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Antigen glycosylation regulates efficacy of CAR
T cells targeting CD19
Amanda Heard 1,10, Jack H. Landmann1,10, Ava R. Hansen 2, Alkmini Papadopolou3, Yu-Sung Hsu1,

Mehmet Emrah Selli 1, John M. Warrington 1, John Lattin1, Jufang Chang1, Helen Ha1,

Martina Haug-Kroeper3, Balraj Doray 4, Saar Gill5, Marco Ruella 5, Katharina E. Hayer6,7,

Matthew D. Weitzman 7,8, Abby M. Green2,9, Regina Fluhrer 3 & Nathan Singh 1✉

While chimeric antigen receptor (CAR) T cells targeting CD19 can cure a subset of patients

with B cell malignancies, most patients treated will not achieve durable remission. Identifi-

cation of the mechanisms leading to failure is essential to broadening the efficacy of this

promising platform. Several studies have demonstrated that disruption of CD19 genes and

transcripts can lead to disease relapse after initial response; however, few other tumor-

intrinsic drivers of CAR T cell failure have been reported. Here we identify expression of the

Golgi-resident intramembrane protease Signal peptide peptidase-like 3 (SPPL3) in malignant

B cells as a potent regulator of resistance to CAR therapy. Loss of SPPL3 results in hyper-

glycosylation of CD19, an alteration that directly inhibits CAR T cell effector function and

suppresses anti-tumor cytotoxicity. Alternatively, over-expression of SPPL3 drives loss of

CD19 protein, also enabling resistance. In this pre-clinical model these findings identify post-

translational modification of CD19 as a mechanism of antigen escape from CAR T cell

therapy.
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T cells engineered with chimeric antigen receptors (CARs)
targeting the transmembrane protein CD19 have varied
success in the treatment of B cell cancers. Response rates in

pediatric patients with acute lymphoblastic leukemia (ALL) are
high, with >85% achieving complete remission within 1 month of
treatment1,2. Unfortunately, many patients with ALL who achieve
remission ultimately relapse. Outcomes for patients with non-
Hodgkin lymphoma or chronic lymphocytic leukemia (CLL) are
more modest, with overall response rates of 30–50%3–8. These
clinical data demonstrate that while curative for some, most
patients treated with CAR T cells will not achieve long-term
remission.

Failure of CAR T cells can result from tumor-intrinsic
mechanisms, T cell-intrinsic mechanisms, or a combination of
both. Several studies have identified T cell-intrinsic features that
correlate with therapeutic failure, primarily related to memory
differentiation status or expression of exhaustion-associated
genes9–12. We previously reported that defects in cancer cell
apoptotic signaling enable resistance to CAR T cell cytotoxicity
that then drives the development of T cell dysfunction, impli-
cating both cell types in disease progression13. Other studies have
identified mechanisms by which modulation of CD19 surface
expression can lead to resistance and relapse14. This process,
broadly referred to as antigen escape, manifests as an apparent
loss of surface CD19 expression by leukemic cells, making CAR
T cells “blind” to their presence and permitting disease out-
growth. Antigen escape can occur at the genetic level via loss of
entire CD19 alleles, resulting in failed protein expression, or loss
of partial genes, resulting in expression of a truncated protein
without the CAR binding epitope15. Alternative splicing of
transcribed CD19 messenger RNA can eliminate the domains
necessary for membrane integration or the CAR binding epitope,
again resulting in loss of surface expression or loss of regions
needed for CAR:antigen engagement16. To our knowledge,
alterations of full-length CD19 protein that lead to resistance have
not been reported.

Following translation, proteins can undergo several modifica-
tions. Among the most common post-translational modifications
of secreted and membrane proteins is the addition of glycan
residues as they transit to the cell surface. Glycosylation is an
iterative process that is regulated by glycan-modifying enzymes
found in the endoplasmic reticulum (ER) and Golgi apparatus
and serves an essential role in protein folding, stability, and
function. Signal peptide peptidase-like 3 (SPPL3) is an intra-
membrane aspartyl protease located in the Golgi that cleaves,
among other targets, enzymes responsible for adding glycan
residues to transiting transmembrane proteins17,18. This cleavage
results in the release of the catalytically-active ectodomain of
these glycosyltransferases, inhibiting them from adding glycans to
proteins passing through the Golgi. Thus, SPPL3 functionally
serves to restrict protein glycosylation. Antibodies and their
derivative single-chain variable fragments (scFvs) that comprise
CAR antigen-binding domains are variably sensitive to protein
glycosylation for epitope recognition19, and thus alteration of
target antigen glycosylation presents a potential mechanism of
escape from CAR T cell recognition.

We performed a genome-wide, CRISPR/Cas9-based loss-of-
function screen in the human ALL cell line Nalm6 to identify
genes whose function may promote resistance to CD19-targeted
CAR T cell (CART19) cytotoxicity13. Here we show that dis-
ruption of SPPL3 caused CD19 hyperglycosylation which impairs
the binding of anti-CD19 antibodies and impairs CAR T cell
activation, thus enabling resistance to CAR therapy. We identify
that hyperglycosylation of an asparagine residue proximal to the
CAR binding epitope is directly responsible for enabling resis-
tance. In contrast, overexpression of SPPL3 results in

hypoglycosylation of CD19 which is followed by protein loss,
profoundly impairing CAR T cell anti-leukemic efficacy. Our
findings highlight the relevance of protein glycosylation in anti-
gen:receptor interactions and identify post-translational mod-
ifications as essential regulators of CD19-targeted CAR T cell
efficacy.

