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ABSTRACT: Compared with the conventional analytical meth-
ods, nanozyme-based colorimetric sensors offer simpler and more
accessible solutions for point-of-need food safety monitoring.
Herein, Alginate-Cu (AlgCu) is reported as a robust laccase
mimetic nanozyme for the colorimetric detection of sulfite in red
wine, a common preservative in winemaking. AlgCu represents a
rational design of nanozymes where the multifunctional group
alginate is used as a coordination environment for the Cu catalytic
center, mimicking the amino acids microenvironment in the natural
laccase. The laccase activity of the AlgCu is evaluated using 2,4-
dichlorophenol as a model substrate, where its oxidized product
reacts with 4-aminoantipyrine, forming a reddish-pink compound
with an absorption peak at 510 nm. The result showed that the
AlgCu exhibited 32.81% higher laccase activity than pristine copper NPs, highlighting the role of a coordination environment in
improving catalytic activity. The addition of sulfite decreased the intensity of the catalytic chromogenic product, confirming that
sulfite inhibited the laccase mimetic activity of AlgCu. The observed inhibition is linearly related to the sulfite concentration from 2
to 100 μM (R2 = 0.996), enabling the detection of sulfite down to 0.78 μM. Furthermore, a sulfite concentration down to 4.9 μM
could be detected by integrating the colorimetric assay with smartphone color readouts. Analysis of sulfite-spiked red wine samples
gave recoveries between 96 and 106%. Overall, the obtained analytical figures of merits signify AlgCu as a robust nanozyme-based
colorimetric chemosensor suitable for a point-of-need application in wine quality control and food safety monitoring in general.
KEYWORDS: colorimetric detection, copper−alginate, food safety monitoring, laccase nanozyme, sulfite, wine

1. INTRODUCTION
Sulfites are commonly used in food and beverage production
due to their antioxidant and antimicrobial properties.1 In
winemaking, sulfites are widely used to inhibit browning,
preserve color over extended shelf periods, and maintain flavor
and freshness.1 However, overconsumption of sulfite exposes
humans to various health problems, such as respiratory and
cardiovascular diseases. Moreover, it is a cause of asthma and
allergic reactions and contributes to lung cancer.2 Con-
sequently, the European Union (EU) requires wines to be
clearly labeled if they exceed 10 mg/L.3

The conventional analytical method suggested by the
Association of Analytical Chemists (AOAC) for sulfite analysis
from wine involves Ion chromatography coupled with
amperometry detection.4,5 However, this method suffers from
sensitivity to interference and multistep sample preparations.
Other methods are also reported for sulfite analysis, including
electrochemical detections,6,7 chromatographic (HPLC-IC),2,8

and Surface Enhanced Raman spectroscopy (SERS).9 Sim-
ilarly, these methods involve time-consuming sample prepara-
tions and instrumental complexity, necessitating high-label

expertise. Given the high public health risk, developing an easy-
to-use and reliable analytical method for sulfites is essential,
particularly convenient for point-of-need applications.

Enzyme-based colorimetric methods, such as Enzyme-
Linked Immunosorbent Assay (ELISA), have been widely
used as rapid analysis options in food safety monitoring.10,11

However, enzymes often face challenges related to operational
stability and high production costs, which limits their utility in
developing low-cost quality-control tools.12,13 In this regard,
there is a growing interest in using nanozymes to address such
limitations of natural enzymes in various analytical and
biotechnological applications. Nanozymes are nanomaterials
with inherent enzyme mimetic activity. They catalyze redox
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reactions similar to enzymes but with enhanced stability and
catalytic efficiency.14−16

Compared to various nanozyme groups, laccase nanozymes
are relatively underutilized for analytical applications.17−19

