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Abstract
We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor 
imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values 
and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20  
healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed 
that fractional anisotropy values decreased and gray matter volumes  were reduced in the genu and splenium of corpus callosum, left an-
terior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal 
fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe 
(superior frontal, middle frontal, precentral, and orbital gyri), right parietal lobe (postcentral and inferior parietal gyri), right temporal lobe 
(caudate nucleus), right occipital lobe (middle occipital gyrus), right insula, right parahippocampal gyrus, and left cingulate gyrus. The 
voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient 
group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray 
matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray 
matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.
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white matter; fractional anisotropy; brain atrophy; neural regeneration

Graphical Abstract

Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis (MS) patients

Introduction
Multiple sclerosis (MS) is a demyelination disease affecting 
the central nervous system, and typically characterized by 
motor and sensory dysfunction and optic neuritis (Ge et al., 
2005; Filippi and Rocca, 2008). MS affects gray matter as 
well as white matter (Bø et al., 2003; De Stefano et al., 2003b; 
Kutzelnigg et al., 2005; Bö et al., 2007). Previous studies have 
shown that more severe gray matter atrophy is associated 
with higher clinical function scores for movement and sen-

sation and the lower cognition scores (Bermel and Bakshi, 
2006; Lanz et al., 2007; Giorgio et al., 2008). 

Voxel-based morphometry (VBM) is an automated tech-
nique for assessing brain structural changes. It detects chang-
es in brain morphology caused by small lesions, quantifies 
changes in the volume and density of brain tissue (Ridgway 
et al., 2008), and is a useful tool in the study of cognitive 
functioning (Chu et al., 2010) and mental illness (Seok et al., 
2007). 
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Tract-based spatial statistics (TBSS) is a fully automated 
method used to quantify the extent of changes of white 
matter diffusion tensor images (Snook et al., 2007). In re-
cent years, TBSS has increasingly been used to study frac-
tional anisotropy (FA) changes in cerebral white matter 
in MS patients (Dineen et al., 2009; Giorgio et al., 2010). 
However, the combination of VBM and TBSS, and their 
relevance to the voxel size of atrophic gray matter and 
FA values in white matter association fibers, have seldom 
been studied. We investigated the value of using VBM 
to analyze gray matter, and the effects of morphological 
changes on brain structure in MS patients. We also in-
vestigated changes in white matter using diffusion tensor 
imaging (DTI), and explored the correlation between gray 
matter lesions and white matter fiber injury using 3.0 Tesla 
(3.0T) magnetic resonance imaging (MRI), DTI, and TBSS 
post-processing. 

Subjects and Methods
Subjects
Twenty patients (4 males, 16 females, aged 33–52 years) with 
relapsing-remitting multiple sclerosis (RRMS) were recruit-
ed from the out-patient clinic and wards of the First De-
partment of Neurology, China-Japan Union Hospital of Jilin 
University in Changchun, China between September 2013 
and September 2015. Twenty age-matched healthy medical 
staff (8 males, 12 females), with no history of neurologic dis-
orders and normal neurologic examinations, volunteered as 
the control group. 

Inclusion criteria: Patients presenting with all of the fol-
lowing were considered for study inclusion (1) age 33–52 
years; (2) brain 3.0T MRI performed at China-Japan Union 
Hospital; (3) having completed the Expanded Disability Sta-
tus Scale (Kurtzke, 1983) evaluation (4) RRMS diagnosed 
according to the 2010 revision of McDonald’s diagnostic cri-
teria (Polman et al., 2011). 

Exclusion criteria: Patients with one or two of the follow-
ing conditions were excluded from this study (1) severe dis-
eases (significant psychiatric and/or neurologic disease); (2) 
more than 52 years old. 

The study was approved by the ethics committee of Chi-
na-Japan Union Hospital of Jilin University (Approval num-
ber: 201702202), and written informed consent was obtained 
from all subjects. There were no significant differences in age 
(P = 0.746) or gender (P = 0.433) between the patient and 
control groups (Table 1). This research followed internation-
al and national guidelines and was conducted in accordance 
with the Declaration of Helsinki and the relevant set of ethi-
cal principles.

