalosporin biosynthesis 8 4 12 0.667

00331 Clavulanic acid biosynthesis 8 0 8 1.000

00332 Carbapenem biosynthesis 13 10 23 0.565

00333 Prodigiosin biosynthesis 1 10 11 0.091

00401 Novobiocin biosynthesis 13 5 18 0.722

00402 Benzoxazinoid biosynthesis 6 0 6 1.000

00403 Indole diterpene alkaloid biosynthesis 13 17 30 0.433

00404 Staurosporine biosynthesis 11 21 32 0.344

00405 Phenazine biosynthesis 4 21 25 0.160

00521 Streptomycin biosynthesis 4 11 15 0.267

00524 Neomycin, kanamycin and gentamicin
biosynthesis

39 30 69 0.565

00525 Acarbose and validamycin biosynthesis 20 9 29 0.690

00901 Indole alkaloid biosynthesis 30 26 56 0.536

00940 Phenylpropanoid biosynthesis 25 30 55 0.455

00941 Flavonoid biosynthesis 42 21 63 0.667

00942 Anthocyanin biosynthesis 32 31 63 0.508

00943 Isoflavonoid biosynthesis 32 27 59 0.542

00944 Flavone and flavonol biosynthesis 37 12 49 0.755

00945 Stilbenoid, diarylheptanoid and gingerol
biosynthesis

10 13 23 0.435

00950 Isoquinoline alkaloid biosynthesis 31 68 99 0.313

00960 Tropane, piperidine and pyridine alkaloid
biosynthesis

16 42 58 0.276

00965 Betalain biosynthesis 7 13 20 0.350

00966 Glucosinolate biosynthesis 47 6 53 0.887

01058 Acridone alkaloid biosynthesis 12 3 15 0.800

Total (without redundancy) 490 453 943 0.520
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increase the incorrect substructure matches. We already
examined our manual curation, and the current BUs are
the best at this moment. When it becomes apparent that
some other secondary metabolites originate from other
pathways, the enhancement of BUs may work well.
In fact, the 1.10 class also contains some terpenoids and

polyketides and our proposed workflow produced incorrect
disassembles for them. The four molecules in map000333,
2-methyl-3-n-amyl-dihydropyrrole (C21571), 2-methyl-3-n-
amyl-pyrrole (C21572), 4-keto-2-undecylpyrroline (C21573),
and 2-undecylpyrrole (C21574), are generated by amination
and cyclization of fatty acids, but do not originate from L-
proline as incorrectly indicated by our proposed workflow.
Similarly, for the fatty acid dodecanoic acid (C02679) in
map000333, the desired combination is the six C2 units that
originate from malonyl-CoA (C00083). However, this mol-
ecule was excluded from the calculation because the num-
ber of fragments exceeded the upper limit.
The BUL could not support cases where the num-

ber of atoms decreased in the BU or when a double
bond was generated in a BU by cyclization and subse-
quent oxidation. For example, to cope with the C7

units derived from octanoyl-CoA (C01944), it is ne-
cessary to prepare 19 BUs in which one of the six C–
C bonds becomes a double bond. There are 33 com-
binations for the C8 units. Therefore, preparing for
other Cn units produces an enormous number of BUs

and slows the processing speed. In addition, if many
straight-chain alkyl groups are registered in the BUL,
molecules that did not originate from acetate-malonic
acid pathway are adversely affected. Therefore, we
concluded that the BUL and our proposed workflow
should not be applied to the biosynthesis of terpe-
noids and polyketides.
Despite the efforts to enhance the BUL to cover a wide

range of natural products, there were still nine molecules
that were not covered. Apramycin (C01555) and oxya-
pramycin (C17997) in map00524 are synthesized via par-
omamine (C01743; Fig. 15a). These two molecules look
like dimers but not exactly, and their biosynthetic path-
ways are not yet apparent. They contain substructures
other than the paromamine (C01743) residue and their
origins are unclear, and could not be dealt with by the
proposed workflow. 3-(2-Carboxyethenyl)-cis,cis-muco-
nate (C04366) in map00940 is synthetized by oxidative
cleavage of the benzene ring of caffeic acid (C01197;
Fig. 15b). This molecule can be dealt with by preparing a
relevant BU, but such cleavage was observed only in this
molecule. Therefore, we decided we should not prepare
such a BU considering its low general use. Senecionine
(C06176) and senecionine N-oxide (C15612) in
map00960 are synthesized by condensation of retronec-
ine (C06177) and two L-isoleucine (C00407; Fig. 15c). A
carbon atom from each L-isoleucine unit is eliminated

Fig. 12 The molecules that were correctly disassembled by the baseline workflow but not by the proposed workflow

Table 7 Causes of incorrect disassembly

Map number MCS search Change in ring structures Use of PBUs Fatty acid and polyketide biosynthesis Shortage of BUs Others Total

00254 0 4 0 0 0 0 4

00332 0 0 0 0 0 1 1

00333 5 0 0 5 0 0 10

00401 0 0 0 0 0 1 1

00405 3 0 0 0 0 0 3

00524 0 0 0 0 2 0 2

00901 0 0 1 0 0 0 1

00940 3 0 0 0 1 0 4

00943 2 0 0 0 0 0 2

00950 1 0 0 0 0 0 1

00960 5 0 0 0 6 0 11

Total 19 4 1 5 9 2 40
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during the biosynthesis, but the reaction mechanism is
not clear. Lobelanine (C10157), (−)-lobeline (C07475),
and (−)-sedamine (C10171) originate from piperideine
(C06181), but their biosynthetic mechanisms are not
clear (Fig. 15d). Cytisine (C10763) is biosynthesized by
conjugating cadaverine (Fig. 15e); however, four carbon
atoms are eliminated during the biosynthesis, but its
complete biosynthetic mechanism has not been revealed.
Therefore, appropriate BUs could not be prepared for
these molecules.
Although enhancement of the BUL could be a solu-

tion, its expansion may increase the number of incorrect
substructure matches as well as the calculation time. A
sufficient number of BUs is necessary for successful dis-
assembly, therefore, it is necessary to strengthen the
BUL while considering its tradeoff.

Conclusions
The Metabolic Disassembler disassembles target chem-
ical structures into relevant biosynthetic units that cor-
respond to their starting materials, which is the first step
in predicting the biosynthetic pathways of natural prod-
ucts. The users can use the Python program as well as
the BUL so that the users do not have to reproduce this
knowledge-based system. The Metabolic Disassembler
will also help to identify the chemical bonds generated
during the biosynthetic pathway, thereby providing valu-
able information for predicting the biosynthetic pathway
of natural products.
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