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Abstract
Alzheimer's disease (AD) is the most common cause of mental dementia in the aged 
population. AD is characterized by the progressive decline of memory and multiple 
cognitive functions, and changes in behavior and personality. Recent research has 
revealed	 age-	dependent	 increased	 levels	 of	VDAC1	 in	 postmortem	AD	brains	 and	
cerebral cortices of APP, APPxPS1, and 3xAD.Tg mice. Further, we found abnormal 
interaction	 between	VDAC1	 and	 P-	Tau	 in	 the	AD	 brains,	 leading	 to	mitochondrial	
structural and functional defects. Our current study aimed to understand the impact 
of	a	partial	reduction	of	voltage-	dependent	anion	channel	1	(VDAC1)	protein	on	mi-
tophagy/autophagy, mitochondrial and synaptic activities, and behavior changes in 
transgenic TAU mice in Alzheimer's disease. To determine if a partial reduction of 
VDAC1	reduces	mitochondrial	and	synaptic	toxicities	in	transgenic	Tau	(P301L)	mice,	
we	 crossed	 heterozygote	 VDAC1	 knockout	 (VDAC1+/−) mice with TAU mice and 
generated	double	mutant	(VDAC1+/−/TAU)	mice.	We	assessed	phenotypic	behavior,	
protein levels of mitophagy, autophagy, synaptic, other key proteins, mitochondrial 
morphology, and dendritic spines in TAU mice relative to double mutant mice. Partial 
reduction	of	VDAC1	rescued	the	TAU-	induced	behavioral	impairments	such	as	motor	
coordination and exploratory behavioral changes, and learning and spatial memory 
impairments	 in	 VDAC1+/−/TAU mice. Protein levels of mitophagy, autophagy, and 
synaptic proteins were significantly increased in double mutant mice compared with 
TAU mice. In addition, dendritic spines were significantly increased; the mitochondrial 
number was significantly reduced, and mitochondrial length was increased in double 
mutant	mice.	Based	on	these	observations,	we	conclude	that	reduced	VDAC1	is	ben-
eficial in symptomatic- transgenic TAU mice.

K E Y W O R D S
Alzheimer's disease, autophagy, hexokinases, mitochondria, mitochondrial biogenesis, 
mitophagy, oxidative stress, voltage- dependent anion channel 1
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1  |  INTRODUC TION

Alzheimer's disease (AD) is a late- onset, neurodegenerative disease 
characterized by a progressive decline of memory and cognitive 
functions and changes in behavior and personality. AD results in the 
irreversible loss of neurons, particularly in the learning and memory 
regions of the brain (LaFerla et al., 2007; Selkoe, 2001). AD currently 
affects over 6 million people in the USA, with estimates suggesting 
this number will nearly triple by 2060 (Matthews et al., 2019;	Vijayan	
et al., 2017;	 Vijayan	 &	 Reddy,	2016). Intracellular phosphorylated 
Tau (P- Tau) and neurofibrillary tangles (NFTs) are more definitive 
pathologic features and are tightly linked to cognitive decline in AD 
patients (Caspersen et al., 2005;	Reddy	&	Beal,	2008; Selkoe, 2001). 
Extracellular	neuritic	plaques	are	deposits	of	differently	sized	small	
peptides called β- amyloid (Aβ)	 derived	 via	 sequential	 proteolytic	
cleavages of the β- amyloid precursor protein (APP). Accumulation of 
Aβ has been demonstrated to occur within neurons with AD patho-
genesis (Reddy et al., 2012; Ye et al., 2017;	Ye	&	Cai,	2014).

Tau is a major microtubule- associated protein that plays a large 
role in the outgrowth of neuronal processes and the development of 
neuronal polarity (Reddy, 2011a). Tau is abundantly present in the 
central nervous system and is predominantly expressed in neuro-
nal axons. The phosphorylation of Tau regulates microtubule bind-
ing	and	assembly	(Wang	&	Liu,	2008). In contrast, pathological Tau 
becomes hyperphosphorylated, which destabilizes microtubules 
by decreased binding to microtubules, resulting in the aggregation 
of hyperphosphorylated Tau (Brandt et al., 2005; Pradeepkiran 
et al., 2019; Reddy, 2011a; Reddy, 2011b). Tau can also self- aggregate 
into oligomers and more extensive inclusions in neurons, known as 
neurofibrillary	 tangles	 (Palop	&	Mucke,	 2009). Mitochondrial dys-
function has been strongly associated with Tau pathology in AD in 
recent years. Overexpression of hyperphosphorylated and aggre-
gated Tau damages the axonal transport, leading to abnormal mito-
chondrial	distribution	(Cai	&	Tammineni,	2017;	Cheng	&	Bai,	2018; 
Wang	et	al.,	2009). Synapses are exposed to disease- modified pro-
tein Tau, which may cause the loss of synaptic contacts in AD neu-
rons	(Cai	&	Tammineni,	2017; Du et al., 2010;	Jadhav	et	al.,	2015).

Mitochondria are intracellular organelles with key roles cover-
ing cellular metabolism and are the primary source of adenosine tri-
phosphate (ATP) generated via oxidative phosphorylation (Camara 
et al., 2010;	Perez	Ortiz	&	Swerdlow,	2019). There is extensive liter-
ature supporting the role of mitochondrial dysfunction and oxidative 
damage in the pathogenesis of AD (Gowda et al., 2021;	Han,	Jeong,	
Sheshadri,	&	Cai,	2020;	Han,	Jeong,	Sheshadri,	Su,	&	Cai,	2020; Lin 
&	Beal,	2006;	Reddy	&	Beal,	2008; Swerdlow, 2018). Mitochondrial 
dysfunction also plays a key role in other neurodegenerative dis-
eases such as Parkinson's disease, multiple sclerosis, Huntington's 
disease, and amyotrophic lateral sclerosis (ALS) (Camara et al., 2017; 
Reddy	&	Reddy,	2011).

Mitochondria are comprised of two bio- lipid membranes: the 
inner membrane and the outer membrane. The inner membrane 
covers the mitochondrial matrix and electron transport chain, and 
the outer membrane is highly porous, allowing low- molecular- weight 

substances between the cytosol and the intermembrane space 
(Manczak	&	Reddy,	2012; Reddy, 2008). The outer membrane con-
sists	 of	 a	 voltage-	dependent	 anion	 channel	 (VDAC)	 that	 provides	
the major pathway for transmembrane fluxes of ions and metabo-
lites across the outer mitochondrial membrane (Colombini, 2012; 
Reddy, 2013).

Voltage-	dependent	anion	channels	are	abundant	mitochondrial	
outer	membrane	proteins	expressed	in	three	isoforms,	VDAC1-	3,	and	
are considered “mitochondrial gatekeepers” (Sampson et al., 1996). 
The	 functions	 of	 VDACs	 are	 several-	fold,	 including	 maintaining	
synaptic plasticity, maintaining mitochondrial shape, regulating 
hexokinases (HKs) and mitochondrial interactions, and regulating 
apoptosis signaling (Kerner et al., 2012).	VDAC1	is	a	crucial	protein	in	
mitochondria-	mediated	apoptosis.	VDAC1	forms	oligomers	and	pro-
motes apoptosis when the protein is overexpressed, even without 
any apoptotic stimulus (Reddy, 2013; Shoshan- Barmatz et al., 2018). 
In	addition,	several	recent	studies	revealed	that	VDAC	proteins	and	
their	binding	partners	are	modified	post-	translationally	due	to	VDAC	
hyperphosphorylation	and	are	involved	in	the	dysfunction	of	VDAC	
(Lemasters et al., 2012).	 However,	 the	 causal	 factors	 of	 VDAC1	
phosphorylation in AD are not completely understood.