Image data acquisition
MRI was conducted in all subjects using a superconducting 
3.0T MRI system with 12-channel head/neck coil (Siemens, 
Erlangen, Germany) at a field strength of 45 mT/m, followed 
by DTI. The MRI T2 fluid attenuated inversion recovery im-
aging parameters were: repetition time, 8,000 ms; echo time, 
80 ms; field-of-view, 230 × 230 mm2; matrix, 256 × 320; slice 
thickness, 5 mm. DTI used axial scanning with a plane par-
allel to the line connecting the anterior and posterior com-
missures with the following imaging parameters: field-of-
view, 230 × 230 mm2; matrix, 128 × 128; 25-layer continuous 
scan; layer spacing, 0; slice thickness, 4 mm; echo time, 80 
ms; repetition time, 3,700 ms. DTI parameters: b-value 1: 0 
s/mm2, b-value 2: 1,000 s/mm2; number of diffusion gradient 
directions: 20; number of signal acquisitions: b-value 1: 12, 
b-value 2: 3; voxel size: 1.7 × 1.7 × 4.0 mm3. 

Image processing and analysis
TBSS data were collected by direct conversion from DTI data 
by using the Panda Matlab software (The MathWorks, Inc., 
Natick, MA, USA, http://www.mathworks.com/products/
matlab) toolbox to classify and analyze DTI data aspects of 
data set, and voxel and fiber bundle tracing, simultaneously 
constructing a brain network (Cui et al., 2013). Scanning 
data were entered into personal workstation which was 
supplied by the Department of Radiology of China Union 
Hospital, Jilin University, China. Digital Imaging and Com-
munications in Medicine (DICOM) files were categorized 
using SPIN software (obtained from http://www.swi-mri.
com/index.html.). The DTI folder was extracted separately 
and the data processed with magnetic resonance image con-
version (MRIcroN) software (http://www.mccauslandcenter.
sc.edu/mricro/mri). The converted images underwent eddy 
current and head movement correction. After the removal 
of scalp and bone tissue data, a brain mask was obtained, 
and the FA value obtained using DTI fractional intensity 
threshold (DTIFit) and DTIFit function. The FA backbone of 
each subject was generated by TBSS in the FMRIB software 
library (FSL) (www.fmrib.ox.ac.uk/fsl). TBSS procedures: 
(i) tbss_1_preproc, (ii) tbss_2_reg-T, (iii) tbss_3_prostreg-S, 
and (iv) tbss_4_prestats (Figure 1). 

DICOM files were categorized using SPIN software and 
the resulting T1 file, selected. Data were preprocessed using 
MRIcroN. Original DICOM images were converted into 
statistical parametric mapping, (SPM5; http://www.fil.ion.
ucl.ac.uk/spm/software/spm5/) format. Image segmentation 
and normalization were conducted using the VBM5 (http://
dbm.neuro.uni-jena.de/vbm5/) tool for SPM5 to obtain ad-
justed and unadjusted images of gray matter, white matter, 
and cerebrospinal fluid. Finally, Gaussian smoothing was 
performed in adjusted gray matter images. 

Statistical analysis 
Data such as ages and FA values were expressed as the mean 
± SD, and analyzed with SPSS 17.0 software (SPSS, Chicago, 
IL, USA). The inter-group age difference was assessed using 
an independent two-sample t-test. The sex ratio between the 

Table 1 Demographic information of multiple sclerosis patients and 
healthy controls

Patient group Control group t/χ2 P

Age (mean ± SD, year) 40.3±11.0 38.4±11.2 0.382 0.655
Gender (male/female, n) 4/16 8/12 0.915 0.433
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patient and control groups was compared using chi-square 
test. Using the Randomization Statistics Tool of FSL, FA 
white matter values were compared between the two groups 
with randomized permutation tests. The number of random 
permutations was set to 5,000 times. Threshold-free cluster 
enhancement was used to correct class I errors. A value of P < 
0.05 was considered statistically significant. Specific formula 
can be seen on http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise, 
where the number of permutations 5,000 is –n 5,000, and 
threshold-free cluster enhancement is –T2. The average skele-
ton diagram generated by TBSS was registered to standard FA 
images with the FSLView tool of FSL (Figure 1) to produce 
statistically significant pseudo-color images (Figure 2). The 
areas with statistical differences were identified and recorded 
in standard brain space, formulated by the Montreal Neuro-
logical Institute (MNI; McGill University, Montreal, Canada). 