Results
Loss of SPPL3 results in resistance to CART19. We engineered
the human B-ALL cell line Nalm6 with the Brunello genome-
wide guide RNA library13,20 to enable the loss of function of a
single gene within each Nalm6 cell. Following engineering, cells
were combined with either control T cells or CD19-targeted CAR
T cells (CART19). Co-cultures were collected 24 h later and
underwent next-generation sequencing to identify which guide
RNAs had been enriched in the surviving CART19-exposed cells,
reflecting that loss of gene function promoted resistance to
CART19 killing (Fig. 1a). We previously reported that the most
enriched gene was FADD, encoding a membrane-proximal pro-
tein that initiates the apoptotic cascade upon binding of death
receptors to their ligands13. Analysis of this same dataset revealed
that the second-most enriched gene was SPPL3 (Fig. 1b),
encoding a Golgi-resident protease17,18. To validate SPPL3’s role
in resistance to CART19, we disrupted genomic SPPL3 in Nalm6
using de novo designed guide RNAs targeting either exon 4 or 6
and generated clones that had biallelic disruption (clone 1 and 2,
respectively). We confirmed that these clones lacked SPPL3
protein expression and that loss of SPPL3 did not enable an
intrinsic growth advantage in Nalm6 cells (Supplementary Fig. 1a,
b). To directly assess the impact of SPPL3 loss on CART19
cytotoxic efficacy, we established co-cultures of either SPPL3
wild-type (WT) or SPPL3KO Nalm6 with CART19 and monitored
Nalm6 survival over time. These studies confirmed that SPPL3KO

Nalm6 were resistant to CAR T cell killing both early during co-
culture (48 h, Supplementary Fig. 1c) and over time (Fig. 1c). To
validate that resistance was not unique to ALL, we disrupted
SPPL3 in the CD19+ diffuse large B cell lymphoma line OCI-
Ly10. As with Nalm6, SPPL3KO OCI-Ly10 cells were also resis-
tant to CART19 killing (Fig. 1d and Supplementary Fig. 1d),
demonstrating that loss of SPPL3 enabled resistance in two dis-
tinct histologies of CD19+malignancy. We extended these stu-
dies to our well-established xenograft model of systemic human
ALL. NOD/SCID/γ−/− (NSG) mice were engrafted with Nalm6
cells, either wild-type or SPPL3KO, and treated with CART19 cells
6 days later. Consistent with our in vitro studies, loss of SPPL3
permitted leukemic progression in vivo (Fig. 1e and Supple-
mentary Fig. 1e), which significantly shortened animal survival
(Fig. 1f). Collectively, these data demonstrate that loss of SPPL3
enables robust resistance to CD19-targeted CAR therapy.

Loss of SPPL3 in ALL impairs CART19 activation. To deter-
mine if this resistance resulted from extrinsic impairments in T
cell function or intrinsic resistance to apoptosis, we combined
CART19 with either WT or SPPL3KO Nalm6 and analyzed the
expression of various surface markers of T cell activation
(Fig. 2a). As compared to cells exposed to WT Nalm6, CART19
exposed to SPPL3KO Nalm6 expressed lower levels of CD69, PD1,
and TIM3 following overnight co-culture (Fig. 2b–d). Expression
of CD107a (LAMP-1), a surrogate marker of lymphocyte degra-
nulation, was also lower in CART19 exposed to SPPL3KO Nalm6
(Fig. 2e). We established co-cultures combining WT or SPPL3KO

Nalm6 with immortalized T cells (Jurkat) engineered to express a
CD19 CAR (Fig. 2a). These Jurkat cells were engineered with a
fluorescent reporter system that transcribes GFP or eCFP upon
activation of the central T cell transcription factors NFAT or
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NFκB, respectively. Consistent with our findings in primary
T cells, CAR19 Jurkat cells exposed to SPPL3KO Nalm6 demon-
strated less transcription factor activation (Fig. 2f, g).

While signifying a quantitative decrease in receptor-driven
stimulation, these findings did not demonstrate a complete lack of
CAR-driven activation upon exposure to SPPL3KO Nalm6, as

indicated by the increase in activation marker expression
compared to CAR-negative cells. We previously identified that
partial resistance to CAR T cell cytotoxicity enables survival of
some target cells, which leads to persistence of antigen. This
persistence drives the development of T cell dysfunction, leading
to a two-phased mechanism of therapeutic failure despite only

Fig. 1 Loss of SPPL3 results in resistance to CD19-directed CAR T cells. a Schematic of the genome-wide knockout screen in Nalm6 ALL. b Plot of
MAGeCK beta scores for genes that were enriched in CART19 targeted cells compared to untargeted T cells. c Survival of Nalm6 and d OCI-Ly10 over time
after combination with CART19 (E:T ratio 0.25:1). e Tumor radiance over time and f Survival of NSG mice treated engrafted with either WT or SPPL3KO

Nalm6 after treatment with CART19 cells (n= 7 per group) or no treatment (n= 4 per group). ***P < 0.001, **** Error bars reflect mean ± standard error of
the mean (s.e.m.). P < 0.0001 by two-way ANOVA with Bonferroni correction for multiple comparisons. Survival analyses were performed with the log-
rank test. Data were representative of n= 5 (c, d) individual experiments with distinct donor T cells. In c statistical annotations reflect differences between
WT and SPPL3KO clone 1 (upper) and WT and SPPL3KO clone 2 (lower). Source Data are provided as a Source Data file.
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partial resistance to cytotoxicity13. To evaluate if this mechanism
contributed to the resistance observed with SPPL3 loss, we
established two parallel cultures of CART19 with either WT or
SPPL3KO Nalm6 (Fig. 2h). These cultures were maintained for

15 days, at which time no residual WT Nalm6 remained but large
quantities of SPPL3KO Nalm6 persisted. We then isolated
CART19 cells from these cultures and re-exposed them to WT
Nalm6 to evaluate the functional capacity of these T cells.

Fig. 2 SPPL3KO suppresses CD19 CAR T cell activation. a Schematic of T cell activation studies. b–d, Expression of b CD69, c PD1, and d Tim3 on T cells
after overnight co-culture with WT or SPPL3KO Nalm6 cells or alone (control). e expression of CD107a on T cells after a 4-h co-culture with WT or SPPL3KO

Nalm6 cells. f, g Expression of f GFP and g eCFP, reflecting binding of NFAT and NFκB to their respective promoter sites in CD19 CAR-expressing Jurkat
cells. h Schematic of long-term co-culture and re-challenge study. i Survival of WT Nalm6 over time after the combination of CART19 cells previously
cultured with either WT or SPPL3KO Nalm6 cells. b–e, i Representative of n= 2 individual experiments with distinct donor T cells. f, g representative of
n= 4 individual experiments. Error bars reflect mean ± standard error of the mean (s.e.m.). ****P < 0.0001 by two-way ANOVA with Bonferroni correction
for multiple comparisons. Source Data are provided as a Source Data file.
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CART19 cells originally exposed to WT Nalm6 rapidly cleared re-
challenge while CART19 cells originally exposed to SPPL3KO

Nalm6 were profoundly dysfunctional, with a complete inability
to kill WT Nalm6 upon re-challenge (Fig. 2i). We observed the
same trend when CARs contained the CD28 costimulatory
domain (Supplementary Fig. 2a), confirming that this was a
costimulation-independent effect. Together, these data demon-
strate that CART19 cells undergo less antigen-driven activation
by SPPL3KO Nalm6 and become progressively dysfunctional as a
result of leukemic persistence, suggesting that SPPL3KO Nalm6
resistance may result from a combination of partial evasion of T
cell killing followed by acquired T cell dysfunction.