VDAC1-	phosphorylated	 Tau	 complexes	 block	 mitochondrial	
pores, interrupt the flux of metabolites between mitochondrial 
membranes	and	cytoplasm,	and	impair	the	gating	of	the	VDAC	chan-
nel, leading to mitochondrial dysfunction and neuronal damage in 
AD (Reddy, 2013). Previously, we studied tissues from human post-
mortem AD brains and AD mouse brains and found an abnormal 
interaction	between	phosphorylated	Tau	and	VDAC1,	suggesting	a	
direct	link	between	VDAC1	and	phosphorylated	Tau,	mitochondrial	
dysfunction,	and	neuronal	damage	in	AD	(Manczak	&	Reddy,	2012).

Oxidative stress may activate signaling pathways that alter Tau 
processing and increase aberrant Tau phosphorylation by activating 
glycogen	synthase	kinase	(GSK)	(Lin	&	Beal,	2006;	Verri	et	al.,	2012). 
GSK3β	phosphorylates	VDAC1	on	threonine	51,	resulting	in	the	de-
tachment	of	hexokinase	 from	VDAC1	 (Pastorino	et	al.,	2005). The 
binding	of	hexokinases	with	VDAC1	allows	the	direct	access	of	hex-
okinases to mitochondrial ATP in the glycolytic pathway. Also, hex-
okinase	 inhibits	apoptosis	by	binding	to	VDAC	and	preventing	the	
release of cytochrome c (Abu- Hamad et al., 2008; Azoulay- Zohar 
et al., 2004).

Mitophagy	is	a	critical	mechanism	in	mitochondrial	quality	con-
trol that targets damaged mitochondria for autophagy. However, 
little is known about the relationship between mitophagy and pa-
thologies	in	AD	and	other	tauopathies	(Jeong	et	al.,	2022). The ser-
ine/threonine-	protein	 kinase	 (PINK1)	 and	 the	E3	ubiquitin-	protein	
ligase (PARKIN) were recently involved in eliminating defective 
mitochondria	 by	 mitophagy	 (Cai	 &	 Jeong,	 2020; Pradeepkiran 
et al., 2020; Sun et al., 2012). The PINK1- PARKIN pathway plays a 
critical role in maintaining mitochondrial homeostasis by regulating 
mitophagy, mitochondrial dynamics, mitochondrial biogenesis, and 
mitochondria-	mediated	 apoptosis	 (Cai	 &	 Tammineni,	 2016; Ham 
et al., 2020;	Han,	Jeong,	Sheshadri,	Su,	&	Cai,	2020; Ye et al., 2015). 
Several	mitochondrial	ubiquitination	targets	of	PARKIN	have	been	
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identified in mammals and flies (Sun et al., 2012). Among them are 
mitofusins	(MFN),	mitochondrial	Rho	GTPase	1	(Miro1),	and	VDAC1	
(Geisler et al., 2010; Narendra et al., 2010;	Wang	et	al.,	2011; Ziviani 
et al., 2010).	It	has	been	speculated	that	ubiquitination	of	VDAC1	is	
required	for	mitophagy	(Itakura	et	al.,	2012). The kinase activity of 
PINK1	is	required	to	target	PARKIN	to	mitochondria	subsequently	
(Geisler et al., 2010; Narendra et al., 2010).	When	PARKIN	induces	
polyubiquitination	 on	 VDAC1,	 the	 ubiquitinated	 VDAC1	 triggers	
PARKIN-	mediated	 mitophagy	 by	 recruiting	 p62/sequestosome1	
(SQSTM1)	and	Microtubule	Associated	Protein	1	Light	Chain	3	Beta	
(LC3B) to the mitochondria (Geisler et al., 2010). Several models have 
been proposed for how PINK1 mediates the targeting of PARKIN to 
mitochondria, but the mechanism is not precise.

Earlier,	we	extensively	studied	(i)	VDAC1	expression	in	AD	post-
mortem	brains	and	AD	mouse	brain	tissues	(Manczak	&	Reddy,	2012), 
(ii) mitochondrial/synaptic and AD- related genes and mitochondrial 
function	 in	 VDAC1+/−	 and	VDAC1+/+ mice (Manczak et al., 2013), 
(iii)	 RNA	 silencing	 of	 VDAC1	 in	 an	 in vitro condition showing re-
duced	levels	of	AD-	related	genes	(APP,	PS1,	PS2,	BACE1),	reduced	
mitochondrial fission genes (Drp1 and Fis1), increased fusion genes 
(Mf1, Mfn2, and Opa1), increased levels of electron transport chain 
genes, increased hexokinases 1 and 2 and synaptic genes (Manczak 
&	Reddy,	2013). Based on our previous findings, in the current study, 
we	hypothesized	that	a	partial	reduction	of	VDAC1	(1)	reduces	the	
interaction	of	phosphorylated	Tau	with	VDAC1,	(2)	alters	the	inter-
action	of	HK1	and	HK2	with	VDAC1,	 (3)	 triggers	PINK1-	PARKIN-	
mediated mitophagy, and (4) reduces mitochondrial dysfunction 
and synaptic deficiencies. To support our hypothesis, in the current 
study,	we	crossed	VDAC1+/− mice and mutant TAU (P301L) mice and 
generated	double	mutant	(VDAC1+/−/TAU) mice. Using cortical and 
hippocampal	tissues	from	6-	month-	old	WT,	VDAC1+/−, TAU, double 
mutant	 (VDAC1+/−/TAU) mice, we studied (1) hippocampal spatial 
learning and memory behavioral changes, (2) protein levels of mi-
tophagy, autophagy, synaptic, and other key proteins, (3) mitochon-
drial structural (length and number) activity, and (4) dendritic spine 
count.	 Using	 VDAC1+/−/TAU double mutant mice, we cautiously 
propose	that	a	partial	reduction	of	VDAC1	is	a	potential	therapeutic	
target for AD.

2  |  RESULTS

2.1  |  Reduced VDAC1 ameliorates TAU- induced 
behavioral deficits

Studies of the relationship between behavioral impairments and 
mice that overexpress human mutant TAU (P301L) suggest that 
mutant tau promotes the formation of phosphorylated Tau and 
neurofibrillary tangles, mediating age- dependent adverse effects 
on memory (Lewis et al., 2000). To determine whether the reduced 
expression	 of	 VDAC1	 ameliorates	 behavioral	 impairments	 in	 dou-
ble mutant mice, using 4 widely used behavioral tests, namely the 
rotarod,	 open	 field,	 Y-	maze,	 and	Morris	Water	Maze	 (MWM),	 we	

assessed motor coordination, locomotion, exploration abilities, spa-
tial learning, and memory abilities. The behavior study scheme is il-
lustrated in Figures 1 and 2.	We	used	6-	month-	old	WT,	VDAC1+/−, 
TAU,	and	VDAC1+/−/TAU mice for the above said behavioral tests.

On an accelerating rotarod test, TAU mice spent significantly 
less	time	than	that	WT	mice	(p < 0.0001,	Figure 1a,b), validating the 
TAU-	induced	motor	deficits	in	mice.	Relative	to	VDAC1+/− mice, TAU 
mice spent less time on the rod and reached a lower maximum rate 
(p < 0.0001,	Figure 1a,b), suggesting impairments in motor learning 
and coordination. Strikingly, the average latency to fall was increased 
in	the	VDAC1+/−/TAU compared with that of TAU mice (p < 0.0001,	
Figure 1a,b).

Similar to the lack of motor coordination observed in rotarod, 
the total distance traveled (p = 0.0003, Figure 1c), average speed 
(p = 0.0002, Figure 1d), number of center entries (p < 0.0001,	
Figure 1e), and time spent in center (p < 0.0001,	Figure 1f) by TAU 
mice in the open field test arena was reduced significantly com-
pared	with	that	of	WT	mice	affirming	the	TAU-	induced	locomotion	
and exploratory impairments. Furthermore, increased locomotor 
and	 exploratory	 behaviors	 were	 shown	 by	 VDAC1+/− mice com-
pared with TAU mice, as evidenced by greater total distance trav-
eled (p =	0.0192,	Figure 1c), average speed (p = 0.0066, Figure 1d), 
number of center entries (p < 0.0001,	Figure 1e), and time spent in 
center (p < 0.0001,	Figure 1f) in a novel open field test setting. In ad-
dition, the locomotor and exploratory behavioral impairments were 
in	VDAC1+/−/TAU compared with that of TAU mice as the distance 
traveled by mice increased significantly.

