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Abstract: Naringin, one of the citrus flavonoids and known as a natural antioxidant, has limited
bioavailability owing to its low stability and solubility. However, naringin esters formed via acylation
have recently been reported to possess improved physical and chemical properties. The development
of these compounds has a great potential in the food, cosmetic and pharmaceutical industries,
but low conversion and productivity are barriers to industrial applications. This study aimed to
improve the conversion of naringin acetate, which is formed via the enzymatic reaction between
naringin and an acyl donor. An optimal reaction condition was determined by evaluating the effect of
various variables (enzyme type, enzyme concentration, acyl donor, molar ratio of reactants, reaction
temperature, and solvent) on the synthesis of naringin acetate. The optimal condition was as follows:
3 g/L of Lipozyme TL IM, molar ratio of 1:5 (naringin:acyl donor), reaction temperature of 40 ◦C,
and acetonitrile as the reaction solvent. Under this condition, the maximum conversion to naringin
acetate from acetic anhydride and vinyl acetate was achieved at approximately 98.5% (8 h) and 97.5%
(24 h), respectively. Compared to the previously reported values, a high conversion was achieved
within a short time, confirming the commercial potential of the process.

Keywords: antioxidant; flavonoid; naringin; flavonoid ester; flavonoid acetate; acylation; lipase;
transesterification; enzymatic synthesis

1. Introduction

Flavonoids are naturally occurring antioxidants with more than 8000 types identified
to date. Based on their structure, they are classified as flavones, flavonols, flavanones,
flavanonols, isoflavones, and anthocyanins. Flavonoids are generally found in fruits, veg-
etables, flowers, and tea [1], and are widely regarded as preventative and therapeutic agents
for chronic diseases owing to their biological and pharmacological activities [2,3]. Naringin
is a glycosylated flavonoid with rhamnose and glucose attached to the C-7 position of
naringenin, an aglycone form. Naringin, a typical citrus flavonoid widely found in grape-
fruits and citrus peels [4], exerts pharmacological effects, including strong antioxidant [5],
antibacterial [6], and anticancer [7] properties, as well as blood and cholesterol-lowering
effects [8]. Naringin has advantages over aglycone flavonoids, which are limited in ap-
plication owing to their mutagenic and cytotoxic properties [9]. Indeed, several studies
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have reported naringin supplementation as a suitable treatment for obesity, diabetes, hy-
pertension, and metabolic syndrome [4]. Meanwhile, the Citrus genus is one of the most
important genera worldwide, with a global distribution of up to 90 million tons per year
resulting in a significant production of citrus peel waste [10]. However, due to their high
flavonoid content, increasing attention has been directed to improving their application in
various industries.

Glycosylated flavonoids are generally limited in their bioavailability, owing to their
low solubility and stability in hydrophobic environments. These limitations hinder their
application from in vitro to in vivo systems [11]. The antioxidant effect and radical scaveng-
ing ability of flavonoids depend on their chemical structure as well as their lipophilicity [12].
In addition, glycosylated flavonoids are unstable due to the presence of many hydroxyl
groups and are, thus, readily decomposed by light, oxygen, and high temperatures [2]. It is
therefore necessary to improve the solubility of naringin in the lipid phase to increase its
absorption and stability in physiological conditions. Acylation may be a strategy to increase
the solubility of naringin. As chemical acylation is performed at high temperature or high
pressure, it is difficult to esterify unstable substances, such as polyols, by this method.
In addition, protection and deprotection steps are required to perform the regioselective
acylation of flavonoids like polyol [13]. Considering that these processes often generate
toxic by-products and require harsh reaction conditions, including high temperatures [14],
the application of chemical methods in food has remained limited owing to the adverse
effects on the environment and overall safety concerns. In contrast, enzymatic methods
use mild conditions and one-step synthesis reactions, without the need for protection and
deprotection steps. Moreover, it is an eco-friendly synthesis method, as it generates less
by-products due to its excellent regioselectivity [14–16].

Esters, such as triacylglyceride (TAG), phospholipid derivatives of phenolic acids,
and flavonoid esters, can be produced by enzymatic methods [17,18]. The enzymatic
acylation of flavonoids has been studied using proteases, esterases, acyltransferases, and
lipases [14,19]. Currently, lipases are used in most flavonoid ester synthesis studies. Lipase
is a well-known enzyme with potential in biological processes owing to its availability and
stability in both organic and aqueous phases. In particular, microbial lipase is stable in
organic solvents, does not require cofactors, and has broad specificity. Therefore, it has
been applied to various industries based on the findings of many studies on its reaction
mechanism and structure [15,20–22].