Laccase nanozymes represent a multicopper oxidase-based
mimetic of the laccase enzyme. These nanozymes can oxidize
phenolic compounds, leading to the formation of colored
products.20−22 This characteristic enables the colorimetric
detection of various phenol-containing analytes.23,24 While
most colorimetric detection methods involving laccase nano-
zymes focus on the direct colorimetric response of oxidized
phenolic compounds, it is also possible to develop colorimetric
assays for nonphenolic analytes. This can be achieved by
measuring the corresponding color intensity change resulting
from their inhibition or enhancement effects on the laccase
mimetic activity of the nanozyme.25,26

Various laccase nanozymes are reported for colorimetric
detection and degradation of phenol-containing analytes.
However, not all of these embrace a rational design approach,
which requires a multifunctional group (such as amino,
hydroxyl, and carboxylic) in a coordination environment
with the copper catalytic active center.27−31 Despite this, some
encouraging works have already been reported using peptides/
nucleotides22 and multifunctional group polymers,20,21,32 as a
coordination environment for the copper catalytic centers.
However, realizing such sensors for real-life sensing applica-
tions is still hindered due to the lack of rational design and
extensive mechanistic study.

Hence, this study investigates the laccase mimetic activity of
alginate copper (AlgCu) for the colorimetric detection of
sulfite from red wine. The choice of AlgCu represents a
rational design of laccase nanozyme where the catalytic active
center (copper) is coordinated with the functional sites of the
polymer.33,34 The hydroxyl/carboxylic group in the polymer
can act as electron transfer channels, enhancing the catalytic
activity similar to the amino acid microenvironment in the
laccase enzyme. Moreover, AlgCu provides a more robust and
cost-effective nanozyme-based sensor than the usual nucleo-
tide/amino acid−based nanozymes. The laccase-like catalytic
activity of AlgCu was investigated using 2,4-dichlorophenol
(2,4-DP) as a model phenolic substrate and 4-aminoantipyrine

(4-AP) as a chromogenic substrate. Sulfite inhibited this
laccase activity, decreasing the color intensity and forming the
basis for the reported colorimetric detection, as illustrated in
the scheme in Figure 1.

2. EXPERIMENTAL SECTION

2.1. Materials

All chemicals and reagents used in this research were of
analytical grade. 2,4-dichlorophenol (2,4-DP) (C6H4Cl2O,
99%),4-aminoantipyrine (4-AP) (C11H13N3O, 99%) hydro-
chloric (HCl, 37%), and sodium alginate (NaC6H7O6, 91%),
boric acid (H3BO3, 99.5%), monopotassium phosphate
(KH2PO4·H2O, 97%), and dipotassium phosphate (K2HPO4,
99%), sodium sulfite (Na2SO3,97%), sodium phosphate dibasic
(Na2HPO4.12H2O, 99%), copper sulfate pentahydrate (CuCl2,
99%), and Tris buffer (C14H11NO3, 99%), were purchased
from Sigma-Aldrich, USA. Sodium hydroxide (NaOH, 99%),
sodium chloride (NaCl, 99%), potassium chloride (KCl, 99%),
ethanol (C2H5OH, 99%), acetic acid (CH3COOH, 37%) and
sodium acetate (C2H3NaO2, 99%) were supplied by Central
Drug House, India. Red Wine samples were bought from a
local grocery in Addis Ababa, Ethiopia.
2.2. Synthesis of the Nanozyme

Alginate-copper nanozyme synthesis is based on a modified
protocol from a previous report.35 Briefly, 0.15 g of sodium
alginate was added to 10 mL of distilled water and stirred at
room temperature until dissolved completely. Then, 10 mL of
0.03 M copper sulfate was added, followed by 5 mL of 0.5 M
NaOH. The resulting mixtures were stirred for 2 h at 60 °C.
Finally, the product was washed twice with distilled water and
ethanol, centrifuged each time, and vacuum oven-dried at 40
°C overnight.
2.3. Characterization of the Nanozyme

All parameter optimizations, kinetics, and absorption measure-
ments were done using a UV−vis spectrophotometer (JASCO
V770, Japan). A scanning electron microscope (SEM, JSM-
6700F; JEOL Ltd., Japan) was used to study the morphology
of the synthesized AlgCu nanozyme. The energy dispersive X-
ray elemental mappings (EDX) were performed using a silicon

