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Bioluminescence tomography (BLT) is a molecular imaging modality which can three-dimensionally resolve the molecular
processes in small animals in vivo. The ill-posedness nature of BLT problem makes its reconstruction bears nonunique solution and
is sensitive to noise. In this paper, we proposed a sparse BLT reconstruction algorithm based on semigreedy method. To reduce the
ill-posedness and computational cost, the optimal permissible source region was automatically chosen by using an iterative search
tree. The proposed method obtained fast and stable source reconstruction from the whole body and imposed constraint without
using a regularization penalty term. Numerical simulations on a mouse atlas, and in vivo mouse experiments were conducted to
validate the effectiveness and potential of the method.

1. Introduction

Due to its ability of monitoring physiological and patho-
logical activities at the molecular level, small animal optical
molecular imaging has become an important method for
biomedical research. Bioluminescence imaging, as one of
optical molecular imaging modalities, has attracted atten-
tion for its advantages in sensitivity, specificity, and cost
effectiveness in cancer research and drug development [1–
3]. Compared with planar bioluminescent imaging, BLT can
three-dimensionally reconstruct the bioluminescent probes
in small animals [4].

The generic BLT model is ill-posed. However, it has
been theoretically proven that the solution uniqueness
can be established under practical constraints using a
priori knowledge [5]. In most existing reconstructions,
multi spectral measurement [6–10], permissible source
region (PSR) [9–12], and sparse reconstruction [13–15]
are three common strategies to reduce ill posedness of BLT.
Although multi spectral techniques improve reconstruction

qualities to a certain degree by increasing the measurable
data, they in turn impose some limitations in practical
applications such as increased signal acquisition time and a
high computational cost [16]. Besides, the PSR strategy can
significantly improve the location accuracy of reconstructed
source and reduce the computational cost by limiting
the reconstruction region into a small area. However, in
practical applications, both the size and position of the
permissible region have significant impact on imaging
results [5]. Additionally, since the bioluminescent source
distribution is usually sparse in practical applications and
only insufficient boundary measurements are available, the
compressed sensing can bring benefits in spatial resolution
and algorithm stability to BLT reconstruction. Recently,
many sparse reconstruction methods have emerged in
BLT [17–19]. The majority of them reformulate the BLT
inverse problem into minimizing an objective functions
that integrate a sparse regularization term with a quadratic
error term and solve it via computationally tractable convex
optimization methods, such as linear programming and
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Table 1: Optical parameters for each organ in the mouse atlas [34].

Muscle Heart Lungs Liver Spleen Bone

μa (mm−1) 0.032 0.022 0.071 0.128 0.075 0.002

μ′s (mm−1) 0.586 1.129 2.305 0.646 2.178 0.935

gradient methods, However, the efficacy of the sparse
regularization methods strongly depends on the choice of
regularization parameter in practical applications [19].

The existing works have demonstrated that PSR can
improve reconstruction qualities by reducing the number
of unknown variables. Although the meaningful results
can be obtained by using the PSR that is based on the
bioluminescent signals and a priori knowledge available
from a specific biomedical application [4, 11, 12], in most
cases, it is rather difficultly to manually select such a small
and appropriate region. Recently, some optimal permissible
source region methods have emerged in BLT. Feng et al.
presented a reconstruction algorithm for a spectrally resolved
BLT based on an adaptive rough estimate of an optimal per-
missible source region and multilevel finite element method
approach (FEM), where Tikhonov regularization was used
to solve the constrained BLT inverse problem [9]. Naser
and Patterson proposed a two-step reconstruction algorithm
of bioluminescence, in which the permissible regions were
shrunk by using an iterative minimization solution based on
the L1 norm [10]. These works demonstrated the feasibility
and potential of the optimal PSR techniques with numerical
simulation. However, both of two previous reconstructions
also needed the regularization methods to reconstruct the
sources in the allowed region, which made the reconstruction
results also depend on the choice of regularization parameter.
Furthermore, they were demonstrated with only regular
phantoms simulations and presented no in vivo experiment
validation.