There are several drawbacks associated with enzymatic synthesis. Besides being
expensive, enzymes are proteins and, therefore, prone to denaturation in response to en-
vironmental conditions; moreover, their separation and purification are difficult [20–23].
Immobilization may overcome these shortcomings of free enzymes. When an immobi-
lized enzyme is used, it can be readily separated and reused, thus reducing the overall
consumption of the enzyme. Further, the stability against heat and organic solvents is
increased [14,15,24], as a result of which many recent studies on the synthesis of flavonoid
esters have been conducted using immobilized lipases [20,21]. Existing studies on flavonoid
ester, including those on naringin acetate, focus on synthesis using enzymatic methods
(Table 1). Synthesis via esterification requires a long reaction time, and the conversion is
relatively low. Meanwhile, in transesterification synthesis, the reaction is conducted using
either a high molar ratio of the reactants or a large amount of enzyme. A previous study
reported the synthesis and statistical optimization of flavonoid acylation using esculin and
linseed oil [25], the results of which showed that a conversion of 78.5% could be obtained
after 96 h of reaction time. In the case of naringin acetate, a study reported a conversion of
41.03% after 96 h of reaction between naringin and vinyl acetate [10].
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Table 1. Summary of naringin ester conversion by enzymatic reaction.

Reactant Reaction Type Reaction Time Conversion Ref.

Naringin Oleic acid Esterification 48 h 93.10% [14]

Naringin Coconut oil Esterification 90 h 75.43% [25]

Linseed oil 76.70%

Sunflower oil 85.08%

Naringin Ricinoleic acid Esterification 120 h 33% [26]

Naringin Oleic acid Esterification 96 h 78.4% [27]

Linoleic acid 77.6%

Linolenic acid 86.6%

Naringin Oleic acid Esterification 96 h 80–90% [28]

Lauric acid

Linolenic acid

Naringin Vinyl acetate Trans-esterification 96 h 41.03% [10]

Vinyl octanoate 91.40%

Naringin Vinyl butyrate Trans-esterification 144 h 90% [12]

Naringin Vinyl laurate Trans-esterification 8 h 50% [29]

Many reports have suggested that acylated flavonoids have improved physical and chemi-
cal properties, such as thermal stability, light resistance, and lipophilic solubility [14,30–35]. The
improved function of acylated flavonoids increases its applicability in various industries,
including food, pharmaceutical, and cosmetics. Foods containing flavonoids have a bitter
and astringent taste; however, acylated flavonoids have a more favorable taste, that can be
applied to food or cosmetics such as toothpaste [30]. In the pharmaceutical industry, acy-
lated flavonoids have been found to be effective in preventing or treating diseases related to
hyperglycemia, such as hyperlipidemia and stroke [31]. Additionally, flavonoids acylated
with polyunsaturated fatty acids reduce the vascular endothelial growth factor (VEGF)
of K562 human leukemia cells and, thus, may represent effective anti-tumor agents [32].
Moreover, Hattori et al. synthesized naringin ester using Lipozyme RM IM and investi-
gated its anti-inflammatory effects [33]. They found that naringin ester exhibited superior
anti-inflammatory properties compared to naringin. In addition, flavonoid esters exerted
better skin protection properties, protecting against UV-radiation-induced mitochondrial
or nuclear DNA damage, compared to flavonoids. As such, they have been reported to
protect the skin and scalp from aging and inflammation [34]. Among the various acyl
donors, short chains such as an acetyl group were found to improve transport through
the aqueous environment, along with its interaction or penetration through phospholipid
membranes [35].

Li et al. synthesized naringin ester, including naringin acetate, using whole cells and
confirmed its antioxidant effect [10]. Their results confirmed that naringin acetate has
a higher free radical scavenging capacity for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and
2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) than naringin. In addition,
naringin acetate was found to be more effective than vitamin E, as per an oxygen radical
absorbance capacity (ORAC) analysis.

To the best of our knowledge, despite many studies on the synthesis of naringin
acetate, few have examined the enzymatic synthesis of naringin acetate for high conversion
through the optimization approach. Therefore, to improve the conversion and reaction time
in the enzymatic synthesis of naringin acetate, we aimed to identify the optimal synthesis
conditions by investigating the effects of different types of lipases, concentrations of lipases,
types of acyl donors, molar ratio of reactants, reaction temperature, and solvents.
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2. Materials and Methods
2.1. Materials

Naringin was purchased from Sigma-Aldrich (St. Louis, MO, USA). Acetic acid,
acetic anhydride, methyl acetate, vinyl acetate, propyl acetate, butyl acetate, acetone,
tert-butyl alcohol, tert-amyl alcohol, and 1,2-dichloroethane were purchased from Dae-
Jung (Gyeonggi-do, Korea). Ethyl acetate, acetonitrile, and tetrahydrofuran (THF) were
purchased from Junsei (Tokyo, Japan). For the immobilized enzyme, commercially used
Novozym 435 (Candida antarctica lipase B immobilized on acrylic resin), Lipozyme TL IM
(Thermomyces lanuginosus immobilized on a silica gel carrier), and Lipozyme RM IM (Rhi-
zomucor miehei immobilized on a resin carrier) were selected, purchased from Novozymes
(Bagsværd, Demark).