Hyperglycosylation of CD19 leads to CAR T cell failure. While
the function of SPPL3 has not been comprehensively defined, recent
studies identified one of its primary roles as a Golgi-resident intra-
membrane aspartyl protease is to cleave enzymes that add glycans to
extracellular asparagine residues, referred to as N-glycosylation17,18.
The extracellular domain of CD19 contains seven asparaginse resi-
dues, five of which are glycosylated under normal conditions21.
Analysis of protein lysates from both Nalm6 and OCI-Ly10 cells
revealed that CD19 had an higher apparent higher molecular weight
in the setting of SPPL3 loss (Fig. 3a and Supplementary Fig. 2b). To
determine if changes in glycosylation were responsible for this
increase in CD19 molecular weight, we treated Nalm6 lysates with
two distinct glycosylases, peptide:N-glycosidase F (PNG) or Endo-
glycosylase H (Endo H). These enzymes have distinct enzymatic
activity: Endo H only cleaves core (mannose) residues added in the
endoplasmic reticulum while PNG also cleaves branched glycans
added in the Golgi. This approach allowed us to simultaneously
determine if the increase in molecular weight was a result of N-
glycosylation and the complexity of that glycosylation, a reflection of
the organellar origin. PNG treatment resulted in a significant
reduction in CD19 size in bothWT and SPPL3KO, while EndoH had
minimal impact on CD19 from either cell type (Fig. 3b), suggesting
the relative increase in molecular weight was a result of glycosylation
that occurred in the Golgi, the site of SPPL3 activity. To identify the
nature of altered CD19 glycosylation, we immunoprecipitated CD19
from WT and SPPL3KO Nalm6 and performed lectin blots. Staining
of immunoprecipitated CD19 with concanavalin A, which binds
mannose-rich glycan moieties, demonstrated no change with loss of
SPPL3. Alternatively, staining with phytohaemagglutinin-L (PHA-L),
which binds standard branched glycans, demonstrated a reduction in
binding when SPPL3 was disrupted (Supplementary Fig. 2c). In
conjunction with our glycosidase studies, this suggests that loss of
SPPL3 results in both hyperglycosylation and structural alteration of
branched glycans on CD19.

Given that antibodies and scFvs can be sensitive to glycopro-
tein structure, we hypothesized that hyperglycosylation may
impair the CAR binding of CD19. To evaluate this, we stained
Nalm6 cells with the same anti-CD19 antibody used to construct
our CAR antigen-binding domain (clone FMC63). Notably, this is
the same clone used to construct all FDA-approved CD19-
targeted CAR products. At high antibody concentrations (1:100 –
1:400 dilution) there was no difference in FMC63 binding to
CD19 on WT or SPPL3KO Nalm6 (Supplementary Fig. 3a),
however, at lower concentrations (1:800–1:3200 dilution), there
was a notable reduction in detection of CD19 on SPPL3KO Nalm6
(Fig. 3c, Supplementary Fig. 3b). We also interrogated the ability
of a distinct CD19-directed antibody (clone HIB19) to recognize
CD19 and observed less binding at all antibody concentrations on
SPPL3KO Nalm6 (Supplementary Fig. 3c), suggesting that FMC63
is not uniquely sensitive to changes in glycosylation of CD19. We
then treated WT and SPPL3KO Nalm6 with kifunensine, an
inhibitor of mannosidase I that impairs glycoprotein processing,

for 10 days and repeated antibody staining. This treatment
resulted in a reduction in CD19 apparent molecular weight,
consistent with an impairment of protein glycosylation early in
the E.R. (Fig. 3d), which rescued FMC63 binding on SPPL3KO

Nalm6 cells (Supplementary Fig. 3d). We then repeated our
in vitro cytotoxicity assay and found that inhibiting glycosylation
with kifunensine also rescued CART19 efficacy against SPPL3KO

Nalm6 cells, returning sensitivity to the levels seen for WT Nalm6
(Fig. 3e). These data directly implicate the altered glycan structure
of CD19 as the etiology of resistance in the setting of SPPL3 loss.

To assess the impact of altered glycosylation on a distinct
modality of CAR therapy, we turned to another B cell antigen that
is the target of CAR therapy. Similar to CD19, CD22 is broadly
expressed by B-lineage cells and is a well-described CAR target in
ALL22–24. In contrast to CD19, deletion of SPPL3 did not change
CD22 electrophoretic mobility, suggesting no change in its
glycosylation status (Fig. 3f). SPPL3KO also did not impact anti-
CD22 antibody binding on Nalm6 cells (Supplementary Fig. 3e).
Consistent with these observations observation, in vitro co-
cultures demonstrated no difference in CD22-directed CAR T cell
cytotoxicity against SPPL3KO and WT Nalm6, confirming that
loss of SPPL3 did not enable resistance to CART22 (Fig. 3g and
Supplementary Fig. 3f). This observation further supports that
hyperglycosylation of CD19 is specifically responsible for
resistance to CART19.