In this work, a novel BLT reconstruction algorithm based
on the semi greedy method was proposed. The optimal
PSR problem was cast into a search for the correct support
of source distribution among a number of dynamically
evolving candidate subsets, and the optimal PSR was chosen
automatically by using an iterative search tree. Therefore,
the columns of the system matrix were treated as the nodes
for building up the search tree where each path from the
root to a leaf node denoted a candidate. The search tree was
initialized with some unspecific nodes. At each iteration, new
nodes were appended to the most promising path, which
were selected to minimize the cost function based on the
residue. The permissible source region was expended by
adding nodes with high a probability to contribute to the
source. Among the system matrix, the columns that were
corresponding to the nodes contained in the most promising
path were selected to obtain the source distribution. By
automatically choosing an optimal PSR, the method reduced
the ill posedness of the problem and imposed constraint
without using a regularization penalty term.

This paper is organized as follows. In Section 2, the
forward photon propagation model, the inverse problem for
BLT with FEM, and the proposed algorithm are introduced.

In Section 3, the numerical simulations in a mouse atlas
demonstrate the performance of the proposed method. In
Section 4, an in vivo mouse experiment is conducted to
further evaluate its reliability. Finally, we discuss the results
and conclude this paper.

2. Method

Light propagation in biological media is essentially the
transport of radiant energy. The radiative transfer equation
(RTE) can rigorously describe light transport in turbid media
[20]. Compared with the other approximations of RTE
such as simple spherical harmonics, spherical harmonics
and discrete ordinates, the following steady-state diffusion
approximate equation (DA) in (1) is the most popular one
as a result of its moderate computational efficiency and
explicit physical meaning [4, 5, 11, 15, 21]. Assuming that
the bioluminescence imaging experiment is performed in
a totally dark environment and no photon travels into Ω
through the boundary ∂Ω, the equation is subject to the
Robin boundary condition in (2) as follows:

−∇ ·D(r)∇Φ(r) + μa(r)Φ(r) = S(r) (r ∈ Ω), (1)

Φ(r)+2A(r;n,n′)D(r)(v(r) · ∇Φ(r)) = 0 (r ∈ ∂Ω), (2)

where Ω is the domain of the problem, S(r) donates the
source energy distribution, Φ(r) represents the photo fluence
rate, μa(r) is the absorption coefficient, μ′s(r) is the reduced
scattering coefficient, D(r) = 1/3(μa(r) + μ′s(r)) indicates the
optical diffusion coefficient, ∂Ω donates the boundary of the
problem, and A(r,n,n′) represents the mismatch coefficient
between Ω and its surrounding medium. The measured
quantity on the boundary ∂Ω is given by the outgoing
radiation as follows:

Q(r) = −D(r)(v(r) · ∇Φ(r)) = Φ(r)
(2A(r;n,n))

(r ∈ ∂Ω).

(3)

FEM is a powerful tool for solving the DA equation [4, 6–
10]. By using FEM to discretely approach the solving domain
and making a series of transformations and rearrangements,
the linear relationship links the source distribution inside the
heterogeneous medium, and the photon fluence rate on the
surface is established as follows:

MΦ = FX , (4)

where X is the source distribution of the interior nodes,
Φ is the measurable photon flux photon on the boundary
nodes, M is the positive definite matrix, and F is the
source weight matrix. The nonmeasurable entries in Φ and
corresponding rows in M−1F can be removed. Then a new
linear relationship can be obtained as follows [4, 22]:

AX = Φm. (5)

For BLT, the domains of the bioluminescent sources
are usually very small and sparse compared with the entire
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Figure 1: Reconstruction model with a single source. (a) The torso of the mouse atlas model with one source in the liver. (b) The simulated
photon distribution on the surface.

reconstruction domain. That means that there are only fewer
nonzero components in X . Therefore, the system matrix
A can be seen as the dictionary, and Φm has a less-term
representation over the dictionary. As a consequence, the aim
of the proposed method is imposing the constraint on the
source space by choosing only the part that contributes to the
source distribution. In the language of sparse approximation,
greed pursuit algorithms are useful methods for solving
this problem [23, 24]. For instance, Orthogonal Matching
Pursuit (OMP) is to pick columns in a greedy fashion [25].
According to the introduction of OMP, the reconstruction
starts with an empty index set. At each iteration, we choose
the single column of A that is most strongly correlated with
the remaining part of Φm. Then, we subtract its contribution
to Φm and iterate on the residual. The reconstruction is
stopped after a number of iterations. Unfortunately, from
experimental results shown in Figure 2 and Table 2, we found
that OMP, as the single-path algorithm, could not achieve the
desired expectations for reconstructing the bioluminescent
source. In the experiments, when the computation of a single
path selects a wrong column, the correct one is still in the
set of candidate representations. Therefore, incorporation
of a multipath search strategy is motivated to improve
reconstruction. In this section, the semigreedy method was
used to search for the correct support ofΦm among a number
of dynamically evolving candidate subsets.