Figure 1. Scheme showing the principle of colorimetric detection of sulfite.
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drift detector (SDD; XFlash7100; BRUKER Nano GmbH,
Berlin, Germany). An X-ray diffraction spectrophotometer
(XRD) (X’Pert PRO MPD-DY325; Malvern Panalytical,
Netherlands) was utilized to investigate the phase composition
and crystal structure of the nanozyme. Fourier Transform
Infrared spectrophotometer (FTIR) (Thermo Scientific
Nicolet Evolution-300, USA) was applied to investigate the
functional groups in synthesized nanozyme. The chemical state
and surface composition of AlgCu were analyzed using an X-
ray photoelectron spectrophotometer (XPS) (AXIS Supra+
Kratos Analytical, UK).
2.4. Laccase-like Activity

The preliminary laccase-like activity of the synthesized
nanozyme was examined using 2,4-DP as a model phenolic
substrate and 4-AP as a chromogenic agent in Tris buffer (pH
7). In a typical assay, 100 μL 4-AP aqueous solution (1 mg/
mL) and 100 μL 2,4-DP aqueous solution (1 mg/mL) were
mixed in 700 μL Tris buffer (0.1 M, pH 7). After that, 100 μL
of 2 mg/mL nanozyme was added to the above mixture. The
reaction mixture was incubated at different times, and the
absorbance of the colored product was measured using a UV−
vis spectrophotometer. The effect of precursor ratio, the
amount of nanozyme, reaction time, pH, and type of buffer
species was studied by varying one factor at a time. The steady-
state kinetics of the synthesized AlgCu nanozyme was
examined by varying the concentration of 2,4-DP. For each
of these reactions, the concentration of 4-AP was in excess.
The absorbance of the resulting colored product was measured

at a fixed wavelength (510 nm) using a time course
measurement. The kinetic parameters Km and vmax were
calculated from the Lineweaver−Burk plot (eq 1), which is the
double reciprocal plot of the Michaelis−Menten (eq 2).

= [ ] +v
K

v S v
1 1m

max max (1)

= + [ ]v v
K Smax

m (2)

Where v is the initial velocity, vmax is the maximum velocity
of the reaction, [S] is the initial concentration of the substrate,
and Km is the Michaelis constant, which indicates the enzyme’s
affinity for the substrate.36

2.5. Colorimetric Detection of Sulfite

Colorimetric detection of sulfite was conducted as follows.
Different concentrations of Sodium sulfite standard solution
(0−100 μM) in Tris buffer (0.1 M, pH 7) were mixed with the
reaction mixture containing 2,4-DP (1 mg/mL, 100 μL), 4-AP
(1 mg/mL, 100 μL) and AlgCu nanozyme (2 mg/mL, 100
μL). The reaction was kept for 30 min, and the absorbance of
the resulting colored solution was measured at 510 nm. A
calibration curve showing the relationship between the
concentration of sulfite and absorbance (ΔA vs C) was
plotted, from which the analytical figures of merits were
calculated according to the International Conference on
Harmonization (ICH).37 The application of the sensor for
point-of-need application in food safety monitoring was
demonstrated using a Spotxel Reader 1.1 installed on a

Figure 2. (a) SEM image; (b) X-ray elemental mapping; (c) XRD pattern of AlgCu.
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smartphone as a color (optical) readout. All data were
statistically analyzed using Origin Pro 2024b software.
2.5.1. Detection of Sulfite in the Wine Sample. Known

concentrations of sulfite standard were spiked into wine
samples brought from the grocery store and thoroughly mixed
with a shaker. After centrifugation, the supernatant was filtered
with a 0.45 μm PVDF membrane, and the filtrate was analyzed
with a similar protocol as in the standard solution. Unspiked
samples were also run in parallel. The % recovery of sulfite was
calculated using eq 3.