Using the statistical tools of SPM, data were analyzed 
with two-sample t-tests, with a significance threshold of P 
< 0.05 (False discovery rate corrected). More than 10 voxel 
sets were considered statistically significant. The slices of the 
generated images were observed with SPM. The results were 
rendered on a 3D brain surface map (Figure 3) and observed 
with xjView, a viewing tool for SPM. The corresponding po-
sitions and brain regions were identified according to MNI 
brain space (Figure 4). 

In the patient group, a normality test using SPSS 17.0 was 
used to determine whether the FA values and voxel sizes of 
atrophic gray matter were normally distributed. Pearson’s 
correlation was used to analyze the correlation between FA 
values and changes in gray matter volume. 

Results
TBSS analysis
FA values in the white matter fiber bundle, genu and spleni-
um of the corpus callosum, left anterior thalamic radiation, 
left cingulate gyrus, left hippocampus, left inferior longitu-
dinal fasciculus, left uncinate fasciculus, right corticospinal 
tract, right cingulate gyrus, and right inferior longitudinal 
fasciculus were significantly lower in the patient group than 
in the control group (P < 0.05 or P < 0.01; Table 2, Figure 2). 

VBM analysis
Gray matter volumes were significantly different between 
the patient and control groups, were decreased in the right 
frontal lobe (superior frontal, middle frontal, precentral, and 
orbital gyri), right parietal lobe (postcentral and inferior 
parietal gyri), right temporal lobe (caudate nucleus), right 
occipital lobe (middle occipital gyrus), right insula, right 
parahippocampal gyrus, and left cingulate gyrus of MS pa-
tients (P < 0.05; Table 3, Figure 4). 

Correlation between white and gray matter atrophy FA 
values in MS patients 
The voxel sizes of atrophic gray matter positively correlated 
with FA values in the white matter association fibers of MS 
patients (r = 0.659, P < 0.05; Table 4). 

Discussion
DTI is a reliable method for investigating fiber connectivity in 
the brain (Qiu et al., 2006; Duong and Watts, 2016; Wu et al., 
2016). White matter damage, damage to fiber bundle connec-

Table 2 Changes in mean white matter fractional anisotropy values between patient and control groups detected by magnetic resonance 
imaging

 Patient group Control group t P

Left
Anterior thalamic radiation 0.412±0.024 0.422±0.013 –3.628  0.000
Corticospinal tract 0.554±0.027 0.593±0.027 –3.584  0.029
Cingulate gyrus 0.433±0.061 0.475±0.021 –2.236  0.000
Hippocampus 0.373±0.016 0.397±0.015 –2.374  0.008
Inferior occipitofrontal fasciculus 0.444±0.041 0.481±0.015 –2.169  0.031
Inferior longitudinal fasciculus 0.423±0.021 0.455±0.008 –2.093  0.000
Superior longitudinal fasciculus 0.407±0.022 0.432±0.016 –5.362  0.018
Uncinate fasciculus 0.430±0.034 0.458±0.020 –2.193  0.000
Temporal region of superior longitudinal fasciculus 0.527±0.048 0.498±0.023 –4.218  0.014