A general best first (GBF) is a search algorithm which
constructs a tree T by expanding the most promising node
chosen according to a specified rule. Search algorithm A∗,
as one of the most studied versions of GBF, can find
path in combinatorial search. It selects an optimal path by
minimizing an additive evaluation function f (n) = g(n) +
h(n), where g(n) is the cost of the currently evaluated path
from start node s to n, and h(n) is a heuristic estimate of
the cost of the path remaining between n and some goal
nodes [26–29]. In our problem, the A∗ search tree was
iteratively built up by nodes which represent the dictionary
atoms. Each path from the root to a leaf node denoted a
subset of dictionary atoms which was a candidate support

for Φm. Let us define the notation. Si and Ci denote the
atoms contained in path i and the vector of corresponding
coefficients obtained after orthogonal projection of the
residue onto the set of selected columns [25]. Similarly, sl

i
and

cl
i

represent the selected atom at the lth node on path Si and
corresponding coefficient.

The search tree starts with less unspecified nodes. A
simple way is selecting the I = N|500 nodes that have the
highest absolute inner product with Φm. In order to find
the fewest possible nodes, the search must constantly make
an evaluation to decide which available paths should be
expended next. Therefore, the evaluation function g(Sl) is
defined as follows:

g
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Beside the evaluation function, the auxiliary function is
also needed to assess the cost brought by adding a preferred
goal node to the path. Generally, according to the expectation
on average equal contribution of unopened nodes, the
auxiliary function can be built as follows:
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where coefficient t is defined as t = αN−l. α is a ratio between
the number of the nonzero entries and the zero entries in the
solution X . It is well known that the sparse solution has only
less nonzero entries. Therefore, in most practical application,
α is very smaller than 1. Here, we selected α = 0.005. If
the source distribution could be seen as the K-sparse signal,
Kcould be computed by K = �αN�. The cost function can be
written as follows:

f
(
Sli
)
=
∥∥∥rli
∥∥∥− β

(∥∥∥rl−1
i

∥∥∥−
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)
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where β is a constant. A lot of experiments for different
reconstruction models including 2D and 3D experiments
were performed to evaluate the impact of β on the
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Figure 2: Comparison of reconstruction results. (a), (b), (c) and (d) are the reconstruction results with OMP, FIST-L1 (with regularization
parameter set to be 4e-11), FIST-L1 (with regularization parameter set to be 4e-10), and the proposed method, respectively. The results are
shown in the form of isosurfaces for 40% of the maximum value (left column) and slice images in z = 47.29 mm plane (right column). The
small yellow sphere in the iso-surfaces view image and black circles in the slice images denote the real position of the bioluminescent source.

Table 2: Quantitative comparisons of the reconstruction results.

Method Recon. location center (mm) Location error (mm) Recon. time (s) Maximum recon. value (nW/mm3)

OMP (15.61, 32.92, 47.48) 2.9605 0.798 0.00412

FIST-L1(1) (18.26, 31.97, 47.28) 0.3995 16.94 0.01371

FIST-L1(2) (15.61, 32.92, 47.48) 2.9605 25.44 0.00414

The proposed method (18.26, 31.97, 47.28) 0.3995 12.20 0.01889
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source reconstruction. We found that better results could
be obtained when it varied in the interval [1.00, 1.25].
Therefore, in our experiments, its value was taken from the
interval and set to be1.05.

In practice, if all of the children of the most promising
partial path are added to the search tree at each iteration,
the tree might have too many search paths. Therefore, the
following pruning strategies are employed a guide on how
the tree grows.