Hyperglycosylation of CD19 N125 is responsible for failed
CART19 function. To define how increased N-glycosylation of
CD19 resulted in failed CAR T cell function, we interrogated the
role of specific CD19 asparagine residues. A previous study
identified that CD19 residues W140, R144, and P203 are essential
for FMC63 binding21. Modeling of the FMC63 binding epitope
revealed two proximal asparagine residues, one of which is nor-
mally N-glycosylated (N125) and one of which is not (N114,
Fig. 4a)21. Predicted intramolecular distance measurements reveal
that N125 is closer to the binding epitope than N114, leading us
to hypothesize that N125 is responsible for the disruption of the
FMC63 binding epitope. To evaluate this, we disrupted CD19 in
our SPPL3KO Nalm6 cells to create a dual knockout (KO) cell line
and introduced transgenic CD19 constructs in which N114 or
N125 had been mutated to glutamine, preventing glycosylation21.
These constructs were encoded on a lentiviral expression vector
that also encoded a truncated CD34 selection marker, enabling
the purification of engineered cells independently of CD19 anti-
body binding. Using flow cytometry-assisted cell sorting, we
produced cell lines that expressed equivalent amounts of CD19
(based on CD34 intensity) to directly evaluate how these muta-
tions impacted anti-CD19 antibody binding capability. We found
that introduction of WT CD19 into the dual KO cells resulted in
CD19 antibody binding comparable to SPPL3KO Nalm6 (Fig. 4b),
validating the sensitivity of this system. Dual KO cells engineered
to express CD19N114Q demonstrated similar antibody binding as
SPPL3KO Nalm6 and Dual KO_CD19WT, indicating that pre-
venting glycosylation of N114 had no impact on antibody bind-
ing. Dual KO cells engineered to express CD19N125Q, however,
demonstrated a significant increase in FMC63 binding, compar-
able to WT Nalm6 (Fig. 4b), indicating that preventing hyper-
glycosylation at N125 enhanced FMC63 binding despite SPPL3
loss. To confirm that this residue was not only responsible for
rescuing antibody binding but also sensitivity to CAR cytotoxi-
city, we co-cultured these cell lines with CART19 cells. Consistent
with antibody binding, dual KO_CD19N125Q cells were as sen-
sitive to CART19 as WT Nalm6 (Fig. 4c). These data demonstrate
that loss of SPPL3 prevents CART19 activity by hyperglycosy-
lating CD19 at N125.
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Increased SPPL3 activity results in loss of surface CD19.
Overexpression of SPPL3 has been shown to cause protein hypo-
glycosylation via increased glycosyltransferase cleavage17. To inves-
tigate how hypoglycosylation of CD19 impacted CART19 efficacy,
we over-expressed SPPL3 in SPPL3KO Nalm6 (SPPL3KO+) using a

lentiviral expression vector that again contained a CD34 selection
marker. We purified CD34+ cells 5 days after engineering and
found that overexpression of SPPL3 resulted in a reduction of CD19
molecular weight (Supplementary Fig. 4a), similarly to what we
observed with kifunensine treatment, and consistent with

Fig. 3 Hyperglycosylation impairs detection of CD19. a Western blot of lysates from WT or SPPL3KO Nalm6 and OCI-Ly10 cells probed for CD19. Protein
electrophoresis was performed on a 6% polyacrylamide gel. Representative of n= 4 individual experiments. bWestern blot of lysates fromWT or SPPL3KO

Nalm6 cells that were either untreated (UT), treated with PNGase F (PNG), or treated with Endoglycosidase H (Endo H) and then probed for CD19.
Representative data of n= 3 individual experiments. Electrophoresis performed on a 6% polyacrylamide gel. c Median Fluorescence Intensity of CD19 as
detected by FMC63-APC on the surface of WT or SPPL3KO Nalm6 cells. d Western blot analysis of lysates from cells treated with kifunensine (16 ng/mL)
for 10 days and then probed for CD19. Representative of n= 2 individual experiments. e Survival of WT, untreated SPPL3KO, and kifunensine-treated
SPPL3KO Nalm6 over time in co-culture with CART19 cells (E:T ratio 0.25:1) statistical annotations reflect differences between SPPL3KO + kifu and WT and
SPPL3KO + kfiu and SPPL3KO (lower). f Western blot of lysates from WT or SPPL3KO Nalm6 cells probed for CD22. Representative of n= 4 individual
experiments. g Survival of WT or SPPL3KO Nalm6 cells over time after combination with CART22 (E:T ratio 0.25:1). e, g Representative data from n= 3
individual experiments with distinct donor T cells. Error bars reflect mean ± standard error of the mean (s.e.m.). *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001 by two-way ANOVA with Bonferroni correction for multiple comparisons. Source Data are provided as a Source Data file.
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hypoglycosylation. Evaluation of these cells over time revealed a
progressive impairment in FMC63 binding to CD19 on
SPPL3KO+ cells after engineering, with the emergence of a clear
CD19-negative population that slowly increased in proportion
(Fig. 5a). Staining with the HIB19 anti-CD19 antibody clone revealed
a similar shift in binding with SPPL3 overexpression (Supplementary
Fig. 4b). We hypothesized that this loss of surface expression was due
to intracellular retention of the hypoglycosylated variant of CD19. To
evaluate this, we performed a fractionated cellular lysis to isolate
cytosolic and membrane compartments. We found that, as opposed
to lysates collected early after engineering (Supplementary Fig. 4a),
lysates collected several weeks later were devoid of CD19 in all
compartments (Fig. 5b). Quantitative reverse-transcriptase PCR
confirmed that SPPL3 over-expressing cells were still transcribing the
CD19 gene (Supplementary Fig. 4c), suggesting post-transcriptional

loss of CD19. Consistent with this progressive loss, SPPL3KO+
Nalm6 became increasingly resistant to CART19. SPPL3KO+
Nalm6 combined with CART19 10 days after engineering demon-
strated modest resistance (Supplementary Fig. 4d). In contrast, co-
cultures established 20 days after the re-introduction of SPPL3
revealed profound resistance with minimal CART19 function
(Fig. 5c). These findings indicate that hypoglycosylation of CD19
also leads to antigen escape as a result of protein loss.

Discussion
Understanding mechanisms of resistance to CAR T cells is fun-
damental to improving the efficacy of this platform in both
hematologic and solid malignancies. Beyond enhancing ther-
apeutic activity, identification of tumor-intrinsic features that lead
to resistance will allow for more appropriate patient selection,

W140

R144

P203

N125

N114

16.0Å

9.1Å
14.3Å

20.7Å

a

Fig. 4 Hyperglycosylation of asparagine 125 is responsible for impairing CART19 efficacy. a Structural modeling of the FMC63 binding epitope on CD19.
Residues in blue (R144, W140, and P203) are essential for antibody binding and proximal asparagine residues are in red (N125 and N114). b Median
Fluorescence Intensity of CD19 as detected by FMC63-APC on the surface of WT, SPPL3KO or SPPL3KO CD19KO (dual KO) Nalm6 cells engineered to
express mutated CD19 molecules. Representative data from n= 2 flow cytometry experiments. c Survival of Nalm6 cells over time after combination with
CART19 (E:T ratio 0.25:1). Representative data from n= 2 experiments with independent T cell donors. Error bars reflect mean ± standard error of the
mean (s.e.m.). ****P < 0.0001 by two-way ANOVA with Bonferroni correction for multiple comparisons. Source Data are provided as a Source Data file.
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sparing patients with tumors that are unlikely to respond to
ineffective therapies. Gene and transcript-level alterations have
previously been shown to impair CAR recognition of CD19
leading to antigen escape. Here we expand the mechanisms that
lead to antigen escape to include post-translation modifications of
CD19. We found that modulation of SPPL3, either loss or over-
expression, resulted in changes to CD19 glycosylation that were
both associated with impairment of anti-CD19 CAR T cell
function (Fig. 6).