The total number of arm entries (p = 0.0180, Figure 2a) was in-
creased, and the percentage of spontaneous alternation between 
the arms of the Y- maze was significantly decreased (p = 0.0018, 
Figure 2b)	 in	TAU	mice	as	compared	with	WT	mice	suggesting	 im-
pairment	 of	 spatial	 working	 memory.	 VDAC1+/− mice had signifi-
cantly less total arm entries (p = 0.0018, Figure 2a– c) and a higher 
probability of alternating three consecutive entries (p = 0.0121, 
Figure 2b)	 than	 TAU	 mice.	 Interestingly,	 VDAC1+/−/TAU mice ex-
hibited decreased total arm entries (p = 0.0002, Figure 2a) and 
an increased percentage of spontaneous alteration (p = 0.0012, 
Figure 2b) compared with TAU mice. These results suggested that 
the	spatial	working	memory	of	VDAC1+/−/TAU mice was enhanced 
compared with TAU mice.

TAU (P301L) mice showed an increase in time for finding the 
platform (p < 0.0001,	 Figure 2d), decreased distance traveled 
(p < 0.0001,	 Figure 2e), average speed (p < 0.0001,	 Figure 2f), 
number	 of	 entries	 in	 the	 North-	West	 (NW)	 quadrant	 (p < 0.0001,	
Figure 2g)	compared	with	WT	mice	in	the	Morris	Water	Maze	test.	
VDAC1+/− mice showed a decrease in escape latency for finding 
the platform (p < 0.0001,	Figure 2d– h), increased distance traveled 
(p < 0.0001,	Figure 2e), average speed (p < 0.0001,	Figure 2f), num-
ber	of	entries	in	the	NW	quadrant	(p < 0.0001,	Figure 2g) compared 
with	 TAU	mice.	 In	VDAC1+/−/TAU mice (p < 0.0001),	 the	mean	 la-
tency time for finding a platform was significantly reduced com-
pared	with	TAU	mice.	VDAC1+/−/TAU mice spent more time in the 
NW	quadrant	than	TAU	mice	(p < 0.0001).
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Since	the	VDAC1+/−/TAU mice spent more time on the rotarod 
test, traveled more distance in the open field test, increased the 
percentage of spontaneous alteration in the Y- maze test, and spent 
more	 time	 on	 the	 NW	 quadrant	 of	 the	 Morris	 Water	 Maze,	 we,	
therefore,	 can	 infer	 that	 reduced	 VDAC1	 expression	 rescued	 the	
TAU- induced motor, locomotion, and spatial memory impairments 
in	VDAC1+/−/TAU mice.

2.2  |  Reduced expression of VDAC1 induces 
mitophagy and autophagy in VDAC1+/−/TAU mice

Recent	 studies	 on	 VDAC1	 revealed	 that	 age	 and	 P-	Tau	 induced	
increased synaptic and mitochondrial damage, particularly 

abnormal regulation of mitophagy and autophagy in the disease 
process	 (Manczak	 &	 Reddy,	 2012; Morton et al., 2021;	 Reddy	 &	
Oliver, 2019).	Currently,	it	is	unclear	how	reduced	VDAC1	protects	
against defective autophagy and mitophagy.

To	 address	 these	 issues,	 we	 crossed	 VDAC1	 heterozygote	
knockout	(VDAC1+/−) mice with transgenic TAU (P301L strain) mice 
and	generated	double	mutant	(VDAC1+/−/ TAU) mice and studied the 
protective	effects	of	a	partial	reduction	of	VDAC1	on	mitophagy	and	
autophagy.	We	performed	i)	immunoblotting	analysis	of	mitophagy	
and autophagy proteins from cortical tissues and ii) immunofluores-
cence	analysis	 in	the	hippocampal	sections	from	6-	month-	old	WT,	
VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mice. As a result, significantly 
decreased levels of mitophagy proteins (PARKIN and PINK1) and 
increased levels of BNIP3L were found in TAU mice (Figure 3a– d, 

F I G U R E  1 Rotarod	and	open	field,	behavioral	assessment	of	6-	month-	old	WT,	VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mice. Rotarod test: (a) 
latency	to	fall	of	various	cohorts,	namely	WT,	VDAC1+/−,	TAU,	and	VDAC1+/−/TAU	mice	as	assessed	by	the	rotarod	test.	VDAC1+/−/TAU mice 
improve motor learning and coordination. (b) TAU mice spent less time on the rod (lower latency to fall), indicating impaired motor learning 
and	coordination	compared	to	the	WT	mice	(****p < 0.0001).	Open	field	test:	TAU	mice	exhibited	reduced	locomotor	and	exploratory	activity	
than	VDAC1+/−/TAU	mice	(*p < 0.05),	as	evidenced	by	reduced	total	distance	traveled	and	average	speed.	(c)	Quantification	of	total	distance	
traveled, (d) average speed, (e) the number of center entries, and (f) time spent in the center area by all indicated cohorts assessed by open 
field test. (g) Shows representative trajectory maps (time spent in the center) of all mentioned cohorts as analyzed by an open field test. 
N =	10	per	group.	Bars	represent	mean ± SEM.	ns,	not	significant,	*p	<	 0.05,	**p 	<	0.01,	***p	 <	 0.001,	****p	<	0.0001,	one-	way	ANOVA	
followed by Turkey's test for multiple comparisons
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Figure S1). In addition, decreased levels of autophagy proteins LC3BI, 
ATG5, Beclin1, and P62 (Figure 4a– d, Figure S2) were found in TAU 
mice	compared	with	WT	mice.	At	 the	same	time,	PARKIN,	PINK1,	
and	 autophagy	 proteins	were	 significantly	 increased	 in	VDAC1+/−, 
VDAC1+/−/TAU compared with TAU mice. These results suggested 
that	partial	reduction	of	VDAC1	expression	induces	mitophagy	and	
autophagy	in	VDAC1+/−/TAU mice.

2.3  |  Increased synaptic activity, hexokinase, 
AKT, and decreased phosphorylated tau, VDAC, 
ANT1, GSK3β levels in the VDAC1+/−/TAU mice

The molecular pathways leading to synapse loss and dysfunction 
in AD are not well understood, but substantial data indicate that 
P-	Tau	may	be	responsible	for	these	effects	(Jadhav	et	al.,	2015). In 
the brain, hexokinase (HK) is the major isozyme present (∼70%– 
90%)	 associated	 with	 the	 outer	 mitochondrial	 membrane.	 The	

release of HK from mitochondria is known to cause a severe de-
crease in enzyme activity. Interestingly, mitochondrial- bound 
hexokinase I activity in neurons has been shown to be neuropro-
tective,	 maintaining	 adequate	 glutathione	 levels,	 inducing	 neur-
ite outgrowth, and preventing neuronal oxidative damage (Rose 
&	Warms,	 1967;	 Wang	 et	 al.,	 2008;	 Wilson,	 2003). Hence, we 
wanted	to	know	how	a	partial	reduction	of	VDAC1	protects	against	
hexokinases 1 and 2, detachment, and increases cellular ATP in 
cells.	 Therefore,	we	 checked	 the	 synaptic	 proteins	 (PSD95,	 syn-
aptophysin, and SNAP25), HK1, HK2, AKT, GSK3A, GSK3β, ANT, 
phosphorylated	tau	(pS422),	and	VDAC1	protein	expression	levels	
in	the	WT,	VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mice. Significantly 
decreased	 levels	 of	 PSD95,	 synaptophysin,	 SNAP25,	HK1,	HK2,	
AKT, and significantly increased levels of GSK3A, GSK3β, ANT1, 
phosphorylated	 tau	 (pS422),	 VDAC1	 were	 found	 in	 TAU	 mice	
compared	 with	 WT	 mice	 (Figures 5a– d and 6a– f, Figures S3– 
S4).	When	we	analyzed	 the	data	 further,	PSD95,	 synaptophysin,	
SNAP25, HK1, HK2, and AKT significantly increased, and the 