The first one is about extensions per path. At each step,
it is not necessary to have all of the unopened atoms added
to the current optimal path. We can expand the search tree
only by the B children which have the highest absolute
inner-product with the residue to the selected path. This
pruning strategy decreases the upper bound to BK on the
number of paths. Practically, I and B are selected to be much
smaller than N , which can drastically decrease the paths
involved in the search. Although the number of extensions
per path is limited to B, it is also necessary to control the
size of path. That is because that adding new paths at each
iteration continues increasing required memory. Therefore,
to reduce memory requirements, we adopted the “beam
search” strategy [30] and limit the maximum number of
paths in the tree by the beam width P. When this limit
is exceeded, the paths with maximum cost are seen as the
worst paths and are removed from the tree until P paths
remain. Here, B and P were set to be 4 and 200, respectively.
Moreover, since order of nodes along a path is unimportant,
amalgamating the equivalent path is also important to
improve the search performance. For this purpose, we define
a path equivalency notion; Sl11 and Sl22 are two paths with
different length l1 < l2. If all atoms of Sl11 can be found in Sl22
and these composed the continuous subset of Sl22 , we define
the above two paths as being equivalent. Consequently, the
insertion of Sl22 into the tree is unnecessary.

After the growing of the search tree is finished, the linear
relationship between the observation Φm and the selected
PSR can be established as follows:

AoptX = Φm. (9)

Since the nodes contained in the optimal path can
be much smaller than the number of all nodes N , (9)
is an overdetermined linear equation. Therefore, a limited
memory variation of the Broyden Fletcher Goldfarb Shanno
(LBFGS) [31] was used to directly solve (9).

3. Simulation Studies in the Mouse Atlas

In this subsection, heterogeneous simulations were presented
to demonstrate the performance of the proposed method for
mouse applications. The experimental data were acquired
by a dual-modality BLT/micro-CT system developed in our
lab [32, 33]. By using image processing and interactive
segmentation technology, heterogeneous model including
heart, lungs, liver, bone, spleen, and muscle was built. The
optical coefficients for each organ are listed in Table 1 [34].
Here, the torso section with a height of 25 mm was selected
as the reconstruction region.

3.1. Reconstruction in a Single Source Case. In the exper-
iment, a spherical source with a 0.6 mm diameter was
placed in the liver with the center at (18.24 mm, 31.58 mm,
47.29 mm) as shown in Figure 1(a). The source was modeled
as isotropic point sources whose strength was set to be
2 nW/mm3. As for the forward problem, the FEM was used
to obtain the synthetic measurements on the boundary.
The atlas model was discretized into a tetrahedral-element
mesh with 30892 nodes and 167841 elements. The generated
simulated photon distribution on the boundary is presented
in Figure 1(b). Then the forward solutions were projected
onto a single coarse mesh consisting of 20068 elements and
3098 nodes, which was used for reconstructing the source.

To better illustrate the performance of the proposed
method, we compared the proposed method with OMP
[25] and FIST-L1 [35, 36]. The former is a typical greedy
pursuit method for sparse signal recovery. The latter, as a
sparse regularization method, can be viewed as a standard
approach to ill-posed linear inverse problems and has been
used in fluorescence molecular tomography (FMT) and
BLT. Here, the step size in FIST-L1 was computed by
using the estimation algorithm introduced in [35]. Since
the regularization parameter plays an important role in the
regularization methods, we performed two experiments with
different regularization parameters that were set to be 4e-
11 and 4e-10, respectively. All of the reconstructions were
carried out on a personal computer with 3.2 GHz Intel Core2
duo CPU and 2 GB RAM.

The qualities of the reconstruction were quantitatively
assessed in terms of location error and the maximum
reconstructed intensity. The location error was defined as
Euclidean distance between Sreal and Srecons, where Sreal and
Srecons were the real locations of the source center and the
location of the node with the maximum reconstructed value,
respectively. The visual effects of the reconstruction results
are presented in the form of slice images and iso-surfaces,
as shown in Figure 2. Additionally, the detailed information
about parameters and the final quantitative reconstruction
results are summarized in Table 2.

We found that the reconstructed positions by L1 reg-
ularization with an optimal regularization parameter and
the proposed method were identical. Specifically, the recon-
structed center was (18.26 mm, 31.97 mm, 47.28 mm) with a
location error of 0.3995 mm from the actual source, whereas
the location error by OMP was 2.9605 mm. The performance
of OMP was inferior to the other two methods. L1 regu-
larization performed well and obtained satisfactory source
localizations and maximum reconstruction value. However,
the selection of the regularization parameter had a great
impact on the reconstruction results. As for the proposed
method, it performed slightly better than L1 regularization
with manually optimized regularization parameter in terms
of maximum reconstruction value. Moreover, it was also an
efficient reconstruction method.