A characteristic feature of malignant transformation is a global
alteration in protein glycosylation25. This has been specifically
extended to N-linked glycosylation of transmembrane proteins26.

As a result of this intrinsic alteration of surface protein glycosy-
lation, some malignant cells may be predisposed to evade CAR
binding. A recent report demonstrated this phenomenon in
pancreatic cancer cells, wherein increased cellular glycosylation
occurring through an unclear mechanism was associated with
decreased CAR efficacy27. Interestingly, they found that disrup-
tion of N-acetylglucosaminyltransferase V (GnTV, encoded by
MGAT5), a Golgi-resident glycosyltransferase that is a primary
target of SPPL317, improved the efficacy of CAR therapy. These
studies directly complement the data presented here. The authors
of that study did not identify a mechanism by which increased
glycosylation suppressed CAR T cell efficacy, or how suppressing

Fig. 5 Overexpression of SPPL3 results in loss of CD19 surface expression. a Sequential flow cytometric evaluation of FMC63-APC binding on
SPPL3KO+Nalm6 after overexpression of SPPL3. b Western blot of fractionated cellular lysates from WT, SPPL3KO or SPPL3KO with overexpression of
SPPL3 (SPPL3KO+) Nalm6 cells probed for CD19 performed 20 days after engineering. Representative of n= 2 individual experiments. c Survival of WT,
SPPL3KO, or SPPL3KO+Nalm6 over time when established on 20 days after re-introduction of SPPL3 (E:T 0.25:1). Representative data from n= 2
experiments with independent T cell donors. Error bars reflect mean ± standard error of the mean (s.e.m.). ****P < 0.0001 by two-way ANOVA with
Bonferroni correction for multiple comparisons. Statistical annotations reflect differences between WT and SPPL3KO (upper) or WT and SPPL3KO+Nalm6
(lower). Source Data are provided as a Source Data file.

Fig. 6 Proposed model for the mechanism of glycosylation-mediated antigen escape. (left) Normal SPPL3 function results in standard glycosylation of
CD19. (Middle) Loss of SPPL3 results in increased and altered glycosylation, disrupting the CAR binding epitope. (Right) Increased SPPL3 results initially in
decreased glycosylation followed by degradation of CD19, preventing surface presenation.
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glycosylation improved efficacy. In our study we demonstrate that
this is a direct result of manipulating antigen glycosylation.
Together, these studies confirm that glycosylation impacts the
efficacy of CAR therapy in both solid and hematologic cancers.
Another study demonstrated that loss of SPPL3 impaired the
efficacy of TCR-driven recognition of cancer antigens by pro-
moting hyperglycosylation of MHC-adjacent glycosphingolipids,
thus sterically hindering MHC/TCR interactions28. While this
interaction is not relevant to MHC-independent CARs, this
observation adds further evidence that cancer cell glycosylation is
a fundamental regulator of anti-cancer cellular therapy.

Our studies focus on the manipulation of SPPL3 expression,
but these data suggest that resistance is not inherent to SPPL3
itself but to its role in regulating CD19 glycosylation. Loss of
SPPL3 does not impact the efficacy of CART22, and its over-
expression also enables resistance to CART19. As such, the
impact of these findings derives from the observation that CD19-
targeted CAR T cells are highly-sensitive to antigen glycosylation.
There are likely several other cellular pathways that can regulate
antigen glycosylation and impact tumor cell sensitivity to CAR
therapy. Given its role in cleaving glycosylation regulators,
SPPL3 serves a centralized, but indirect, role in regulating CD19
glycosylation, and thus served as an ideal system to identify this
mechanism of resistance. These studies compel correlative studies
investigating the relationship between antigen glycosylation and
the clinical efficacy of antigen-targeted immunotherapies. While
evaluation of post-translational modifications is more compli-
cated than standard protein expression studies, our data, as well
as other recently published studies, underscore the importance of
these studies using patient-derived tissues. Understanding the
burden of altered glycosylation in clinical failure will be essential
in directing the development of therapies that overcome this
mechanism of antigen escape.

Methods
All research conducted was compliant with relevant ethical research standards.
Animal studies were approved by the Washington University Institutional Animal
Care and Use Committee, Assurance #A-3381-01.

Genome-wide knockout screen. The Brunello sgRNA knockout plasmid library
was designed and produced as previously described20,29 and Nalm6 cells were
engineered as previously described13. For screening studies, 2 × 108 Brunello-edited
Nalm6 cells were combined with 5 × 107 CART19 cells or control T cells (effec-
tor:target ratio 1:4) and co-cultured in standard culture media; 5 × 107 control
Nalm6 cells were frozen for genomic DNA analysis. After 24 h, cultures were
collected, underwent dead cell removal, and were prepared for genomic DNA
extraction.

Genomic DNA extraction, guide sequencing, and analysis. Performed as
described previously13. Briefly, cells from screening cultures were flash-frozen as
dry pellets and resuspended in 6 mL NK lysis buffer (50 mM Tris, 50 mM EDTA,
1% SDS, pH 8) with Proteinase K followed by incubation at 55 °C overnight. The
next day, RNase A was added to the sample, mixed thoroughly, and incubated at
37 °C for 30 min. Samples were cooled and then 2 mL of pre-chilled 7.5 M
ammonium acetate was added to precipitate proteins. Samples were vortexed and
then centrifuged at ≥4000 × g for 10 min. The supernatant was then transferred to a
new 15mL tube. About 6 mL 100% isopropanol was added to the tube, inverted 50
times, and centrifuged at ≥4000 × g for 10 min. The supernatant was discarded and
6 mL of fresh 70% ethanol was used to wash DNA, followed by centrifugation again
at ≥4000 × g for 1 min. The supernatant was discarded, and samples were left to air
dry, followed by resuspension with 500uL TE (65 °C for 1 h and at room tem-
perature overnight). The next day, the gDNA samples were vortexed briefly, and
gDNA concentration was measured. All gDNA was divided into 100 µL PCR
reactions with 5 µg of DNA per reaction. Amplification was performed using
Takara ExTaq DNA Polymerase and the default mix protocol with the following
PCR program: (95° 2 min, (98° 10 sec, 60° 30 sec, and 72° 30 sec) × 24, 72° 5 min).
PCR products were gel purified using the QiaQuick gel extraction kit (Qiagen). The
purified, pooled library was then sequenced on a HiSeq4000 with ~5% PhiX added
to the sequencing lane. Data were analyzed using standard genome-wide library
analysis pipelines as well as customized R scripts13,30,31.