F I G U R E  2 Y-	maze	and	Morris	water	maze,	behavioral	assessment	of	6-	month-	old	WT,	VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mice. Y- maze 
test:	(a)	Y-	maze	test	shows	TAU	mice	display	significantly	more	total	arm	entries	than	VDAC1+/−/TAU	mice	(***p < 0.001).	(b)	Spatial	memory	
assessment using the Y- maze spontaneous alternation test. TAU mice showed significantly reduced percentages of spontaneous alternation 
(**p < 0.01	vs.	WT	mice).	VDAC1+/−/TAU mice significantly increased the percentage of spontaneous alternation compared with the TAU 
mice	(**p < 0.01).	(c)	Representative	tracks	of	mice	(total	number	of	entries)	in	the	Y-	maze	test.	Morris	water	maze	test:	(d)	the	average	
time	to	find	a	platform	was	significantly	decreased	in	VDAC1+/−/TAU	mice	compared	to	TAU	mice	(****p < 0.0001).	At	the	same	time,	(e)	
distance	traveled	(****p < 0.0001),	and	(f)	average	speed	(****p < 0.0001),	(g)	the	number	of	entries	in	the	NW	quadrant	(****p < 0.0001)	
were	significantly	increased	in	VDAC1+/−/TAU mice compared to TAU mice. (h) Representative swimming tracks of mice (time to find the 
platform) in Morris water maze test. N =	10	per	group.	Bars	represent	mean ± SEM.	ns,	not	significant,	*p < 0.05,	**p < 0.01,	***p < 0.001,	
****p < 0.0001,	one-	way	ANOVA	followed	by	Turkey's	test	for	multiple	comparisons
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F I G U R E  3 Western	Blot,	Immunofluorescence	and	quantification	analysis	of	proteins	regulating	mitophagy	proteins	in	6-	month-	old	WT,	
VDAC1+/−,	TAU,	and	VDAC1+/−/TAU	mice.	(a)	Representative	immunoblots.	(b)	Quantitative	densitometry	analysis	of	mitophagy	proteins	
PARKIN	(****p < 0.0001),	PINK1	(**p < 0.01)	were	significantly	increased,	and	BNIP3L	(**p < 0.01)	was	significantly	decreased	in	VDAC1+/−/
TAU	mice	compared	to	TAU	mice.	Each	lane	was	loaded	with	40 μg of total protein. Housing- keeping protein beta- actin was used as the 
loading control. Data are from three independent experiments with similar results (N = 3). (c) Representative immunofluorescence images of 
10- micron coronal sections (10×).	(d)	Fluorescence	intensity	analysis	of	mitophagy	proteins	PARKIN	(****p < 0.0001),	PINK1	(****p < 0.0001)	
were	significantly	increased	and	BNIP3L	(***p < 0.001)	was	significantly	decreased	in	VDAC1+/−/TAU mice compared to TAU mice. Data are 
from three independent experiments with similar results (N =	3)	with	10–	15	fields	per	mouse.	Scale	bar:	500 μm. Results were expressed 
as	mean ± SEM.	ns,	not	significant,	*p < 0.05,	**p < 0.01,	***p < 0.001,	****p < 0.0001,	one-	way	ANOVA	followed	by	Turkey's	test	for	multiple	
comparisons
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F I G U R E  4 Western	Blot,	Immunofluorescence	and	quantification	analysis	of	proteins	regulating	autophagy	proteins	in	6-	month-	old	WT,	
VDAC1+/−,	TAU,	and	VDAC1+/−/TAU	mice.	(a)	Representative	immunoblots.	(b)	Quantitative	densitometry	analysis	of	autophagy	proteins-	
LC3B-	I	(**p < 0.01),	ATG5	(**p < 0.01),	Beclin1	(*p < 0.051),	P62	(**p < 0.01)	were	significantly	increased	in	VDAC1+/− TAU mice compared 
to	TAU	mice.	Each	lane	was	loaded	with	40 μg of total protein. Housing- keeping protein beta- actin was used as the loading control. Data 
are from three independent experiments with similar results (N = 3). (c) Representative immunofluorescence images of 10- micron coronal 
sections (10×).	(d)	Fluorescence	intensity	analysis	of	autophagy	proteins	LC3B	(****p < 0.0001),	ATG5	(***p < 0.001),	Beclin1	(****p < 0.0001),	
P62	(****p < 0.0001)	were	significantly	increased	in	VDAC1+/−/TAU mice compared to TAU mice. Data are from three independent 
experiments with similar results (N =	3)	with	10–	15	fields	per	mouse.	Scale	bar:	500 μm.	Results	were	expressed	as	mean ± SEM.	ns,	not	
significant,	*p < 0.05,	**p < 0.01,	***p < 0.001,	****p < 0.0001,	one-	way	ANOVA	followed	by	Turkey's	test	for	multiple	comparisons
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F I G U R E  5 Western	Blot	and	quantification	analysis	of	proteins	regulating	synaptic	proteins	in	6-	month-	old	WT,	VDAC1+/−, TAU, and 
VDAC1+/−/TAU	mice.	(a)	Representative	immunoblots.	(b)	Quantitative	densitometry	analysis	of	synaptic	proteins	PSD95	(***p < 0.001),	
synaptophysin	(**p < 0.01),	SNAP25	(***p < 0.001)	were	significantly	increased	in	VDAC1+/−/TAU	mice	compared	to	TAU	mice.	Each	
lane	was	loaded	with	40 μg of total protein. Housing- keeping protein beta- actin was used as the loading control. Data are from three 
independent experiments with similar results (N = 3). (c) Representative immunofluorescence images of 10- micron coronal sections (10×). 
(d)	Fluorescence	intensity	analysis	of	synaptic	proteins	PSD95	(****p < 0.0001),	synaptophysin	(****p < 0.0001),	SNAP25	(****p < 0.0001)	
were	significantly	increased	in	VDAC1+/−/TAU mice compared to TAU mice. Data are from three independent experiments with similar 
results (N =	3)	with	10–	15	fields	per	mouse.	Scale	bar:	500 μm.	Results	were	expressed	as	mean ± SEM.	ns,	not	significant,	*p < 0.05,	
**p < 0.01,	***p < 0.001,	****p < 0.0001,	one-	way	ANOVA	followed	by	Turkey's	test	for	multiple	comparisons.	[Correction	added	on	11	July	
2022, after first online publication: the layers for the beta actin panel in Figure (5a) was placed incorrectly and it has been corrected in this 
version.]
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levels of GSK3A, GSK3β, ANT1, phosphorylated tau (pS422), and 
VDAC1	 were	 decreased	 in	 VDAC1+/−	 and	 VDAC1+/−/TAU mice 
compared to TAU mice (Figures 5a– d, Figure 6a– f, Figures S3– 
S4).	These	observations	indicate	that	VDAC1+/− increases synap-
tic	proteins,	and	hexokinase	activities	reduce	VDAC1	and	mutant	
and/or P- Tau.