2.2. Enzymatic Synthesis of Naringin Acetate

Naringin acetate was synthesized through an enzymatic reaction (Figure 1). Before the
reaction, the organic solvent was dried for more than one week using 3-Å molecular sieves
(150 g/L). Naringin was dried for over one week in desiccators with silica gel. Naringin
(10 mM) and the acyl donor (10–110 mM), dissolved in an organic solvent, were added to a
50 mL serum bottle in a 20 mL working volume. A certain amount of enzyme (1–9 g/L)
was then added. The serum bottle was sealed to prevent the evaporation of the organic
solvent, and the mixture was allowed to react in a shaking incubator at 180 rpm for 48 h.
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Figure 1. Reaction formula for the production of naringin acetate from naringin and acyl donors.

2.3. Optimization of Reaction Conditions

Optimization was performed using the one factor at a time (OFAT) method, in which
only one variable is manipulated at a time, keeping the rest fixed, and optimizing step by
step. The effects of six reaction parameters (type of immobilized enzyme, concentration
of enzyme, type of acyl donor, molar ratio of reactants, reaction temperature, and solvent)
on the synthesis of naringin acetate were investigated (Figure 2). As the basic reaction
condition, 5 g/L of the enzyme, vinyl acetate as the acyl donor, 1:1 molar ratio of reactants,
reaction temperature of 40 ◦C, and tert-amyl alcohol as the solvent were used. The reaction
was conducted in a shaking incubator at 180 rpm for 48 h. Starting with these basic
conditions, the factors selected in each stage were applied to the next stage.

To confirm the effect of the immobilized enzyme type on conversion, three types
of immobilized lipases (Novozym 435, Lipozyme TL IM, and Lipozyme RM IM) were
screened. At this time, the conditions were basic reaction conditions. Thereafter, the
enzyme concentration (Lipozyme TL IM) was varied between 1 and 9 g/L. In acyl donor
selection, 3 g/L of Lipozyme TL IM was used to screen for acetic acid, acetic anhydride,
methyl acetate, vinyl acetate, ethyl acetate, propyl acetate, and butyl acetate. The molar
ratio of the reactants was investigated in the range of 1:1 to 1:11 with vinyl acetate or
acetic anhydride as the acyl donor. The reaction’s temperature was investigated over
the range 30–60 ◦C, and the molar ratio of the reactants was 1:5. Finally, various organic
solvents (acetonitrile, 1,4-dioxane, acetone, THF, tert-butyl alcohol, tert-amyl alcohol, and
1,2-dichloroethane) were evaluated.
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2.4. Analytical Methods

High performance liquid chromatography (HPLC) was used for the quantitative
analysis, and performed using Agilent 1260 infinity II (Agilent, CA, USA). After completion
of the reaction, a sample was collected using a 1 mL syringe. The collected solution was
10-fold diluted with methanol, and the enzyme and residue were removed using a syringe
filter, and finally injected into a 2 mL vial. The column used for this analysis was the INNO
Column C18 (120 Å, 5 µm, 4.6 × 250 mm). The injection volume was 5 µL, and the column
temperature was maintained at 50 ◦C. As mobile phases, 3% acetic acid in water (A) and
100% methanol (B) were used. The flow rate was 1 mL/min, and the gradient was as
follows: (A/B) 0 min-70/30, 5 min-0/100, 10 min-0/100, 15 min-70/30, and 20 min-70/30.
The analysis was performed at 280 nm using an UV detector. The conversion was calculated
from the initial naringin concentration and the synthesized naringin acetate concentration,
as demonstrated in Equation (1) [12,36–38]. The naringin calibration curve was obtained
using methanol. Error bars and error ranges represented the standard deviations (n = 2).

Conversion (%) =
Naringin acetate concentration
Initial naringin concentration

× 100 (%) (1)

Liquid chromatography-mass spectrometry (LC-MS) was used for the qualitative anal-
ysis, and was performed using Agilent 1260 Infinity II and Infinity Lab LC/MSD (Agilent,
CA, USA). The solution collected for analysis was 100-fold diluted with methanol, filtered,
and injected into a 2 mL vial. The injection volume, column, and column temperature were
the same as in the HPLC analysis method. The mobile phase contained 0.1% formic acid in
water (A) and 0.1% formic acid in acetonitrile (B). The flow rate was 1 mL/min, and the
gradient was as follows: (A/B) 0 min-70/30, 5 min-0/100, 10 min-0/100, 15 min-70/30,
and 20 min-70/30. The presence of naringin was confirmed by the SIM mode (m/z 603.20),
and that of naringin acetate was confirmed by the SCAN mode. The mass spectrum was
scanned in the 600–700 m/z range.