CRISPR/Cas9-guide design, genomic engineering, and indel detection.
SPPL3 sgRNAs were designed using Benchling (http://Benchling.com). Six guide
RNAs targeting early exons were screened for knockout efficiency and we selected
two guides for experimental studies (targeting exon 4, sgRNA sequence: AGAC
AGATGCTCCAATTGGA; targeting exon 6, sgRNA sequence: CACCATCCATG
AGAAGCCAA). Nalm6 and OCI-Ly10 cells were electroporated using the Lonza
4D-Nucleofector Core/X Unit using the SF Cell Line 4D Nucleofector Kit (Lonza).
For Cas9 and sgRNA delivery, the ribonucleoprotein (RNP) complex was first
formed by combining 10 µg of Cas9 Protein (Invitrogen) with 5 µg of sgRNA. Cells
were spun down at 300×g for 10 min and resuspended at a concentration of
3–5 × 106 cells/100 µL in the specified buffer. The RNP complex, 100 µL of
resuspended cells, and 4 µL of 100 µM IDT Electroporation Enhancer (IDT) were
combined and electroporated. After electroporation, cells were cultured at 37 °C for
the duration of the experimental procedures. Genomic DNA from electroporated
cells was isolated (Qiagen DNeasy Blood & Tissue Kit) and 200–300 ng were PCR
amplified using Accuprime Pfx SuperMix or Q5 Mastermix (New England Biolabs)
and 10 µM forward/reverse primers flanking the region of interest. Primers were
designed such that the amplicon was at a target size ~1 kb. PCR products were gel
purified and sequenced, and trace files were analyzed to determine KO efficiency.
R2 values were calculated, reflecting the goodness of fit after non-negative linear
modeling by TIDE software32.

General cell culture. Unless otherwise specified, cells were grown and cultured at a
concentration of 1 × 106 cells/mL of standard culture media (RPMI 1640+ 10%
FCS, 1% penicillin/streptomycin, 1% HEPES, 1% non-essential amino acids) at
37 °C in 5% ambient CO2. For glycosidase treatments, cultures were supplemented
with kifunensine (Santa Cruz sc-201634) at a concentration of 16 ng/mL. Jurkat,
Nalm6, and OCI-Ly10 parental cell lines were obtained from ATCC. Primary
human T cells were purified from human peripheral blood mononuclear cells,
obtained commercially from Miltenyi (Catalog #150-000-452).

Lentiviral vector production and transduction of human cells. Replication-
defective, third-generation lentiviral vectors were produced using HEK293T cells
(ATCC ACS-4500). Approximately 10 × 106 cells were plated in T175 culture
vessels in DMEM+ 10% FCS culture media and incubated overnight at 37 °C.
Eighteen to twenty-four hours later, cells were transfected using a combination of
Lipofectamine 2000 (96 μL, Invitrogen), pMDG.1 (7 μg), pRSV.rev (18 μg),
pMDLg/p.RRE (18 μg) packaging plasmids and 15 μg of expression plasmid.
Lipofectamine and plasmid DNA was diluted in 4 mL Opti-MEM media prior to
transfer into lentiviral production flasks. At both 24 and 48 h following transfec-
tion, culture media was isolated and concentrated using high-speed ultra-
centrifugation (8500×g overnight). For T cell engineering, CD4 and CD8 T cells
were isolated from Miltenyi PBMC packs and combined at a 1:1 ratio, activated
using CD3/CD28 stimulatory beads (Thermo Fisher) at a ratio of 3 beads/cell, and
incubated at 37 °C overnight. The following day, CAR lentiviral vectors were added
to stimulatory cultures at an MOI of 3. Beads were removed on day 6 of stimu-
lation, and cells were counted daily until growth kinetics and cell size demonstrated
they had rested from stimulation. For cancer cell engineering, vectors were com-
bined with cells at an MOI of 2.

Co-culture assays. For cytotoxicity assays, CAR T cells were combined with target
cells at various E:T ratios and co-cultures were evaluated for an absolute count of
target cells by flow cytometry. All co-cultures were established in technical tripli-
cate. Cultures were maintained at a concentration of 1e6 total cells/mL. For re-
exposure assays, CAR+ T cells were sorted by fluorescence-assisted cell sorting
using a truncated CD34 selection marker encoded in the CAR plasmid backbone.
T cells were then recombined with target leukemia cells at an effector:target ratio of
1:4 and killing was measured as described. For activation marker studies, CAR or
Jurkat T cells and Nalm6 cells were combined at an E:T ratio of 1:4 and evaluated
by flow cytometry the following day. Jurkat cells were engineered to express a dual
fluorescence reporter system indicating activation of transcription factor activity as
previously described33. For degranulation assays (CD107a assessment), T cells were
combined with Nalm6 as described and combined with an antibody cocktail of
CD107a-PECy7 (clone H4A3, Biolegend 328607, diluted 1:100) and stimulatory
antibodies against CD28 (eBiosciences 16-0288-81, diluted 1:50) for 1 h. Intracel-
lular protein transport was halted by the addition of GolgiStop (BD Biosciences
554724) and cells were incubated for an additional 3 h. Cells were then harvested
and stained for CD34 (BD 555824, diluted 1:50) and analyzed by flow cytometry.