The above experiments were performed without noise.
In order to evaluate the sensitivity of the proposed method
to various noise levels, six cases were carried out where
the measurements were added to 5%, 10%, 15%, 20%,
25% and 30% Gaussian noise, respectively. We also made
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Figure 3: The proposed method for different noise levels of 0%, 5%, 10%, 15%, 20%, 25%, and 30%.

Table 3: Quantitative results in a single source case with different noise levels.

Method Noise level
Recon. location

center (mm)
Location error

(mm)
Recon. Time (s)

Maximum recon. value
(nW/mm3)

FIST-L1

5% (18.26, 31.97, 47.28) 0.3995 24.43 0.0122

10% (18.26, 31.97, 47.28) 0.3995 24.99 0.0085

15% (18.26, 31.97, 47.28) 0.3995 24.77 0.0050

20% (15.61, 32.92, 47.48) 2.9605 24.82 0.0032

25% (15.61, 32.92, 47.48) 2.9605 24.94 0.0025

30% (15.61, 32.92, 47.48) 2.9605 24.60 0.0023

The proposed method

5% (18.26, 31.97, 47.28) 0.3995 13.41 0.0192

10% (18.26, 31.97, 47.28) 0.3995 14.15 0.0234

15% (18.26, 31.97, 47.28) 0.3995 16.37 0.0204

20% (18.26, 31.97, 47.28) 0.3995 18.09 0.0223

25% (18.26, 31.97, 47.28) 0.3995 18.95 0.0116

30% (18.26, 31.97, 47.28) 0.3995 46.61 0.0054

0 0.007 0.0139 0.0208

Figure 4: Reconstruction results in double source case. The results are shown in the form of iso-surface for 40% of the maximum value (left
column) and slice image in z = 47.29 mm plane (right column). The small yellow sphere in the iso-surface view image and black circles in
the slice image denote the real position of the bioluminescent source.
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Table 4: Reconstruction results in double source case.

Source number Actual position (mm) Recon. location center (mm) Location error (mm) Maximum recon. value (nW/mm3)

1 (18.24, 31.58, 47.29) (18.26, 31.97, 47.28) 0.3995 0.0204

2 (18.74, 39.15, 47.06) (18.75, 39.20, 46.86) 0.2064 0.0208

0 0.007 0.0127 0.0222

Figure 5: Reconstruction results in multisource case. The results are shown in the form of iso-surface for 40% of the maximum value (left
column) and slice image in z = 47.29 mm plane (right column). The small yellow sphere in the iso-surface view image and black circles in
the slice image denote the real position of the bioluminescent source.

a comparison between the proposed method and FIST-L1
with the regularization parameter that was set to be 4e-11.
The reconstruction results under different noise levels are
compiled in Table 3 and Figure 3 showing that the proposed
method was robust to measurement noise.

3.2. Double Source Case and MultiSource Case. Dual source
setting was also considered in order to evaluate the proposed
method. Two sources have the same size as one used in
the single source case. Their strength and position were
set to be 2 nW/mm3 and (18.24 mm, 31.58 mm, 47.29 mm),
1 nW/mm3 and (18.74 mm, 39.15 mm, 47.06 mm), respec-
tively. The reconstruction results are shown in Figure 4 and
Table 4.

Multiple sources setting simulation experiment was also
presented to further demonstrate the ability of the proposed
method. Based on the setting in double source case, the third
source with the same size and shape was added. Its strength
and position were set to be 1.5 nW/mm3 and (23.60 mm,
37.94 mm, 47.45 mm). The final reconstruction results are
presented in Figure 5 and Table 5. The result of two group
experiments indicated that the sources can be accurately
distinguished by using the proposed method.