= ×R
C C

C
% 100spiked unspiked

added (3)

Cspiked and Cunspiked are the concentrations found in sulfite
spiked and unspiked wine samples, and Cadded is the actual
concentration of sulfite added to the wine sample.

3. RESULTS AND DISCUSSION

3.1. Synthesis and Characterization of AlgCu
AlgCu nanozyme was synthesized by in situ reduction of Cu2+

in an aqueous solution of sodium alginate. As shown in Figure
S1a, the reaction product appeared as a brown, less viscous gel,
indicating the formation of a crossed-linked gel, a characteristic
of alginate with divalent ions.38 The SEM images (Figure 2a)
show the flake of AlgCu where copper nanoparticles are
dispersed in the polymeric matrix. The EDX elemental map
and spectrum (Figures 2b and S1b) also show the uniform
distribution of main elements such as C, O, and Cu. As seen in
the XRD pattern (Figure 2c), the peaks at 2θ of 35.48°, 53.25°,
and 71.82° belong to diffractions from (111), (020), and (311)
Cu2O phases, respectively (ICSD No 98−002−1481). The
peaks at 2θ of 34.04°, 38.06°, 48.97°, 61.16°, and 66.05°
represent diffraction from (002), (111), (202̅), (113̅), and

(311̅) planes of monoclinic CuO (ICSD No 98−004−8597).
The crystallite size was calculated using Debye−Scherrer’s
equation (eq 4) was 6.97 nm.

=d
k
cos (4)

Where k is the Debye−Scherrer constant (0.89), λ is the X-
ray wavelength (Cu-Kα1 radiation, 0.1546 nm), β is the full-
width at half-maximum of the XRD line in radians, and θ is the
half diffraction angle.

Further, FT-IR investigation (Figure 3a) of functional
groups in the polymer revealed characteristic bands at 3340,
1600, and 1026 cm−1 representing the stretching vibration of
−OH, Carbonyl, and C−O−C, respectively. However, after
the composite formation, the intensity of these bands was
reduced, and additional new bands at 480 cm−1 appeared,
indicating the coordination of the metal with the hydroxyl/
carboxylic groups. This is also consistent with the observations
made in previous reports.39−41 XPS was used to study the
chemical states of AlgCu. The wide-scan XPS spectrum
(Figure 2b) confirms the presence of Cu, O, and C elements
in the nanozyme, with Cu accounting for 24.0% of the atomic
composition. Deconvolution of the high-resolution spectra of
Cu 2p (Figure 3c) revealed peaks at 934.57 and 954.25 eV,
corresponding to the Cu 2p3/2 and Cu 2p1/2 electrons of the
Cu(II). Meanwhile, the peaks at the lower BE and 932.75 and
952.54 represent the Cu 2p3/2 and Cu 2p1/2 electrons of the
Cu(I) oxidation state. The satellite peaks at 942.04 eV,
corroborating the Cu(II) state. The deconvolution of the C 1s
spectrum (Figure 3d) also shows three peaks at 284.79, 286.39,
and 288.28 eV corresponding to C−C, C−O− and −O-C�O
bonds, respectively. Further, the deconvolution of the Auger
Cu LMM peak (Figure 3e) revealed peaks at 551.67 and
571.19 eV, which can be related to Cu(II) and Cu(I),

Figure 3. (a) FTIR spectrum; (b) wide scan XPS spectrum; high-resolution spectrum (c) Cu 2p, (d) C 1s, and (e) Auger Cu LMM of AlgCu
nanozyme.
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respectively. The ratio of Cu(II) to Cu(I) was calculated to be
2.39. This is desirable from the application point of view as the
natural laccase is a multicopper oxidase enzyme.
3.2. Laccase-like Catalytic Activity of AlgCu Nanozyme

The laccase-like catalytic activity of AlgCu was evaluated using
2,4-dichlorophenol (2,4-DP) as a model phenolic substrate
and 4-aminoantipyrine (4-AP) as a chromogenic agent in Tris
buffer (pH 7). As shown in Figure 4a, the addition of AlgCu to
the 2,4-DP, 4-AP reaction system led to the formation of a
reddish-pink color (inset photo c), which absorbs at 510 nm,
indicating the oxidation of 2,4-DP.42 Additionally, parallel
control experiments were carried out to further validate the
role of each component in the reaction. Accordingly, 2,4-DP
and 4-AP alone could not produce the expected chromogenic
product, corroborating the catalytic role of AlgCu.