2.4  |  VDAC1 interaction with phosphorylated Tau, 
HK1, and HK2

VDAC1/	 Hexokinase	 interactions	 link	 glycolysis	 and	 oxidative	
phosphorylation (Rodrigues- Ferreira et al., 2012). HK1 binding 
of	VDAC1	 is	 thought	 to	 increase	the	catalytic	efficiency	of	both	
processes	 by	 facilitating	 mitochondrial	 ATP	 release	 from	 VDAC	
for glucose phosphorylation and by channeling ADP into mito-
chondria	 for	 oxidative	 phosphorylation	 (Jackson	 et	 al.,	 2015). 
VDAC1	interacts	with	phosphorylated	Tau,	leading	to	blocking	the	
pores of mitochondria and mitochondrial transport in AD neurons 
(Manczak	 &	 Reddy,	2012). In the present study, we determined 
whether	phosphorylated	Tau	interacts	with	VDAC1,	we	conducted	

a	 double-	labeling	 analysis	 of	 VDAC1	 and	 phosphorylated	 tau,	
VDAC1,	and	HK1,	VDAC1,	and	HK2	using	hippocampal	 sections	
from	the	brains	of	WT,	VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mice. 
The	 interaction	 of	 VDAC1/TAU	was	 significantly	 increased,	 and	
VDAC1/HK1	and	VDAC1/HK2	were	altered	considerably	 in	TAU	
mice	compared	with	WT	mice	(Figures	S5– S7). Further, the inter-
action	of	VDAC1	with	TAU	was	significantly	decreased,	and	immu-
noreactivity	of	HK1	and	HK2	was	altered	in	VDAC1+/−,	VDAC1+/−/
TAU mice compared with TAU mice (Figures S5– S7). In addition, 
VDAC1	was	colocalized	with	phosphorylated	Tau	(AT8),	HK1,	and	
HK2,	 indicating	 that	VDAC1	 interacts	with	 phosphorylated	 Tau,	
HK1, and HK2.

2.5  |  Mitochondrial structural alterations by TEM

It is well- established that structurally damaged mitochondria are 
present in AD neurons and the primary neurons of AD mice, par-
ticularly	at	nerve	terminals	 (Wang	et	al.,	2014).	We	used	transmis-
sion	electron	microscopy	(TEM)	on	hippocampal	and	cortical	tissues	
from	 6-	month-	old	WT,	 VDAC1+/−,	 TAU,	 and	 VDAC1+/−/TAU mice 

F I G U R E  6 Western	Blot,	Immunofluorescence	and	quantification	analysis	of	other	key	proteins	(Total	TAU,	P-	TAU,	VDAC1,	HK1,	HK2,	
AKT,	GSK3B)	in	the	hippocampal	fields	of	6-	month-	old	WT,	VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mice. (a, c, e) Representative immunoblots. 
(b,	d,	f)	Quantitative	densitometry	analysis	of	HK1	(**p < 0.01),	HK2	(*p < 0.05),	AKT	(**p < 0.01)	were	significantly	increased,	and	GSK3A	
(****p < 0.0001),	GSK3B	(****p < 0.0001),	ANT1	(****p < 0.0001),	pS422	(****p < 0.0001),	VDAC1	(****p < 0.0001)	were	significantly	
decreased	in	VDAC1+/−/TAU	mice	compared	to	TAU	mice.	Each	lane	was	loaded	with	40 μg of total protein. Housing- keeping protein 
beta- actin was used as the loading control. Data are from three independent experiments with similar results (N = 3). (c) Representative 
immunofluorescence images of 10- micron coronal sections (10×).	(d)	Fluorescence	intensity	analysis	of	total	TAU	(****p < 0.0001),	P-	TAU	
(****p < 0.0001),	VDAC1	(***p < 0.001),	GSK3B	(***p < 0.001)	were	significantly	decreased,	HK1	(****p < 0.0001),	HK2	(****p < 0.0001),	AKT	
(****p < 0.0001)	were	significantly	increased	in	VDAC1+/−/TAU mice compared to TAU mice. Data are from three independent experiments 
with similar results (N =	3)	with	10–	15	fields	per	mouse.	Scale	bar:	500 μm.	Results	were	expressed	as	mean ± SEM.	ns,	not	significant,	
*p < 0.05,	**p < 0.01,	***p < 0.001,	****p < 0.0001,	one-	way	ANOVA	followed	by	Turkey's	test	for	multiple	comparisons
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F I G U R E  6 	(Continued)
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FIGURE	6 	(Continued)
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to	 determine	 the	 effects	 of	 VDAC1+/− on mitochondrial number 
and length. As shown in Figure 7a, we observed a substantial in-
crease in the number of mitochondria in 6- month- old TAU mice 
hippocampi (p < 0.0001)	 compared	with	WT	mice	 (Figure 7b).	We	
also assessed mitochondrial length in TAU mice; the mitochondrial 
length was significantly decreased (p < 0.0001)	compared	with	WT	
mice (Figure 7c). On the contrary, the mitochondrial number was 
significantly decreased, and mitochondrial length was increased 
in	 VDAC1+/− (Figure 7b)	 and	 VDAC1+/−/TAU (Figure 7c) mice hip-
pocampi compared with TAU (P301L) mice. As illustrated in Figure 7a, 
there was a substantial increase in the number of mitochondria in 
6- month- old TAU mice cortical tissues (p < 0.0001)	compared	with	
WT	mice	 (Figure 7d).	We	 also	 assessed	 mitochondrial	 length,	 we	
observed that in TAU mice, mitochondrial length was significantly 
decreased (p < 0.0001)	compared	with	WT	mice	(Figure 7e). On the 
contrary, the mitochondrial number was significantly decreased, 
and	mitochondrial	length	was	increased	in	VDAC1+/− (Figure 7d) and 
VDAC1+/−/TAU (Figure 7e) mice cortical tissues compared with TAU 
mice.

2.6  |  Impact of VDAC1+/− on synapse numbers 
in the hippocampal and cortical tissues

It is well- established that spine density is critical for synaptic func-
tion and cognitive behavior in AD patients and AD mice (Manczak 
et al., 2018).	Therefore,	we	also	examined	the	impact	of	VDAC1+/− 
on synapse organization and numbers in both hippocampal and 
cortical	tissues	of	WT,	VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mice. 
The synapse location and organization in the red arrow showed 
the synaptic cleft. As shown in Figure 7f, the average synapse 
numbers were significantly decreased in TAU mice hippocampi 
(Figure 7g) and cortex (Figure 7h)	relative	to	WT	mice.	At	the	same	
time, the average synapse numbers were significantly increased in 
VDAC1+/−,	VDAC1+/−/TAU mice hippocampi, and cortex relative to 
TAU mice (Figure 7g,h).

2.7  |  Reduced expression of VDAC1 increases the 
dendritic spine density

We	 quantified	 dendritic	 length	 and	 the	 number	 of	 spines	 using	
Golgi- cox staining in the hippocampus and cortex of 6- month- old 
WT,	VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mice to assess the effects 
of	VDAC1+/− on dendritic length and spines. Figure 8a– g showed the 
representative images of dendrites in four different groups of mouse 
brains covering both cortex and hippocampus areas at 4× (Figure 8a), 
10× (Figure 8b– e), 20× (Figure 8c– f), and 100× (Figure 8d– g) magni-
fications. Hippocampal and cortical neurons from TAU mice showed 
a significant visual difference with reduced length and number of 
dendrites	 compared	 with	WT	 mice	 (Figure 8h– i). In addition, the 
measurement of dendritic length and the number of dendritic spines 
showed	 a	 significant	 difference	 in	 VDAC1+/−	 and	 VDAC1+/−/TAU 

mice relative to TAU mice in both hippocampal and cortical neurons 
(Figure 8h– i). These results confirmed the significant positive impact 
of	VDAC1+/− on hippocampal and cortical neurons, dendritic mor-
phology,	and	quality.