3. Results and Discussion
3.1. Synthesis of Naringin Acetate by Transesterification with Acyl Donors

In this study, naringin acetate was synthesized by the acylation of naringin in an
organic solvent. A quantitative analysis of the synthesized naringin acetate was performed
by HPLC. Most of the studies to date have reported naringin acylation to occur in the
6′ ′-OH portion of glucose, the primary alcohol [39–42], resulting in the production of only
monoester [43]. As a result of this study, when vinyl acetate was used similar findings were
observed as that of the previous study results. However, when acetic anhydride was used,
different results were obtained. LC-MS was performed for qualitative analysis; its results
showed [M + Na] in all cases (Figure 3). Diester was formed at m/z 687.2 and was seen as a
new peak when acetic anhydride was used. A similar diester was produced in a previous
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study [12]. It was reported that acylation may occur in the 6′ ′-OH and 4′ ′ ′-OH portions of
the rhamnoglucoside of naringin.
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3.2. Selection of Enzyme

Novozym 435, Lipozyme TL IM, and Lipozyme RM IM were screened to identify the
enzyme best suited for naringin acetate synthesis. Lipases are generally classified according
to their origin or specificity, with the latter including substrate specificity, regioselectivity,
and stereospecificity. Novozym 435 originated from Candida antarctica lipase B (CALB),
which is nonspecific, and was immobilized on a hydrophobic carrier acrylic resin. Lipozyme
TL IM is a 1,3-specific lipase from Thermomyces lanuginosus, immobilized on silica gel.
Lipozyme RM IM is a 1,3-specific lipase from Rhizomucor miehei, immobilized with a weak
anion-exchange resin based on a phenol-formaldehyde copolymer.
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When Novozym 435, Lipozyme TL IM, and Lipozyme RM IM were used, conver-
sions of 17.06%, 29.89%, and 19.91% were obtained, respectively (Table 2). Lipozyme
TL IM showed the highest conversion, which is consistent with other studies wherein
naringin ester or flavonoid ester showed a high conversion with a Lipozyme TL IM cata-
lyst [12,14,32,44,45]. Lipozyme TL IM is very effective in transesterification and is known
to have high substrate selectivity for bulky groups in alcohol and acid moieties [46]. Mean-
while, Novozym 435 shows a better stability in the presence of low-molecular alcohol [47].
However, Lipozyme TL IM is eight and ten times less expensive than Lipozyme RM IM and
Novozym 435, respectively [14,48]. Therefore, Lipozyme TL IM was considered a suitable
enzyme from an efficient and economical viewpoint.

Table 2. Information on immobilized lipase and the corresponding conversion rate of naringin acetate.

Immobilized Lipase
(Regioselectivity) Source Support Conversion (%)

Novozym 435
(Nonspecific) Candida antarctica lipase B Acrylic resin 17.06 ± 0.72

Lipozyme TL IM
(1,3-specific) Thermomyces lanuginosus Silica resin 29.89 ± 0.07

Lipozyme RM IM
(1,3-specific) Rhizomucor miehei Anion-exchange resin 19.91 ± 0.20

(5 g/L of the enzyme, vinyl acetate as the acyl donor, 1:1 molar ratio of naringin to acyl donor, reaction temperature
of 40 ◦C, tert-amyl alcohol as the solvent, and reaction time of 48 h).

3.3. Effect of Enzyme Concentration on the Conversion of Naringin Acetate

As the amount of enzyme is an important economic factor, it is vital to obtain maximum
efficiency using a small amount of enzyme. Therefore, to assess the production of naringin
acetate according to the amount of enzyme, the concentration of Lipozyme TL IM was set
to 1, 3, 5, 7, and 9 g/L. In our basal experiment, a control experiment without an enzyme
was performed under the same reaction conditions. As a result, the conversion was less
than 1%, and it was confirmed that the reaction did not proceed without the enzyme.
Conversion in the presence of 1 g/L and 3 g/L increased to 22.77% and 33.48%, while
that in the presence of 5 g/L decreased to 29.89%. The conversion reduced continuously
thereafter, being 27.60% and 26.29% at 7 g/L and 9 g/L, respectively (Figure 4). Thus, 3 g/L
was determined as the optimum enzyme concentration.
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In an enzymatic reaction, a specific substrate and the active site of the enzyme are
combined to form an enzyme-substrate complex, which initiates the reaction [14,20]. When
the enzyme concentration is low, fewer active sites of enzymes are available to be used by
the substrate; therefore, the conversion increases with the increased enzyme. According to
the Michaelis–Menten equation, if the amount of enzyme relative to the substrate is small,
the substrate becomes excessive, and the initial reaction rate increases after the enzyme
concentration is increased [21,22,49]. Meanwhile, when the enzyme is present in excess, the
excess active site is not exposed to the substrate [14,50,51], and the formation of the enzyme-
substrate complex does not increase [48,51]. In addition, when the immobilized enzyme
particles are present in excess, the dispersion power of the enzyme molecules decreases
along with the number of effective collisions between molecules, thereby reducing the mass
transfer rate [52–54]. A study on the external diffusion effect of an immobilized enzyme
reaction revealed that the surface concentration of the substrate increases with the increase
in the mass transfer rate, while the surface concentration of the product decreases in that
order [55]. The concentration of the substrate or product is directly related to the rate of
diffusion, which causes a change in the motion constant and impacts conversion. Hari
Krishna et al. [50] reported the synthesis of isoamyl acetate using Lipozyme TL IM and
found that the initial reaction rate decreased with an increase in enzyme concentration,
with no difference observed in the conversion after 3 g/L. The authors had explained that
when the enzyme is present in excess, excess active sites are not exposed to the substrate,
and hence do not contribute to the reaction [14,20–22]. This is similar to our observation of
a slight decrease in conversion at an enzyme concentration of 3 g/L.