Laccase is a group of oxidase enzymes that reduces oxygen
to water without producing H2O2, making it a green catalyst.43

Hence, this was proved by adding the peroxidase substrate
TMB to the reaction mixture. It was expected that if H2O2 was
produced, as it is in normal peroxidase-catalyzed reactions, the
produced H2O2 would oxidize TMB, resulting in the
characteristic blue color (absorption maxima 652 nm).44,45

However, as shown in Figure S2, no blue color was observed,
confirming the absence of H2O2 product. Hence, the AlgCu
only showed laccase-like activity. As observed in Figure 4b,
alginate alone has no laccase-like activity. However, it
enhanced the pristine copper NPs catalytic activity by
32.81%. This increment can be ascribed to alginate hydroxyl
and carboxyl groups, which apparently bind to the copper
active centers, enhancing the electron transfer similar to the
amino acids in the natural laccase enzyme.21,46

The pH of the reaction plays a crucial role as reaction media
to facilitate specific enzymatic reactions. Hence, the effect of
pH on the laccase-like activity of AlgCu was optimized using
various buffer solutions. As shown in Figure 4c, the AlgCu

nanozyme showed a wider working pH with optimum activity
at pH 7. The optimal activity of AlgCu at neutral pH can be
attributed to the fact that the copper reactive center remains
intact at neutral pH. Further lowering of pH may lead to the
dissolution of metal ions from the nanozyme. In contrast, more
alkaline conditions will result in the binding of hydroxide ions,
hence causing its inactivation.47 Further, different buffer
components, all of which had pH 7, were used to study the
effect of buffer species on the catalytic activity. As shown in
Figure 4d, AlgCu demonstrated the highest activity in the Tris
buffer. The catalytic activity difference could be due to the
electrostatic interaction among the buffer species and nano-
zyme. Tris buffer is positively charged at pH 7 and the
electrostatic repulsion between AlgCu and Tris buffer could
increase the binding of 2,4-DP with the nanozyme.48

As seen in Figure 4e, the optimum activity was obtained at 2
mg/L of the nanozyme. The unit activity calculated based on
eq 5 was 0.0016 U/mg. Furthermore, the study investigated
whether the catalytic activity originated from potentially
leached copper ions or the intact AlgCu. This was done by
comparing the activity of the original nanozyme with that of
the leached solution. The leached solution was obtained by
centrifuging the nanozyme solution, and the supernatant was
taken. As shown in Figure 4f, the supernatant did not show
laccase activity, whereas the recovered and the original AlgCu
exhibited comparable laccase activity. This confirmed that any
laccase activity of the nanozyme is from the intact AlgCu
structure.

= ×b
V

l
A
tnanozyme (5)

Where b − the unit activity of the nanozyme, V − volume, ε
− absorptivity coefficient, l − path length, A − absorbance, and
t − time.

Figure 4. (a) Laccase mimetic activity of AlgCu (a: 2,4-DP + 4-AP in a buffer; b: DP in a buffer; c: AlgCu + 4-AP + 2,4-DP); (b) comparison of
laccase activity; effect of (c) pH, (d) buffer species, and (e) amount of nanozyme; (f) laccase activity of pristine and recovered AlgCu.
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3.3. Steady-State Nanozyme Kinetics
The steady-state reaction kinetic was investigated at various
concentrations of 2,4-DP as a substrate and a fixed dose of
AlgCu. As seen in Figure 5a, the rate of oxidation reaction
increased with substrate concentration and followed the typical
Michaelis−Menten curve. Accordingly, kinetic parameters
were calculated from the Lineweaver−Burk plot (Figure 5b),
which is the double reciprocal of the Michaelis−Menten
equation. The calculated Km and vmax were 0.173 mM and 2.7
μM min−1, respectively (Table 1). Lower Km often indicates