Xenograft mouse models. About 6–10-week-old female NOD-SCID-γc−/−

(NSG) mice were obtained from the Jackson Laboratory and maintained in
pathogen-free conditions with standard dark/light cycles and ambient temperature
and humidity. Each experimental group contained between 4–7 mice. Animals
were injected via tail vein with 1 × 106 WT or SPPL3KO Nalm6 cells in 0.2 mL
sterile PBS. On day 6 after tumor delivery, 1 × 106 T cells were injected via tail vein
in 0.2 mL sterile PBS. Animals were monitored for signs of disease progression and
overt toxicity, such as xenogeneic graft-versus-host disease, as evidenced by >10%
loss in body weight, loss of fur, diarrhea, conjunctivitis and disease-related hind
limb paralysis. Disease burdens were monitored over time using the Spectral
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Instruments AMI bioluminescent imaging system. Animal were sacrificed when
tumor burden reached >1 × 1010 photons/sec/steradian/cm2. No animal exceeded
this burden. Animal studies were approved by the Washington University Insti-
tutional Animal Care and Use Committee, Assurance #A-3381-01.

Flow cytometry. Cells were resuspended in FACS staining buffer (PBS+ 3% fetal
bovine serum) using the following antibodies: CD3 (clone OKT3, BD Biosciences
555342, diluted 1:50), PD1 (clone EH12.2H7, BioLegend, 329928, diluted 1:80),
Tim3 (clone 7D3, BD Biosciences 565566, diluted 1:100), CD22 (clone HIB22, BD
Biosciences 562860, diluted 1:100), CD19 (clone FMC63, Novus Biologicals 52716,
diluted 1:80-1:32000; clone HIB19, BD Biosciences 555413, diluted 1:50), CD107a-
PECy7 (clone H4A3, Biolegend 328607, diluted 1:100), CD34 APC (BD 555824,
diluted 1:50). CARs transduction was evaluated by staining for a truncated
CD34 selection marker located downstream of a P2A ribosomal skip sequence
from the CAR transgene. Data were acquired on an Attune NxT cytometer
(Thermo). All data analysis was performed using FlowJo 9.0 software (FlowJo,
LLC). The gating strategy can be found in Supplementary Fig. 5.

Western blotting. Nalm6 and OCI-Ly10 cells were counted and 5 × 106 cells were
washed in cold PBS. Cell pellets were resuspended in RIPA lysis buffer supple-
mented with phosphatase and protease inhibitors and incubated on ice for 15 min,
followed by centrifugation at 14,000 × g for 15 min. Lysate concentration was
quantified using the Pierce BSA Protein Assay Kit (Thermo), combined with 4x
LDS buffer, denatured at 100 °C for 10 min, and then reduced to a final con-
centration of 20% beta-mercaptoethanol. 10–20 ug of protein was loaded into each
well of a Bis-Tris gel (either 4–12% gradient, 6%, or 15%) and proteins were
separated using standard electrophoresis followed by transfer to nitrocellulose
membranes. Proteins were labeled with SPPL3 (EMD Millipore #MABS1910),
CD19 (#3574), CD22 (#67434), Actin (#4970) or GAPDH (#2118, all from Cell
Signaling, all diluted 1:1000), followed by secondary antibody staining using either
anti-rabbit (Cell Signaling #7074, diluted 1:5000), or anti-mouse (Cell Signaling
#7076, diluted 1:5000) HRP-linked antibodies followed by visualization. Cell
components were isolated using the Cell Signaling Cell Fractionation Kit (#9308).
Unprocessed plots can be found in Source Data Files.

Immunoprecipitation. WT and SPPL3KO Nalm6 cells were harvested in RIPA lysis
buffer supplemented with protease inhibitors and incubated on ice for 10 min,
followed by centrifugation to clear debris (14,000 × g, 10 min, 4 °C). Lysate con-
centration was quantified using Bradford reagent and normalized to 1–3 mg total
protein per 1 mL. Normalized lysates were cleared by incubation with protein A
beads (Invitrogen) on a rotator (1 h, 4 °C) and then incubated with 2 uL anti-CD19
antibody (clone FMC63, Novus Biologicals) on a rotator (overnight, 4 °C).
Antibody-conjugated lysates were incubated with protein A beads on a rotator (4 h,
4 °C). Beads were then washed three times in RIPA buffer and reserved for lectin
blot analysis.

Lectin blotting. Immunoprecipitated proteins were removed from the beads using
2x Sample Buffer (20% (v/v) glycerin, 8% (w/v) SDS, 7,5 % (w/v) DTT, 0,5 M Tris
pH 6,8 supplemented with bromophenol blue) and were heated at 65 °C for 10 min.
Samples were then loaded on 8% SDS gels and the proteins were separated using
standard electrophoresis followed by transfer to PVDF membranes. The mem-
branes were first incubated in 5% (w/v) BSA in PBS-T overnight. Biotin and
streptavidin blocking was performed using a commercial kit (Vector Laboratories,
California, USA) according to the manufacturer’s instructions. Membranes were
incubated with the respective biotinylated lectin (0.5 μg/ml in lectin buffer (10 mM
HEPES, pH 7.5, 150 mM NaCl, 0.1 mM CaCl2,, 0.08% (w/v) NaN3, and only for
ConA 10 μM MnCl2) Vector Laboratories, California, US) for 1 h at room tem-
perature. Following three washing steps (10 min each with PBS-T), blots were
incubated with a streptavidin-HRP conjugate (0.5 μg/ml, diluted in PBS-T) at room
temperature for 30 min. After three additional washing steps, blots were developed
using conventional ECL chemistry (GE Healthcare, Chalfont St Giles, UK).

Protein modeling. Prediction of CD19 structure was performed using Phyre2 web
portal for protein modeling, prediction, and analysis21 and analyzed and visualized
using UCSF Chimera34. Sequences used for predictive modeling and analysis were
derived from the Protein Database entry 6AL5.

Statistical analysis. Statistical analysis performed using GraphPad Prism v9
unless otherwise indicated. All data presented were representative of independent
experiments using T cells derived from between two to five independent donors,
except for the CRISPR knockout screen (performed once with four biological
replicates). All cytotoxicity studies and flow-based protein expression studies were
performed in technical triplicate. Comparisons between two groups were per-
formed using either a two-tailed unpaired Student’s t-test. Comparisons between
more than two groups were performed by two-way analysis of variance (ANOVA)
with Bonferroni correction for multiple comparisons. All results are represented as
mean ± standard error of the mean (s.e.m.).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Guide library sequencing data were available from Gene Expression Omnibus (GEO)
using the accession number GSE130663. Sequences used for predictive modeling and
analysis were derived from the Protein Database entry 6AL5. The remaining data are
available with the Article, Supplementary Information, or Source Data File. Source data
are provided with this paper.