3.4. Effects of Acyl Donors on the Conversion of Naringin Acetate

Naringin acetate is synthesized by the nucleophilic acyl substitution reaction between
naringin and an acyl donor. To determine the effects of the acyl donors, experiments were
conducted using acetic acid, acetic anhydride, methyl acetate, vinyl acetate, ethyl acetate,
propyl acetate, and butyl acetate. Results showed a high conversion rate of 36.91% and
33.48% for acetic anhydride and vinyl acetate, respectively (Table 3). Therefore, we selected
vinyl acetate and acetic anhydride as optimal acyl donors.

Table 3. Information on acyl donors and the corresponding conversion rate of naringin acetate.

Acyl Donor Molecular Formula Structure Molecular Weight (g/mol) Conversion (%)

Acetic acid C2H4O2
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the ability of the leaving group follows the order: acid chloride > anhydride > carboxylic
acid = ester > amide. Therefore, anhydrides are more reactive than esters. In addition,
as acetic anhydride has two carbonyl groups, it can perform a complex reaction [56,57].
First, it reacts with naringin to synthesize naringin acetate, with acetic acid produced as
a by-product. The produced acetic acid, as a new acyl donor, reacts with the remaining
naringin to further synthesize naringin acetate. Therefore, the highest conversion could be
obtained with acetic anhydride as the acyl donor. Previous studies have reported the use of
vinyl acetate as an acyl donor to produce various flavonoid acetates, including naringin
acetate [10,58,59]. However, to date, the utilization of acetic anhydride as an acyl donor in
flavonoid ester synthesis has not been reported, and this is the first study to do so.

Vinyl acetate also showed a high conversion rate, which can be explained by the
tautomerization of by-products. When vinyl acetate is used as an acyl donor, vinyl alcohol
is produced as a by-product, which is highly unstable in the form of an enol and is
immediately converted to acetaldehyde by tautomerization. According to the results of
Kim et al., by-products generated from the reaction could interfere with the reverse reaction,
resulting in an irreversible flow [42,56].

By-products including residual acetaldehyde can be removed through purification
steps. Zheng et al., reported that naringin esters were synthesized by the reaction of
naringin with fatty acids, and that the high purity (>97%) of naringin esters was finally
achieved through purification by two-step solvent extraction [27]. In this study, we focused
on the effect of acyl donor on the synthesis of naringin acetate, and in our next study
we will perform the optimization of the purification process to increase the purity of the
target compound.

3.5. Effects of Molar Ratio and Reaction Temperature on the Conversion of Naringin Acetate

Substrate concentration is an important factor in an enzymatic reaction [14,20–22,25];
therefore, we conducted experiments by altering the molar ratio of the reactants. We
altered the molar ratio of naringin and the acyl donor (1:1, 1:3, 1:5, 1:7, 1:9, and 1:11) and
determined its effect on the conversion of naringin acetate (Figure 5a). The enzymatic
reaction was conducted at 40 ◦C using 3 g/L Lipozyme TL IM with tert-amyl alcohol for
48 h.

In the case of acetic anhydride, the conversion increased significantly to 36.91% and
75.72% at 1:1 and 1:3, respectively, and increased further to 86.63% at 1:5. Thereafter,
conversions of 85.61%, 86.41%, and 87.19% were obtained at 1:7, 1:9, and 1:11, and were
similar to that at 1:5.