better substrate-enzyme interaction. The obtained Km value for
the studied nanozyme is lower than recently reported
nanozymes and even much lower than the laccase enzyme
(Table S1).49 This improved catalytic activity could be
ascribed to the presence of a polymer matrix, which provides
a coordination microenvironment for improved electron
transfer and better access to the substrate.45,46

3.4. Stability and Recyclability of AlgCu Nanozyme
The stability and recyclability of nanozymes play a crucial role
in maintaining practical applications of nanozyme.50 Hence,
the thermal stability of the AlgCu was studied by varying the
reaction temperature in a water bath. As seen from Figure 6a,

the activity of the nanozyme increased with temperature until
55 °C, which is followed by a gradual decrease. It is also worth
noting that the nanozyme retains 34.6% of its activity even at
95 °C, indicating a robust performance compared to natural
laccase, which often loses its activity beyond 40 °C.43 Further,
the AlgCu nanozyme retained 70.3% of its activity after 30 days
(Figure 6b), indicating improved long time stability. In
addition, as seen in Figure 6c, the AlgCu nanozyme retained
over a third of its initial activity after the fifth cycle, supporting
the sustainable utilization of materials.51

3.5. Colorimetric Detection of Sulfite

Sulfites, commonly used as preservatives in food and
beverages, could have adverse health effects and require careful
regulation. Sulfites are added to wine in different forms,
including sodium sulfite (Na2SO3), sodium bisulfite
(NaHSO3), and potassium metabisulfite (K2S2O5), among
others. Depending on the conditions, such as pH, these
additives are often found to be bound or free. However, due to
the acidic nature of wine, free sulfites are the prevalent species,
and these forms of sulfites cause different health problems,
including hypersensitivity.52−54 As a result, we studied these
species to demonstrate the capability of nanozyme-based
colorimetric sensors as a convenient quality control solution in
wine. The effect of sulfite on the catalytic reaction was studied
to establish its colorimetric relationship to be used for
detection. As seen in Figure 7a, the presence of sulfite slowed
the catalytic response, suggesting that sulfite inhibits the
laccase-like activity of AlgCu. This could be attributed to the
competition of sulfites for binding with the substrate.55

Further, the inhibition effect is concentration-dependent,
with the intensity of the catalytic chromogenic product

Figure 5. (a) Michaelis−Menten curve; (b) Lineweaver−Burk plots of the AlgCu catalyzed reaction.

Table 1. Summary of Kinetic Results from AlgCu Catalyzed
Reaction

Substrate Km vmax
aKcat

2,4-DP 0.173 mM 2.7 μM min−1 3.6 × 10−4 min−1

aKcat = vmax/C, for approximation, only the copper concentration from
the XPS result is taken.

Figure 6. (a) Thermal stability; (b) temporal stability; and (c) recyclability of AlgCu nanozyme.
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decreasing as the sulfite concentration increased (Figure 7b).
Accordingly, the change in color intensity exhibited a linear
relationship with the sulfite concentration (ΔA vs C) in the
concentration range 2−100 μM (R2 = 0.996) (Figure 7c).
Hence, the detection limit (LOD) calculated from the
calibration curve as 3.3 × SE/m is 0.78 μM, where SE is the
response error and m is the slope.56 This indicates that the
developed colorimetric sensor can detect sulfite well below 10
mg/L, the permissible limit set by standard regulatory bodies.3