Right
Anterior thalamic radiation 0.401±0.018 0.411±0.019 –3.209  0.015
Corticospinal tract 0.552±0.022 0.574±0.025 –3.148  0.001
Cingulate gyrus 0.379±0.040 0.429±0.028 –3.211  0.000
Hippocampus 0.336±0.021 0.379±0.025 –4.635  0.023
Inferior occipitofrontal fasciculus 0.437±0.034 0.469±0.007 –2.167  0.012
Inferior longitudinal fasciculus 0.414±0.029 0.439±0.013 –3.473  0.000
Superior longitudinal fasciculus 0.411±0.029 0.434±0.016 –2.097  0.033
Uncinate fasciculus 0.457±0.030 0.495±0.030 –4.285  0.028
Temporal region of superior longitudinal fasciculus 0.501±0.050 0.522±0.028 –3.549  0.023
Genu of corpus callosum 0.538±0.032 0.541±0.008 –3.288  0.003
Splenium of corpus callosum 0.576±0.053 0.621±0.013 –3.258  0.000

Data are expressed as the mean ± SD, and analyzed using independent two-sample t-tests.
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tions, and interference of signal transmission between neurons 
causes gray matter functional abnormalities in the relevant re-
gions, thereby resulting in neurological dysfunction (Frisoni et 
al., 2007; Kennedy and Raz, 2009). With the development of 
nuclear magnetic technology, DTI can fully reveal the distri-
bution of fiber bundles in the brain and the degree of tissue 
structure connectivity: It is currently the only non-invasive 
examination technique able to do this (Yu et al., 2006). 

TBSS is a DTI analysis program in the FSL software pack-
age. TBSS is an extensively used post-processing software 
used to analyze DTI in development and degeneration, 
multiple sclerosis, schizophrenia, mild cognitive impair-
ment, epilepsy, drug monitoring, and neonatal disorders 
(Zhang and Chen, 2008; Yin and Jiang, 2011; Asaf et al., 
2015). Qiu et al. (2008) used TBSS in 75 healthy people to 
reveal that FA values increase, but mean diffusivity values 
decrease, in the white matter of the right temporal, frontal 
and parietal lobes, and the cerebellum from late childhood 

Figure 1 FA images registered to FMRIB58-FA in the white matter of multiple sclerosis patients and controls through diffusion tensor 
imaging data.
Red line is the average FA value of the whole brain fiber skeleton. R: Right; FA: fractional anisotropy.

Figure 2 TBSS results of FA between multiple sclerosis patients and controls.
The four images that were different randomly selected sections of the brain reveal a decrease in the FA values at different levels of the brain. Red is the 
average FA value of the whole brain fiber skeleton. Blue is the area with decreased mean FA values in the patient group. TBSS: Tract-based spatial sta-
tistics; FA: fractional anisotropy. 

Figure 3 Three-dimensional brain surface after voxel-based 
morphometry analysis.
The green arrows indicate the red area with reduced gray matter in mul-
tiple sclerosis patients. 
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Figure 4 Gray volume reduction of the map parameters through voxel-based morphometry analysis.
The green arrow indicates the red and yellow areas of significantly decreased gray matter volume in multiple sclerosis patients. 

Table 3 Distribution of decreased gray matter volume between patient and control groups detected by magnetic resonance imaging

 

Voxel (mm3) t value Z value 

MNI coordinate (mm)

X Y Z

Right parahippocampal gyrus 1,213 10.88 5.89 40 51 –3
Right caudate nucleus 428 9.96 4.45 39 –37 0
Right middle occipital gyrus 349 9.64 4.39 44 –82 8
Right middle frontal gyrus 338 10.82 4.58 12 65 –29
Right superior frontal gyrus 39 10.23 4.49 19 72 –20
Right insula 2,709 9.72 4.41 48 2 –9
Right precentral gyrus 1,208 7.93 4.07 51 –5 4
Right inferior parietal gyrus 228 6.91 3.84 59 –23 33
Right orbital gyrus 127 9.03 4.29 18 –44 38
Left cingulate gyrus 112 8.25 4.14 –2 10 21
Right postcentral gyrus 483 7.71 4.03 60 –10 55

MNI: Montreal Neurological Institute. 

to early adulthood. In this study, TBSS data were collected 
by direct conversion from DTI data using PandA (Cui et 
al., 2013). 