In the case of vinyl acetate, the conversion increased to 33.48%, 70.29%, and 94.47%
at 1:1, 1:3, and 1:5, respectively. Thereafter, a 96.07%, 96.55%, and 96.70% conversion was
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obtained at 1:7, 1:9, and 1:11, respectively. As seen for acetic anhydride, the results obtained
with vinyl acetate did not change significantly at molar ratios below 1:5.
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As transesterification using lipase is a reversible reaction, an excessive acyl donor
concentration is required for the reaction equilibrium to shift to transesterification [25,56].
The mechanism of transesterification of the acyl donor and naringin through lipase is as
follows. First, serine as a nucleophile at the active site of lipase attacks the acyl donor to form
a tetrahedral intermediate. The latter attacks histidine, resulting in the formation of a by-
product. Next, the alcohol of naringin, as a nucleophile, attacks the intermediate, creating a
new tetrahedral intermediate. Thereafter, the product naringin acetate is produced by the
movement of electrons, and the active site of lipase returns to its original state. According
to the mechanism [20–22,60], the acyl donor reacts with the enzyme first and then naringin
reacts to form naringin acetate. If there is an excess of acyl donor, it will react more with
the active site of the enzyme to form an intermediate, which then reacts with naringin to
increase the conversion of naringin acetate. However, if an excessive amount of naringin is
present, it binds to the active site of lipase and competitively inhibits it, forming a dead-end
complex [14,60,61]. Chebil et al. had conducted experiments by varying the molar ratio of
vinyl acetate/quercetin to 5, 10, 20, and 40, and reported conversions of 55%, 88%, 96%,
and 96%, respectively [59]. As the ratio of vinyl acetate increased, the conversion rate also
increased, before finally saturating. Due to the excess vinyl acetate, the molar ratio of the
substrate was considered to affect the thermodynamic shift of equilibrium.

When the molar ratio of naringin to acyl donors was 1:5 or lower (1:7, 1:9, and 1:11),
according to the increasing concentration of the acyl donor, the conversion was greater
with vinyl acetate than with acetic anhydride. When acetic anhydride reacts with naringin,
acetic acid is produced as a by-product. Since acetic acid is a strong acid, it can act as an
inhibitor of enzyme activity, causing dead-end inhibition, and can inactivate enzymes by
acidifying the micro-aqueous layer of the enzyme [49]. In the presence of excess acetic
anhydride, acetic acid production was increased as a by-product. Beyond the molar ratio
of 1:5, acetic anhydride appeared to have a lower conversion than vinyl acetate owing to
the formation of acetic acid.

In an enzymatic reaction, temperature is a vital factor, influencing the activity and
denaturation of the enzyme as well as the substrate solubility. As the temperature rises,
collisions between enzymes and substrate molecules increase, which increase the reaction
rate. In addition, as the reaction temperature increases, the viscosity of the solution
decreases, and the solubility of the substrate and product increases [20–22,62,63]. However,
at very high temperatures, the non-covalent bonds that stabilize the three-dimensional
structure of the protein may be weakened, and the activity of the enzyme may be lost [56,64].

Our experiments were conducted at 30, 40, 50, and 60 ◦C using 3 g/L Lipozyme TL
IM with tert-amyl alcohol under the determined molar ratio (1:5) for 48 h. We aimed to
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determine the effect of the reaction’s temperature on the production of naringin acetate; the
results with acetic anhydride showed conversions of 81.25% at 30 ◦C and 86.63%, 87.13%,
and 87.68% at 40, 50, and 60 ◦C, respectively, which was a slight difference. The conversions
rate obtained with vinyl acetate were 90.03%, 94.47%, 94.65%, and 94.40%, respectively,
similar to that with acetic anhydride (Figure 5b).

Based on the above results, the change in conversion was large when the temperature
was increased from 30 ◦C to 40 ◦C, with only minimal changes observed thereafter. There-
fore, the solubility of the substrate had the greatest influence on this reaction. Qian et al.
investigated the effect of temperature in the range of 40–60 ◦C on the synthesis of isoorientin
ester using free Candida rugosa lipase [65]. The conversion was observed to increase rapidly
at 50 ◦C, with the maximum conversion of 62.6% obtained at 60 ◦C, and decrease sharply
thereafter to 31% at 65 ◦C. They reported the solubility of isoorientin in the reaction system
to increase with increased temperature. Khor et al. investigated the effect of the reaction’s
temperature on biodiesel synthesis using Lipozyme TL IM [64]. Similar to our current
findings, the reaction rate was reported to be increased when the temperature increased
from 30 to 40 ◦C, and the optimum reaction temperature was 40 ◦C [14,64].

3.6. Effect of Solvent on the Conversion of Naringin Acetate

The use of organic solvents in the reaction medium shifts the thermodynamic equilib-
rium such that it favors ester synthesis over hydrolysis. In addition, most organic solvents
have a lower boiling point than aqueous media, and hence are readily removed, being
advantageous in the separation and purification processes [15,20–22]. This study used
an organic solvent as the reaction medium to induce ester synthesis. Organic solvents
affect the activity, stability, and denaturation of the enzyme. They also affect the solubil-
ity, regioselectivity, and stereoselectivity of the substrate. Therefore, the conversion of
naringin acetate depending on the type of organic solvent was next evaluated. Lipase is
known to exhibit a high activity and stability in hydrophobic organic solvents. However,
hydrophobic solvents are not suitable for the synthesis of hydrophilic hydrocarbons or
sugar esters [66]. Therefore, relatively hydrophilic organic solvents, such as acetonitrile,
1,4-dioxane, acetone, THF, tert-butyl alcohol, tert-amyl alcohol, and 1,2-dichloroethane were
screened in this study.