3.5.1. Smartphone-Based Colorimetric Sensing of
Sulfite. Nanozyme-enabled colorimetric sensors have the
potential to be integrated with smartphone-based color
readouts, opening up possibilities for point-of-need food safety
monitoring applications. Figure 7d shows digital images of the
sulfite-inhibited laccase-catalyzed chromogenic product cap-
tured using a smartphone. These images were then analyzed
using the Spotxel Reader 1.1 color readout application installed
on the smartphone. As demonstrated in Figure 7e, the change
in color intensity exhibited a linear relationship with the sulfite
concentration, enabling the detection of sulfite down to 4.9
μM. This underscores the ease with which the developed
nanozyme can be integrated with simple color readout devices,
facilitating rapid analytical decision-making in the beverage
industry.
3.5.2. Detection of Sulfite in Red Wine. The accuracy of

the developed laccase nanozyme for sulfite detection in real
samples is studied by analyzing sulfite-spiked red wine.
Different sulfite concentrations were spiked to red wine
samples following sample pretreatment, as detailed in section
2.6. The colorimetric detection is then carried out using a
protocol similar to the standard sulfite detection in the above
sections. As seen in Table 2, the average recovery for sulfite
ranged from 96 to 106%, which is within the conventional
analytical method validation range (80 to 120%).57 This

indicates the suitability of the developed colorimetric sensor
for accurate sulfite detection in red wine.
3.5.3. Interference Test. The performance of the

developed colorimetric sensor in the presence of potential
interferents was also analyzed by adding different interferents
that could be present in beverages. Accordingly, the selectivity
of the AlgCu nanozyme-based colorimetric sensor was tested
using different anions and cations. The inhibition effect was
tested separately and with a mixture of all interferents
altogether. The concentration of all interferences was 10
folds of the analyte of interest. As shown in Figure 8, the
inhibition effect of sulfite on AlgCu activity was 50% higher
than that of other interferents, including their mixture. The
observed sulfite inhibition effect confirms the selectivity of the
developed sensor. The reason could be ascribed to the better
binding ability of sulfite anions with the copper center.
3.5.4. Comparison with Other Detection Methods.

Compared with the conventional spectrometric-chromato-
graphic methods, nanozyme-enabled colorimetric sensors
offer operational simplicity and potential for point-of-need
application. Table 3 provides a comparison of the sulfite
detection performance of different methods. The table shows
that AlgCu laccase nanozyme offered comparable or even a
lower detection limit when compared to other reported
detection methods. Given its rational design and robustness,
with the obtained sensitivity, the developed nanozyme could

Figure 7. (a) Inhibition effect of sulfite on the laccase activity of AlgCu; (b) absorption spectra of the chromogenic catalytic product in the
presence of different concentrations of sulfite; (c) calibration curve for the sulfite detection (ΔA vs C); (d) scheme for smartphone-based sulfite
detection; (e) calibration curve obtained from the digital images using the smartphone-based application.

Table 2. Spike-Recovery Results of SO3
2− in Red Wine

SO3
2− added (μM) SO3

2− found (μM) Recovery (%) RSD (%) (n = 3)

2.00 2.10 105 2.38
10.00 10.06 106 3.03
40.00 38.4 96 4.12
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bring great potential for point-of-need application for food
safety monitoring.

4. CONCLUSION
A robust AlgCu laccase nanozyme was successfully developed
for the rapid colorimetric detection of sulfite, a common
preservative in winemaking. Morphological and structural
analysis shows the presence of multioxidation state copper
dispersed on the polymeric matrix. The choice of alginate as a
ligand represents a rational design of laccase nanozyme where
the catalytic copper centers are coordinated with the OH/
COO- functional groups. This improved the catalytic activity
of pristine copper by 32.81%, which could be due to the
improved electron transfer through a multifunctional group
polymeric matrix, similar to the hist-cystine pathway in the
natural laccase. A laccase nanozyme-enabled colorimetric
detection of sulfite was successfully demonstrated using a
smartphone as a color readout. Sulfite showed concentration-
dependent inhibition of the laccase mimetic activity of AlgCu,
establishing a colorimetric detection down to 0.78 μM. The
result suggests the potential of the developed colorimetric
sensor for rapid sulfite detection in wine.
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