3  |  DISCUSSION

Mitochondrial dysfunction is a common pathological feature and 
contributes	 to	 neurodegeneration	 in	 AD	 (Reddy	 &	 Beal,	 2008). 
Recent reports suggested that mitochondrial fission/fusion, biogen-
esis, mitophagy, and autophagy are altered in postmortem AD brains 
and both in vitro and in vivo models of disease (Calkins et al., 2011; 
Fang et al., 2019; Kandimalla et al., 2016; Kandimalla et al., 2018; Kerr 
et al., 2017; Manczak et al., 2011; Reddy, 2014; Reddy et al., 2018; 
Santos et al., 2010; Su et al., 2010; Swerdlow et al., 2014;	Wang	
et al., 2009). Other researchers and we previously reported that 
Aβ and P- Tau interact with many mitochondrial proteins (DRP1 and 
VDAC1),	leading	to	mitochondrial	dysfunction	and	the	depletion	of	
major mitophagy and autophagy proteins (Hirai et al., 2001; Ishihara 
et al., 2009; Kshirsagar et al., 2021; Manczak et al., 2010; Reddy 
et al., 2012; Reddy et al., 2018; Shoshan- Barmatz et al., 2018). In 
addition, our laboratory previously reported that reduced levels 
of	VDAC1	may	lead	to	decreased	interaction	between	VDAC1	and	
APP, Aβ, and phosphorylated Tau and may allow mitochondrial pore 
opening and pore closure, ultimately leading to normal mitochon-
drial function and synaptic ATP and boosting synaptic and cogni-
tive	functions	in	AD	(Manczak	&	Reddy,	2012).	We	also	found	that	
VDAC1+/− mice showed improved mitochondrial function and syn-
aptic activity and reduced expressions of several AD- related genes 
compared	with	VDAC1+/+ mice (Manczak et al., 2013). Further, we 
reported	that	reducing	the	human	VDAC1	gene	in	an	in vitro condi-
tion might enhance synaptic activity, improve mitochondrial mainte-
nance and function, and protect against AD- related genes' toxicities 
(Manczak	&	Reddy,	2013). In the current study, we have provided in 
vivo	evidence	that	partial	reduction	of	VDAC1	mediated	mitophagy,	
autophagy, synaptic, reduced P- Tau pathology, and lessened mem-
ory impairment and anxiety symptoms in a murine model.

Our	 overall	 analysis	 of	 6-	month-	old	WT,	 VDAC1+/−, TAU, and 
VDAC1+/−/TAU mice revealed that reduced protein levels of all mi-
tophagy, autophagy, synaptic, and other key proteins (HK1, HK2, 
AKT) and increased other key proteins (GSK3A, GSK3β, ANT1, 
pS422,	VDAC1)	in	TAU	mice	compared	to	WT	mice.	In	contrast,	we	
observed	 the	 reverse	 trend	 in	VDAC1+/−	and	VDAC1+/−/TAU mice 
compared with TAU (P301L) mice. Current findings of increased pro-
tein levels of mitochondrial and synaptic genes agree with our earlier 
observations	(Manczak	&	Reddy,	2012).

Cognitive impairment and anxiety are extensively reported in 
most AD patients (Goncalves et al., 2020; Teri et al., 1999) and are 
associated with increased conversion rates from MCI to AD (Mah 
et al., 2015). Here, we show that 6- month- old TAU (P301L) mice 
displayed impaired behavior in the rotarod, Y- maze, open field, and 
Morris	Water	 Maze	 behavioral	 tests.	 In	 addition,	 TAU	 mice	 have	
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deficient motor learning and coordination activities compared with 
WT	mice.	 Briefly,	 TAU	mice	 could	 not	 stand	 on	 the	 rotarod	 for	 a	
longer	 time.	At	 the	 same	 time,	VDAC1+/−and	VDAC1+/−/TAU mice 
stayed longer on the rotarod than TAU mice.

Furthermore, TAU mice exhibited decreased locomotor and 
exploratory behavior, as evidenced by decreased total distance 
traveled, average speed, number of center entries, and time spent 
in the center in a novel open field test setting. On the contrary, 
VDAC1+/−and	VDAC1+/−/TAU mice are substantially more involved 
in exploring the field than TAU mice. Similar to learning and motor 
coordination	activities,	VDAC1+/−and	VDAC1+/−/TAU mice did well 
on spatial recognition and working memory, as evidenced by the Y- 
maze test. In addition, the percentage of spontaneous alteration was 
significantly	higher	in	the	VDAC1+/−and	VDAC1+/−/TAU mice than in 
TAU mice. Most importantly, hippocampal- dependent learning and 

memory	 were	 increased	 dramatically	 in	 VDAC1+/−and	 VDAC1+/−/
TAU mice relative to TAU mice. This data strongly suggests that re-
duced	expression	of	VDAC1	has	improved	hippocampal-	dependent	
learning and memory.

Mitophagy is the selective elimination of damaged mitochon-
dria	and	is	thus	essential	for	mitochondrial	quality	control	 (Ashrafi	
&	Schwarz,	2013).	A	recent	paper	has	shown	that	VDAC1	is	indeed	
one of the regulators of mitophagy (Ordureau et al., 2018). But oth-
ers	are	still	debating	whether	VDAC1	is	a	critical	component	for	the	
PINK1-	PARKIN	pathway	or	VDAC1	is	irrelevant	to	mitophagy	(Ham	
et al., 2020). Here, we identify PINK1, PARKIN, p62, and the mito-
chondrial	substrate	VDAC1	as	key	players	in	a	sequential	mitophagy	
process	in	VDAC1+/−/TAU double mutant mice. These observations 
support	 that	 the	 partial	 reduction	 of	 VDAC1	 activates	mitophagy	
and	 reduces	 excessive	mitochondrial	 fragmentation	 in	 VDAC1+/−/

F I G U R E  7 Transmission	electron	microscopy	(TEM)	analysis	of	the	hippocampus	and	cerebral	cortex	region	in	6-	month-	old	WT,	
VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mice. (a) Representative electron micrographs of mitochondria in the hippocampus and cerebral cortex 
of all indicated cohorts. (b) Mitochondrial number in the hippocampus. (c) Represents the mitochondrial length in the hippocampus. (d) 
Represents the mitochondrial number in the cerebral cortex. (e) Represents the mitochondrial length in the cerebral cortex. Significantly 
decreased	number	of	mitochondria	in	hippocampi	(****p < 0.0001)	and	cortex	(****p < 0.0001)	of	VDAC1+/−/TAU mice relative to TAU mice, 
the	mitochondrial	length	is	significantly	increased	in	hippocampal	(****p < 0.0001)	and	cerebral	cortical	tissues	(****p < 0.0001)	in	VDAC1+/−/
TAU mice. (f) Synaptic densities are sharply defined and contain electron- dense materials uniformly distributed in all indicated cohorts of 
the hippocampus and cerebral cortex. The arrowheads show the bowl- shaped structure of synapses and synaptic mitochondria with normal 
structure. Magnification ×22,000. (g) Synapse number in the hippocampus. (h) Synapse number in the cerebral cortex. The synapse numbers 
were	found	to	be	significantly	increased	in	the	hippocampi	(****p < 0.0001)	and	cerebral	cortical	tissues	(****p < 0.0001)	of	VDAC1+/−/TAU 
mice relative to TAU mice. N =	5	per	group.	Results	were	expressed	as	mean ± SEM.	ns,	not	significant,	*p < 0.05,	**p < 0.01,	***p < 0.001,	
****p < 0.0001,	one-	way	ANOVA	followed	by	Turkey's	test	for	multiple	comparisons	(scale	bar	=	600 nm)
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TAU mice. Furthermore, we observed a mechanistic link between 
reduced	VDAC1-	dependent	enhanced	mitophagy	and	autophagy	in	
AD for the first time.

Hexokinase is the key enzyme in glucose metabolism. The de-
creased glucose metabolism in TAU (P301L) mice reflects the abnor-
mal expression and distribution of HK (Chiara et al., 2008; Pastorino 
&	Hoek,	2008). HK1 and HK2 are mitochondrial hexokinase isotypes 
because they participate in glucose metabolism by binding to mito-
chondria. HK1 and HK2 protein levels were reduced in 3XTg AD mice 
(Han et al., 2021). Hexokinase isoforms bind to mitochondrial outer 
membranes in large part by interacting with the outer membrane 
VDAC1	 (Pastorino	 &	 Hoek,	 2008). GSK3β	 phosphorylates	 VDAC1	
on threonine 51, resulting in the detachment of hexokinase from 
VDAC1.	Given	the	association	of	GSK3	with	phosphorylation	in	AD,	
VDAC1	is	phosphorylated	on	the	putative	GSK3β epitope in AD, lead-
ing	to	the	inability	of	hexokinases	to	interact	with	VDAC1,	resulting	in	
the	dissociation	of	VDAC1	from	hexokinases	(Pastorino	et	al.,	2005).