When acetic anhydride was used as an acyl donor, the highest conversion was 98.51%
in acetonitrile. Acetone and THF showed similar conversions, of 98.37% and 98.20%,
whereas 1,2-dichloroethane showed the lowest conversion, of 18.03%.

When vinyl acetate was used as the acyl donor, the highest conversion was obtained
with acetonitrile (98.49%), followed by tert-amyl alcohol and tert-butyl alcohol (94.47% and
91.16%, respectively). Similar to acetic anhydride, 1,2-dichloroethane showed the lowest
conversion, of 37.32% (Table 4).

Table 4. Information on organic solvents and the corresponding conversion of naringin acetate.

Organic Solvent Log p Dielectric Constant Conversion (%) a Conversion (%) b

Acetonitrile −0.33 37.5 98.51 ± 0.01 98.49 ± 0.01

1,4-Dioxane −0.27 2.25 89.96 ± 0.19 78.36 ± 1.52

Acetone −0.16 20.7 98.37 ± 0.03 75.67 ± 0.04

THF 0.49 7.5 98.20 ± 0.02 88.30 ± 3.99

tert-Butyl alcohol 0.58 10.9 81.11 ± 0.46 91.16 ± 0.23

tert-Amyl alcohol 1.09 5.78 86.63 ± 0.27 94.47 ± 0.02

1,2-Dichloroethane 1.48 10.4 16.01 ± 2.85 37.32 ± 3.21

(a: 3 g/L of Lipozyme TL IM, acetic anhydride as the acyl donor, 1:5 molar ratio of naringin to acetic anhydride,
reaction temperature of 40 ◦C, and reaction time of 48 h; b: 3 g/L of Lipozyme TL IM, vinyl acetate as the acyl
donor, 1:5 molar ratio of naringin to vinyl acetate, reaction temperature of 40 ◦C, and reaction time of 48 h).
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Log p is the logarithm value of the partition coefficient between water and octanol,
representing the degree of hydrophobicity. The larger the log p value, the higher the
hydrophobicity. The log p value of naringin was −0.44, whereas those of acetic anhydride
and vinyl acetate were−0.27 and 0.73, respectively. The various reaction solvents examined,
along with their log p values, were: acetonitrile (−0.33), 1,4-dioxane (−0.27), acetone
(−0.16), THF (0.49), tert-butyl alcohol (0.58), tert-amyl alcohol (1.09), and 1,2-dichloroethane
(1.48). A log p value < 2 indicates a hydrophilic organic solvent, whereas a value ≥ 4
indicates a hydrophobic organic solvent [20–22,67]. The dielectric constant represents
solvent polarizability. In general, a high dielectric constant refers to polar solvents, while
a low dielectric constant refers to non-polar solvents. Based on the increasing dielectric
constant values, the reaction solvents could be arranged in the following order: 1,4-dioxane
(2.25), tert-amyl alcohol (5.78), THF (7.5), 1,2-dichloroethane (10.4), tert-butyl alcohol (10.9),
acetone (20.7), and acetonitrile (37.5).

In lipase-based reactions, such as biodiesel synthesis, hydrophobic solvents such as
hexane and toluene are used. However, naringin is a polar, hydrophilic material with a very
low log p value and does not dissolve in a hydrophobic solvent. Previous studies using
Novozym 435 had shown it to be stable in hydrophilic solvents, such as acetonitrile or
acetone [68]. From the results of the current study, Lipozyme TL IM was also confirmed to
be stable in a hydrophilic organic solvent. Milisavljevic et al. had reported a 54.65%, 28.98%,
and 15.72% conversion using acetonitrile, acetone, and tert-butyl alcohol, respectively,
in the synthesis of phloridzil oleate [68]. The use of isooctane and dodecane showed
very low conversions due to their low solubility in hydrophobic media. The current study
showed the highest conversion in acetonitrile and a remarkably low conversion in relatively
hydrophobic 1,2-dichloroethane. The solubility of naringin was low in 1,2-dichloroethane,
and the reaction did not occur in more hydrophobic solvents (hexane, toluene, etc.), as it
did not dissolve in these solvents. Hazarika et al. had investigated the influence of the
hydrophobicity, polarization rate, and water solubility of the solvent on the initial reaction
rate of the lipase reaction [69] and found less hydrophobic solvents, i.e., those with a low
log p value, to have a high initial reaction rate, as the substrate was more partitioned
between the active site of lipase and the solvent. In addition, the enzyme remained tighter
at a low dielectric constant than at a high dielectric constant. For the initial reaction rate, the
degree of hydrophobicity was judged as the most important factor, and the polar solvent
was found to be a good reaction solvent in the transesterification reaction. The optimal
solvent selected in this study was acetonitrile, with a very low log p value of −0.33 and a
high dielectric constant of 37.5, making it a polar, hydrophilic solvent.