Our results show decreases in FA values in the white mat-
ter of MS patients. This indicates that white matter is exten-
sively affected in MS patients, which is consistent with other 
studies (Giorgio and De Stefano, 2016; Chen et al., 2017; 
Keser et al., 2017). Raz et al. (2010) combined VBM and 
TBSS for clinically isolated syndrome, which was the first 

attack of MS patients, and their results confirmed that FA 
values were reduced in fiber bundles of the patient group, es-
pecially in the corpus callosum, corticospinal tract, superior 
longitudinal fasciculus, and inferior longitudinal fasciculus. 
Using DTI, Ceccarelli et al. (2009) showed that FA values in 
the basal ganglia are significantly lower in MS patients than 
in controls. Liu et al. (2012) demonstrated using TBSS that 
FA values diminish, but radial diffusivity values increase, in 
many brain regions in RRMS patients. Axial diffusivity val-
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ues increased mainly in the inferior frontal gyrus, periven-
tricular white matter, external capsule, and inferior temporal 
lobe. Shen et al. (2014) showed that depression was strongly 
correlated with FA values in the right posterior cingulate 
gyrus of 15 RRMS patients by combining TBSS and func-
tional MRI with Hamilton Depression Scale ratings. Our 
quantitative analysis showed that by using TBSS, FA val-
ues can be observed as reduced in the corticospinal tract. 
This is possibly because some small lesions that cannot be 
detected by conventional MRI, such as normal appearing 
white matter on the brainstem fiber bundles, lead to axonal 
structure damage and demyelination. Using DTI Banaszek 
et al. (2015) assessed the impairment of selected white 
matter tracts within normal appearing white matter in MS 
patients. They found a significant decrease in FA in the 
inferior longitudinal fasciculi and inferior frontooccipital 
fascicule of MS patients. Our results reveal that FA values 
decrease in the bilateral uncinate fasciculus and inferior 
longitudinal fasciculus, suggesting fiber bundle demyelin-
ation and compromised myelin integrity. In this study, FA 
values diminished in the corpus callosum fiber bundles, 
which may be associated with the high vulnerability of the 
corpus callosum, corpus callosum demyelination, axon rup-
ture, and Wallerian degeneration on distal axons. FA values 
decreased in the left anterior thalamic radiations, suggest-
ing destruction of axonal integrity. This is probably induced 
by focus-caused local white matter edema. Structures such 
as the hippocampus, parahippocampal gyrus, cingulate gy-
rus, and insula contain a large number of cortex to cortex 
fibers, and are widely linked to the frontal, parietal, and 
temporal lobe cortices (Charil et al., 2007). Areas of highly 
intertwined fibers appear to be more vulnerable to degenera-
tion induced by white matter lesions.

VBM is a neuroimaging analysis technique that, at voxel 
level, can quantify the volume and density of gray matter 
and white matter, for analysis of morphological changes 
(Mehta et al., 2003; Liang et al., 2016). VBM is characterized 
by an automated, small subjective effect and high repetition 
rate. Our results verified that gray matter atrophy exists in 
many regions, to different degrees, in RRMS patients, and 
is possibly associated with demyelination, axonal loss, and 
peripheral neuroglia atrophy. This is consistent with previous 

reports (Sailer et al., 2003; Ceccarelli et al., 2008; Calabrese et 
al., 2010; Duan et al., 2012). De Stefano et al. (2003a) suggest-
ed that axonal loss is the most important factor. Prinster et 
al. (2010) reported that gray matter atrophy is visible in the 
bilateral temporal lobe, insular lobe, internal capsule, corpus 
callosum, and thalamus of RRMS patients. Battaglini et al. 
(2009) found that the bilateral lateral frontal lobes and pari-
etal lobes show progressive atrophy in RRMS patients. Our 
findings suggest that atrophy is obvious in the right frontal 
lobe (superior frontal, middle frontal, precentral, and orbital 
gyri), right parietal lobe (postcentral and inferior parietal 
gyri), right temporal lobe (caudate nucleus), right occipital 
lobe (middle occipital gyrus), right insula, right parahip-
pocampal gyrus, and left cingulate gyrus of RRMS patients, 
which is consistent with Audoin et al.’s (2010) results. The re-
sults of this study also demonstrate that atrophy is noticeable 
in the right insula, and the right parahippocampal and left 
cingulate gyri. Henry et al. (2009) reported a large number 
of cortical-cortical fibers in the cingulate gyrus, hippocam-
pus, parahippocampal gyrus, and insular lobe, as well as 
being extensively gathered in the gray matter of the frontal, 
parietal, and temporal lobes. 