Abnormalities in mitochondrial pore opening and closure may 
lead to defects in oxidative phosphorylation, mitochondrial dysfunc-
tion, and ultimately cell death (Manczak et al., 2013). Several key 
mitochondrial	proteins,	 including	outer	membrane	protein	VDAC1,	
inner membrane protein ANT, and matrix protein Cyclophilin D 
(CypD), are involved in mitochondrial pore opening and pore closure 
(Manczak et al., 2013).	We	previously	reported	that	Hexokinases	1	
and	2	were	significantly	upregulated	in	the	VDAC+/−	mice	(Manczak	&	
Reddy, 2013). Further, free radical production and lipid peroxidation 
levels	were	reduced	in	the	VDAC1+/− mice, and cytochrome oxidase 
activity and ATP levels were elevated, indicating an enhanced mito-
chondrial	function	in	the	VDAC1+/−	mice	(Manczak	&	Reddy,	2013). 

Our present study found increased protein expression of HK1, HK2, 
and AKT and decreased GSK3A, GSK3β,	and	ANT1	in	VDAC1+/− het-
erozygote	 knockout	 and	 VDAC1+/−/TAU	 double	mutant	mice.	We	
also found reduced phosphorylated Tau (pS422) protein levels in 
6-	month-	old	VDAC1+/−	and	age-	matched	double	mutant	VDAC1+/−/
TAU mice relative to TAU mice. Our study understands how partial 
reduction	of	VDAC1	impacts	HK1	and	HK2	and	glycolic	pathways	in	
TAU mice in disease progression. Further studies are still needed to 
understand the mechanistic links.

We	previously	studied	the	RNA	silencing	of	VDAC1	and	assessed	
mitochondrial	function	in	AD	pathogenesis	(Manczak	&	Reddy,	2013). 
We	reported	increased	mRNA	expression	of	synaptic	function	and	
mitochondrial fission genes and reduced levels of mitochondrial fu-
sion	genes	in	RNA-	silenced	SHSY5Y	cells	for	VDAC1	gene.	In	addi-
tion,	RNA-	silenced	VDAC1	gene	 in	SHSY5Y	cells	 showed	 reduced	
H2O2 production, lipid peroxidation, and fission- linked guanosine 
triphosphate (GTPase) activity, and increased cytochrome oxidase 
activity	and	ATP	production	(Manczak	&	Reddy,	2013). In the pres-
ent study, increased expression of synaptic genes suggests that 
reduced	VDAC1	is	beneficial	 in	the	presence	of	Tau	in	double	mu-
tant	 (VDAC1+/−/TAU) mice. These observations demonstrated that 
phosphorylated	 Tau	 interaction	 with	 VDAC1	 increases	 mitochon-
drial fragmentation, ultimately leading to mitochondrial dysfunction 
and neuronal damage. Findings from our current study support our 
previous	 study,	 in	 which	 increased	 VDAC1	 levels	 correlated	 with	
reduced synaptic and mitochondrial activity at different stages in 
disease	progression	(Manczak	&	Reddy,	2012). Taken together, these 
findings	suggest	that	partial	reduction	of	VDAC1	may	be	beneficial	
to the maintenance of mitophagy, autophagy, and synaptic activity.

F I G U R E  8 Microphotography	of	Golgi-	Cox	impregnated	brain	slice	of	6-	month-	old	WT,	VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mice. (a) 
Golgi- Cox impregnated image of the whole mouse brain. (b, c) Images of the hippocampus (4× and 10×) are well stained. (d) Magnified 
images of the hippocampus-  Dendritic spines can also be visualized at higher magnification (100×). (e, f) The cerebral cortex (10× and 
20×) is well stained. (g) Magnified images of the cerebral cortex-  Dendritic spines can also be visualized at higher magnification (100×). 
(h) The number of dendritic spines in the hippocampus. (i) Dendritic length in the hippocampus. Significantly increased dendritic number 
(****p < 0.0001)	and	the	length	of	dendritic	spines	(****p < 0.0001)	in	VDAC1+/−/TAU mice relative to TAU mice. N = 5 per group. Results 
were	expressed	as	mean ± SEM.	ns,	not	significant,	*p < 0.05,	**p < 0.01,	***p < 0.001,	****p < 0.0001,	one-	way	ANOVA	followed	by	Turkey's	
test	for	multiple	comparisons.	Scale	bars	1000 μm	in	(a,	b	&	e),	400 μm	in	(c),	200 μm in (f) and 1 μm, 2 μm, 5 μm, 10 μm	in	(d	&	g)
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Dysfunction of mitochondria is correlated with disease progres-
sion in neurodegenerative diseases and is suggested to contribute 
to excessive neuron loss in AD (Chan, 2006; Cipolat et al., 2006; 
Wu	et	al.,	2014).	We	found	significant	differences	in	the	mitochon-
drial length and number in the hippocampal and cortical tissues of 
6-	month-	old	 VDAC1+/−,	 TAU,	 and	VDAC1+/−/TAU mice relative to 
age-	matched	 WT	 mice.	 There	 were	 increased	 numbers	 of	 large,	
abnormal- shaped mitochondria in the TAU mice. Furthermore, we 
also found disrupted cristae in the TAU mice. In addition, mitochon-
drial length was drastically decreased in the TAU mice compared 
with	WT	mice	in	both	the	hippocampus	and	cortex.	Oxygen	tension,	
oxidative stress, and autophagic activation are the factors that can 
modulate the mitochondrial shape (Gomes et al., 2011). On the con-
trary, increased mitochondrial number and decreased length in TAU 
(P301L) mice may be due to excessive mitochondrial fragmentation 
or ineffective degradation of damaged mitochondria after fission. A 
similar observation was reported in an earlier study of P301L mice 
(Kandimalla et al., 2016; Kandimalla et al., 2018).	 In	VDAC1+/− and 
VDAC1+/−/TAU mice, we observed a decreased mitochondrial num-
ber,	in	other	words,	reduced	expression	of	VDAC1	suppresses	mito-
chondrial fragmentation. The mitochondrial length was significantly 
increased	in	both	hippocampus	and	cortical	tissues	of	VDAC1+/− and 
VDAC1+/−/TAU mice relative to TAU mice. These observations in-
dicate	 that	 reduced	 expression	 of	 VDAC1	 balances	mitochondrial	
dynamics. AD has been proposed to result from synaptic connec-
tions and plasticity defects in the hippocampus and cortex (Manczak 
et al., 2018; Reddy et al., 2018). The morphological analysis revealed 
altered synaptic density and morphology in the TAU mice in both 
hippocampus and cortex. The decrement in synapse numbers may 
be	 due	 to	 the	 toxic	 effects	 of	 phosphorylated	 Tau.	 Whereas	 in	
VDAC1+/−	and	VDAC1+/−/TAU mice, synapse numbers were drasti-
cally increased compared with TAU (P301L) mice. Based on these 
observations,	we	cautiously	conclude	that	the	quality	of	mitochon-
dria,	synapses	are	improved	in	VDAC1+/−/TAU mice.