The conversion with respect to reaction time was investigated under the optimal
conditions obtained through the OFAT method described above (Figure 6). The reaction
was completed within 8 h when acetic anhydride was used, and within 24 h when vinyl
acetate was used; each conversion was 98.51% and 97.54%, respectively. When acetic
anhydride was used, the reaction appeared to be faster, since two reactions could occur. In a
previous study by Romero et al., the synthesis of isoamyl acetate was confirmed to be faster
with acetic anhydride than with any other acyl donor [49]. Previous studies on the synthesis
of flavonoid esters required a long reaction time of more than 96 h [6,10,26–28,37,68,70,71].
Comparing the previous studies with the current one, the reaction time was found to be
indeed shortened.

Table 5 summarizes the reaction conditions used in various studies to synthesize
naringin esters through the enzymatic reaction of naringin and various acyl donors. Large
amounts of enzyme and acyl donor were used in many studies, and a low conversion was
obtained after a long reaction time. In contrast, this study used a small amount of enzyme
(Lipozyme TL IM) and acyl donor (acetic anhydride or vinyl acetate) for the synthesis of
naringin ester, and a high conversion was obtained in a short reaction time.
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Figure 6. Conversion of naringin acetate as a function of reaction time (3 g/L of Lipozyme TL IM,
acetic anhydride or vinyl acetate as the acyl donor, 1:5 molar ratio of naringin to acyl donor, reaction
temperature of 40 ◦C, acetonitrile as the solvent, and reaction time of 48 h).

Table 5. Summary of reaction conditions for the synthesis of naringin esters by lipase.

Acyl Donor Enzyme Enzyme Conc., Molar Ratio Solvent Reaction Conversion Ref.

(Naringin: Acyl Donor)

Vinyl acetate Whole-cell catalyst Whole-cell 50 mg/mL, 1:50 Organic solvent 50 ◦C, 96 h 41.03%, [10]

Vinyl octanoate Aspergillus oryzae 91.40%

Vinyl butyrate Novozym 435 Enzyme 80 g/L, 1:10 Acetone 60 ◦C, 144 h 90% [12]

Oleic acid Lipozyme TL IM Enzyme 10 g/L, 1:20 Acetonitrile 40 ◦C, 48 h 93.10% [14]

40 ◦C, 24 h 92.17%

Coconut oil Novozym 435 Enzyme 5 g/L, 1:6 Acetonitrile 65 ◦C, 90 h 75.43%, [25]

Linseed oil 76.70%,

Sunflower oil 85.08%

Ricinoleic acid Novozym 435 Enzyme 20 g/L, 1:3 Acetone 50 ◦C, 120 h 33% [26]

Oleic acid Novozym 435 Enzyme 15 g/L, 1:4 Acetone: tert-amyl
alcohol (2:1) 50 ◦C, 96 h 78.4%, [27]

Linoleic acid 77.6%,

Linolenic acid 86.6%

Lauric acid Novozym 435 Enzyme 12 g/L, 1:5 Acetone 45 ◦C, 96 h 80–90% [28]

Oleic acid

Linolenic acid

Vinyl laurate Novozym 435 Enzyme 17 g/L, 1:10 Acetonitrile 50 ◦C, 8 h 50% [29]

Acetic anhydride Lipozyme TL IM Enzyme 3 g/L, 1:5 Acetonitrile 40 ◦C, 8 h 98.51% This study

Vinyl acetate Lipozyme TL IM Enzyme 3 g/L, 1:5 Acetonitrile 40 ◦C, 24 h 97.54% This study

Based on the selection of major variables and the determination of optimal conditions,
a significant conversion of approximately 98% of naringin acetate was achieved, starting
from a conversion of less than 30%. In particular, when acetic anhydride is used as the acyl
donor, the reaction time can be significantly shortened to within 8 h, and it can be confirmed
that the conversion is at the highest level compared to previous reports. Naringin esters
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with improved bioavailability through acylation have a high potential in various fields such
as food, cosmetics, and pharmaceuticals, but there are barriers to industrial applications
due to a low conversion and a long reaction time. The improved enzymatic conversion
and reaction time obtained through the conditions used in this study will contribute to the
commercialization of naringin acetate. In the future, the evaluation of enzyme reuse based
on stability will be performed under the determined reaction conditions, and it is expected
that a completed enzymatic conversion process will be derived.

4. Conclusions

This study aimed to improve the enzymatic conversion of naringin acetate by screening
important variables and determining the optimal reaction conditions. Under optimal
conditions, the maximum conversions from acetic anhydride and vinyl acetate were found
to be 98.5% (8 h) and 97.5% (24 h), respectively. The use of acetic anhydride as an acyl
donor and Lipozyme TL IM as a biocatalyst was first attempted in the study of naringin
acetate. Compared with the previous study, a high conversion rate could be achieved in
a relatively short reaction time through the optimization of important variables. These
results could potentially contribute to the economical and efficient synthesis of flavonoid
esters using enzymes.
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