The results of this study demonstrate that FA values are 
decreased in atrophic regions, indicating that white matter 
damage is associated with brain atrophy. Our analysis of the 
correlation between gray matter atrophy and white matter 
association fibers show that gray matter atrophy correlates 
with white matter fiber injury. That is, white matter lesions 
may lead to gray matter atrophy in MS patients. The mecha-
nism for this may be that when white matter undergoes my-
elin sheath injury and axonotmesis, its neurotrophic effects 
on gray matter are suppressed, thereby resulting in gray mat-
ter atrophy. Miyata et al. (2009) used VBM and TBSS to re-
veal extensive gray matter and subcortical nucleus atrophy in 
27 schizophrenia patients. They also showed that the degree 
of atrophy was strongly associated with decreased FA value. 
Wang et al. (2016) found that gray matter atrophy mainly 
presented in the bilateral frontal lobe, double-layer anterior 
cingulate gyrus, and left supplementary motor area. Berg-
sland et al. (2017) assessed high-pass filtered phase values in 
the deep gray matter and normal appearing white matter in-
tegrity in associated fiber tracts. They found that MS patients 

Table 4 Correlation between voxel sizes of atrophic gray matter and FA values in the white matter association fibers of multiple sclerosis 
patients

Patient group Numerical value

Right middle occipital gyrus, middle frontal gyrus, superior frontal gyrus, inferior parietal gyrus, orbital gyri, postcentral 
gyrus

349, 338, 39, 228, 
127, 483

Postcentral gyrus, association fibers (cingulate gyrus, inferior occipitofrontal fasciculus, inferior longitudinal fasciculus, 
superior longitudinal fasciculus, uncinate fasciculus, temporal region of superior longitudinal fasciculus) FA value

0.379, 0.437, 0.414, 
0.411, 0.457, 0.501

r 0.659
P 0.038

The data on the first line are the mean voxel sizes of the atrophic gray matter in multiple sclerosis patients. The data on the second line are the mean 
FA values in the white matter association fibers in multiple sclerosis patients. Pearson’s correlation was used to analyze the correlation between FA 
values and changes in gray matter volume. 
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have decreased DTI-derived measures of tissue integrity in 
the associated white matter tracts and that axial and radial 
diffusivities were associated with increased iron levels in 
gray matter areas. We mainly investigated association fibers 
as the variables of the correlation analysis because: (1) ac-
cording to their anatomical characteristics, association fibers 
are associated with all gray matter brain regions; there has 
the common character of association fibers when analyzing 
the problem; (2) the decreased white matter FA values mea-
sured in this study and the association fibers accounted for 
the majority are meaningful. 

In conclusion, the combined use of TBSS and VBM found 
obvious gray matter atrophy and white matter fiber bundle 
damage in RRMS patients. TBSS and VBM are effective for 
the analysis of white matter and gray matter, successfully 
identifying the characteristics of these in MS patients. This 
allows better understanding of the changes and significance 
of FA values in MS patients with white matter injury, as re-
vealed by DTI. This also improves our understanding of the 
location and extent of gray matter atrophy in MS patients, to 
provide greater diagnostic options and treatments. In future 
studies, the sample size should be expanded, and we should 
study the changes of white matter and gray matter in differ-
ent types of the MS patients, such as changes between RRMS 
and secondary progressive MS. Functional MRI can be used 
to investigate brain functional networks, and the correlation 
between these and neurological function scores and cogni-
tive dysfunction, to establish the relationship between brain 
functional network and structure changes. 
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