Dendritic spines bear a strong potential for morphological plas-
ticity, thus enabling neurons to modify their synaptic interconnec-
tions, the correlates of learning and memory (Hoffmann et al., 2013). 
Quantitative	dendritic	spine	analysis	is	crucial	in	AD	research	as	there	
is principal evidence that the disease changes the number, structure, 
and	function	of	these	postsynaptic	sites	of	excitatory	synapses	(John	
&	Reddy,	2021; Kandimalla et al., 2018; Kartalou et al., 2020; Reddy 
&	Beal,	2008). Our earlier findings stated that a reduced number of 
dendritic spines and synaptic proteins are extensively reported in 
mouse models of AD (Hegde et al., 2019; Kandimalla et al., 2016) 
and postmortem AD brains (Reddy et al., 2005;	Reddy	&	Beal,	2008). 
These	observations	prompted	an	investigation	of	VDAC1+/−'s impact 
on dendritic spines in TAU (P301L) mice. As described above, we 
quantified	dendritic	length	and	a	number	of	spines	using	Golgi-	Cox	
staining	in	the	hippocampus	and	cortex	of	6-	month	WT,	VDAC1+/−, 
TAU,	and	VDAC1+/−/TAU	mice.	We	observed	significantly	increased	
dendritic	 length	and	number	 in	VDAC1+/−and	VDAC1+/−/TAU mice 
relative to TAU mice. Our study observations strongly indicate that 

the	reduced	expression	of	VDAC1	enhances	both	dendritic	 length	
and	 the	 number	 of	 dendritic	 spines	 in	 VDAC1+/−/TAU mice. Our 
dendritic number and length observations positively correlated with 
improved	behavior	in	VDAC1+/−	and	VDAC1+/−/TAU mice.

In conclusion, we have demonstrated that the partial reduction 
of	VDAC1	 improves	 (i)	 spatial	 learning	and	memory,	 (ii)	mitophagy,	
autophagy, synaptic, and other key proteins, (iii) mitochondrial length 
and number, and (iv) synapse and dendritic spine morphology in 
VDAC1+/−,	 and	 VDAC1+/−/TAU mice. Our findings further suggest 
that the impaired mitophagy in TAU contributes to an accumulation 
of defective mitochondria with abnormal morphology, causing mi-
tochondrial dysfunction and a deficiency in cellular energy supply. 
Further, our current study observations provided protective effects 
of	reduced	VDAC1	against	P-	Tau-	induced	mitochondrial	and	synaptic	
toxicities in TAU (P301L) mice and provided new evidence to develop 
VDAC1	therapeutic	strategies	for	AD.	Ours	is	the	first	genetic	cross-
ing	study	to	report	the	beneficial	effects	of	reduced	VDAC1	in	AD.

4  |  METHODS

4.1  |  Animals

To	study	 the	partial	 reduction	of	VDAC1,	we	used	VDAC1+/− het-
erozygote knockout mice and mutant TAU mice (P301L line). TAU 
mice were generated with human Tau P301L mutation (Lewis 
et al., 2000),	and	VDAC1+/− mice generation has been described pre-
viously	(Weeber	et	al.,	2002).	Homozygous	VDAC1−/− knockout mice 
are partially embryonic lethal depending on the strain background 
(Weeber	et	al.,	2002).	However,	heterozygote	VDAC1+/− mice are vi-
able, fertile, normal size, and do not show any phenotypic abnormali-
ties (Manczak et al., 2013). TAU mice were purchased from Taconic 
Biosciences.	We	generated	the	double	mutant	(VDAC1+/−/TAU) mice 
by	genetic	crossing	VDAC1+/−	mice	with	TAU	mice.	We	genotyped	
the	VDAC1+/− and TAU mutations using DNA prepared from tail bi-
opsy and PCR amplification, as described earlier (Lewis et al., 2000; 
Weeber	et	al.,	2002).	We	used	both	male	and	female	mice	for	this	
study.	Mice	were	bred	and	housed	under	a	standard	12 h	light–	dark	
cycle, with lights on at 7 AM in the Laboratory Animal Resource 
Center, Texas Tech University Health Sciences Center, accredited 
by the Association for Assessment and Accreditation of Laboratory 
Animal Care International (AAALAC). All experimental protocols 
were approved by Texas Tech University Health Sciences Center— 
Institutional animal care and use committee (TTUHSC- IACUC).

4.2  |  Behavior tests, immunoblotting, and 
immunofluorescence analysis

We	performed	behavioral	studies	to	examine	the	motor	balance,	co-
ordination, motor planning, locomotor activity levels, spatial learning, 
and memory, along with immunoblotting and immunofluorescence 
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analysis as previously described (Hegde et al., 2019;	Vijayan,	Bose,	
&	Reddy,	2021a;	Vijayan,	Bose,	&	Reddy,	2021b;	Vijayan,	George,	
et al., 2021) (Appendix S1).

4.3  |  TEM of brain mitochondria

To determine the mitochondrial number and size, we performed 
transmission electron microscopy in hippocampal and cortical sec-
tions	of	6-	month-	old	WT,	VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mice. 
Animals were perfused using the standard method, and the brains 
were	removed	from	the	mice	as	described	earlier	(Vijayan,	Bose,	&	
Reddy, 2021a;	Vijayan,	Bose,	&	Reddy,	2021b). Briefly, the ventral 
part of the hippocampus layer- the CA1 region and cerebral cortex 
were isolated and cut into ~1 mm3 cubes. Tissues were fixed in a so-
lution of 0.1 M cacodylate buffer, 1.5% paraformaldehyde, and 2.5% 
glutaraldehyde and then post- fixed with 1% osmium tetroxide and 
embedded in LX- 112 resin. Ultrathin sections were cut, stained with 
uranyl acetate and lead citrate, and examined with a Hitachi H- 7650 
/Transmission	Electron	Microscope	at	60 kV	located	at	the	College	
of Arts and Sciences Microscopy, Texas Tech University. Low- 
magnification imaging was followed by high- magnification imaging. 
Representative	 images	were	 acquired	 and	 recorded	with	 an	 AMT	
digital	 camera.	 Analyses	 of	mitochondria	 number	 and	 size	 in	WT,	
VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mouse brains were performed 
using	Image	J	software.	Briefly,	mitochondria	within	a	defined	area	
of the field were identified and numbered by two independent, 
experienced researchers blinded from the details of each sample 
group. For mitochondria number and size measurement, 15 random 
micrographs were taken from the hippocampus and cerebral cortex 
of	WT,	VDAC1+/−,	TAU,	and	VDAC1+/−/TAU	mice	(Vijayan,	Bose,	&	
Reddy, 2021a;	Vijayan,	Bose,	&	Reddy,	2021b).

4.4  |  Dendrite and spine analysis in Golgi- Cox- 
stained slices

Dendritic	 spines	 of	 neurons	 in	 the	 brains	 of	 6-	month-	old	 WT,	
VDAC1+/−,	TAU,	and	VDAC1+/−/TAU mice were detected by Golgi- 
Cox staining, which was performed using the FD Rapid GolgiStain 
Kit (PK401, FD NeuroTechnologies) as described earlier (Hegde 
et al., 2019;	 Vijayan,	 Bose,	 &	 Reddy,	 2021a;	 Vijayan,	 Bose,	 &	
Reddy, 2021b). All procedures were performed under dark condi-
tions.	Mouse	brain	tissues	were	 impregnated	for	2 weeks	and	pro-
cessed according to the manufacturer's instructions as in our recent 
publications (Hegde et al., 2019;	 Vijayan,	 Bose,	 &	 Reddy,	 2021a; 
Vijayan,	Bose,	&	Reddy,	2021b). Briefly, dendrites within the CA1 
subregion of the hippocampus and cerebral cortex were imaged 
using a 4×, 10×, 20×, and 100×	objective	using	EVOS	microscope-	
AMG (therm ofish er.com) and Olympus1X83. Approximately 20 neu-
rons	were	randomly	selected	from	each	group	and	quantified	with	
a	double-	blind,	controlled	design.	In	addition,	ImageJ	and	Image-	Pro	

Plus were used to evaluate the number of spines and the total den-
dritic length.

4.5  |  Statistical analysis

Data	 were	 represented	 as	 mean ± standard	 error	 of	 the	 mean	
(SEM).	Conclusions	were	drawn	based	on	statistical	analyses	using	
GraphPad™	PRISM	software	(version	9.0;	GraphPad	Software).	The	
one-	way	 ANOVA	 was	 performed	 using	 Tukey's	 test	 for	 multiple	
comparisons. Group comparisons were considered significant when 
the p- value was less than 0.05 (p < 0.05).

For all other procedures, see Appendix S1.
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