4. In Vivo Experiment Validation

Besides the numerical simulations with mouse atlas, an in
vivo experiment was carried out on a mouse to further test
the proposed method. The experiment was also performed
with a dual-modality BLT/micro-CT system developed in our
lab [32, 33, 37]. A nude hairless mouse (Nu/Nu, Laboratory
Animal Center, Peking University, China) was used in this
experiment. To simulate a known bioluminescent source, a
home-made cylindrical light source about 3 mm long and
1.5 mm in diameter was implanted into the abdomen of the
mouse in this experiment. The source was made of a catheter
filled with luminescent liquid and emitted a red luminescent

light that had a similar emission spectrum with a firefly
luciferase-based source.

Before the beginning of the experiment, the CCD
(VersArray, Princeton Instruments, Trenton, NJ, USA) was
cooled to 110◦ by using liquid nitrogen. The mouse was
anesthetized and placed in a mouse holder. The mouse
holder was set to rotate to 0◦, 90◦, 180◦ and 270◦. At each
of four positions, the mouse was photographed by the CCD
camera. After the optical data were acquired, the mouse was
scanned by using the micro-CT to obtain the anatomical
maps which could provide structural information for the
source reconstruction. Then the CT data were segmented
into five regions represent muscle, lungs, heart, liver, and
kidneys, respectively, as shown in Figure 6(a). The hetero-
geneous model including five tissues was discretized into the
mesh containing 11917 tetrahedral elements and 2557 nodes.
The optical parameters for different tissues were calculated
based on the literature as listed in Table 6 [34, 38]. The optical
data was registered with the volumetric mesh, and measured
data were mapped onto the surface of the mesh. The result of
mapped photon distribution is shown in Figure 6(b).

It took about 8 seconds to complete the reconstruction
using the proposed method. The final results are presented
in Figure 7, where the reconstruction source center is
(37.17 mm, 38.82 mm, and 20.92 mm) with a deviation
about 2 mm to the actual center. As can be seen in the
reconstruction results, the proposed methods could obtain
satisfactory bioluminescent source localizations.

5. Discussion and Conclusion

In this paper, we have proposed a new method based
on the semigreedy for bioluminescence tomography. The
reconstruction results of the simulations on a mouse atlas
demonstrate that the proposed reconstruction method is
able to accurately and stably localize bioluminescent source
from whole body, even with noisy measurements. The in vivo
experiment further shows its performance.
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Table 5: Reconstruction results in multiple source case.

Source number Actual position (mm) Recon. location center (mm) Location error (mm) Maximum recon. value (nW/mm3)

1 (18.24, 31.58, 47.29) (18.26, 31.97, 47.28) 0.3995 0.0195

2 (18.74, 39.15, 47.06) (18.75, 39.20, 46.86) 0.2064 0.0226

3 (23.60, 37.94, 47.45) (23.60, 37.97, 47.65) 0.2023 0.0300

X
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(a) (b)

Figure 6: In vivo heterogeneous model. (a) The torso of the model. (b) The mapped photon distribution on the mouse surface.

Table 6: Optical parameters for each organ in the heterogeneous
model [34, 38].

Muscle Heart Lungs Liver Kidneys

μa (mm−1) 0.008 0.138 0.456 0.829 0.150

μ′s (mm−1) 1.258 1.076 2.265 0.735 2.507

The PSR strategy can significantly improve reconstruc-
tion qualities. However, in most cases, empirically selecting
such small and appropriate region is unconvenient, even
available. In this study, The optimal PSR problem is cast
into a search for the correct support of source distribution
among a number of dynamically evolving candidate subsets.
In view of the characteristics in BLT sparse distribution, only
the columns that contribute to the source reconstruction
are chosen automatically by using semi-greedy method.
The constraint imposed on the source space reduces the ill
posedness of the problem and computational cost.

It is noted that in vivo experiment is not as accurate
as simulations. Some reasons can be explained for this
phenomenon. First of all, the error was generated, when
the energy distribution was mapped from 2D images to
a 3D mouse surface. Secondly, there were only five main
segmented tissues used to build a heterogeneous model while
others simply were regarded as the muscle, which also led to
errors. Finally, the accuracy of the photon propagation model
was very important for source reconstruction. The diffusion

approximation was used due to its moderate computational
efficiency and explicit physical meaning. However, it has
some limitations in certain regions, such as void or more
absorptive regions. Therefore, the error brought on by the
DA model is inevitable. As discussed above, our future
work will focus on studying more accurate forward models
to describe photon propagation in biological tissues and
improving the experimental procedures and imaging system
to further promote the reconstruction quality.
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