Received: 3 September 2021; Accepted: 31 May 2022;

References
1. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell

lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).
2. Pasquini, M. C. et al. Real-world evidence of tisagenlecleucel for pediatric

acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 4,
5414–5424 (2020).

3. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large
B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

4. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory
large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

5. Nastoupil, L. J. et al. Standard-of-care axicabtagene ciloleucel for relapsed or
refractory large B-cell lymphoma: results from the US lymphoma CAR T
consortium. J. Clin. Oncol. 38, 3119–3128 (2020).

6. Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce
sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci.
Transl. Med. 7, 303ra139 (2015).

7. Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-
cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

8. Locke, F. L. et al. Long-term safety and activity of axicabtagene ciloleucel in
refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase
1-2 trial. Lancet Oncol. 20, 31–42 (2019).

9. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric
antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat.
Med. 24, 563–571 (2018).

10. Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products
associated with efficacy and toxicity in patients with large B cell lymphomas.
Nat. Med. 26, 1878–1887 (2020).

11. Sheih, A. et al. Clonal kinetics and single-cell transcriptional profiling of CAR-
T cells in patients undergoing CD19 CAR-T immunotherapy. Nat. Commun.
11, 219 (2020).

12. Singh, N., Perazzelli, J., Grupp, S. A. & Barrett, D. M. Early memory
phenotypes drive T cell proliferation in patients with pediatric malignancies.
Sci. Transl. Med. 8, 320ra323 (2016).

13. Singh, N. et al. Impaired death receptor signaling in leukemia causes antigen-
independent resistance by inducing CAR T-cell dysfunction. Cancer Disco. 10,
552–567 (2020).

14. Singh, N. et al. Mechanisms of resistance to CAR T cell therapies. Semin.
Cancer Biol. 65, 91–98 (2020).

15. Orlando, E. J. et al. Genetic mechanisms of target antigen loss in CAR19
therapy of acute lymphoblastic leukemia. Nat. Med. 24, 1504–1506 (2018).

16. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of
CD19 enables resistance to CART-19 immunotherapy. Cancer Disco. 5,
1282–1295 (2015).

17. Voss, M. et al. Shedding of glycan-modifying enzymes by signal peptide
peptidase-like 3 (SPPL3) regulates cellular N-glycosylation. EMBO J. 33,
2890–2905 (2014).

18. Kuhn, P. H. et al. Secretome analysis identifies novel signal Peptide peptidase-
like 3 (Sppl3) substrates and reveals a role of Sppl3 in multiple Golgi
glycosylation pathways. Mol. Cell Proteom. 14, 1584–1598 (2015).

19. Posey, A. D. Jr. et al. Engineered CAR T cells targeting the cancer-associated
Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma.
Immunity 44, 1444–1454 (2016).

20. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize
off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

21. Klesmith, J. R., Wu, L., Lobb, R. R., Rennert, P. D. & Hackel, B. J. Fine epitope
mapping of the CD19 extracellular domain promotes design. Biochemistry 58,
4869–4881 (2019).

22. Spiegel, J. Y. et al. CAR T cells with dual targeting of CD19 and CD22 in adult
patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat.
Med. 27, 1419–1431 (2021).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31035-7

10 NATURE COMMUNICATIONS |         (2022) 13:3367 | https://doi.org/10.1038/s41467-022-31035-7 | www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130663
https://www.rcsb.org/structure/6al5
www.nature.com/naturecommunications


23. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is
naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24,
20–28 (2018).

24. Singh, N. et al. Antigen-independent activation enhances the efficacy of 4-
1BB-costimulated CD22 CAR T cells. Nat. Med. 27, 842–850
(2021).

25. Hakomori, S. Glycosylation defining cancer malignancy: new wine in an old
bottle. Proc. Natl Acad. Sci. USA 99, 10231–10233 (2002).

26. Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical
implications. Nat. Rev. Cancer 15, 540–555 (2015).

27. Greco, B. et al. Disrupting N-glycan expression on tumor cells boosts chimeric
antigen receptor T cell efficacy against solid malignancies. Sci. Transl. Med. 14,
eabg3072 (2022).

28. Jongsma, M. L. M. et al. The SPPL3-defined glycosphingolipid repertoire
orchestrates HLA class I-mediated immune responses. Immunity 54, 132–150
e139 (2021).

29. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human
cells. Science 343, 84–87 (2014).

30. Li, W. et al. Quality control, modeling, and visualization of CRISPR screens
with MAGeCK-VISPR. Genome Biol. 16, 281 (2015).

31. Li, W. et al. MAGeCK enables robust identification of essential genes from
genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554
(2014).

32. Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative
assessment of genome editing by sequence trace decomposition. Nucleic Acids
Res. 42, e168 (2014).

33. Jutz, S. et al. Assessment of costimulation and coinhibition in a triple
parameter T cell reporter line: Simultaneous measurement of NF-kappaB,
NFAT and AP-1. J. Immunol. Methods 430, 10–20
(2016).

34. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory
research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

Acknowledgements
The authors wish to thank Ophir Shalem (The Children’s Hospital of Philadelphia) and
Jonathan Schug (University of Pennsylvania) for substantial feedback in the development
and execution of the genome-wide knockout screen and sequencing, Julie Ritchey, Alun
Carter, and Matthew Cooper (Washington University School of Medicine) for intellec-
tual and technical support, Peter Steinberger (Medical University of Vienna) for the
Jurkat triple parameter reporter cell line and Elena Orlando (Novartis) for useful dis-
cussions. This work was supported by NIH K08CA237740 and The Amy Strelzer
Manasevit Research Grant from the Be The Match Foundation (N.S.), NIH
K08CA212299 (A.M.G.) as well as by the German Research Foundation (DFG, Deutsche
Forschungsgemeinschaft) grants 263531414/FOR 2290 and 254872893/FL 635/2-3 (R.F.)
Illustrations made using BioRender.com.

Author contributions
A.H., J.H.L., R.F., and N.S. designed and oversaw the research and wrote the manuscript.
A.H., J.H.L., A.R.H., A.P., M.H.-K., M.E.S., Y.-S.H., J.L., J.C., H.H., J.M.W., A.M.G., and
N.S. performed the research. B.D., M.R., and S.G. provided significant technical and
conceptual contributions. K.E.H. and M.D.W. performed bioinformatical analyses. All
authors reviewed the manuscript.

Competing interests
N.S. holds patent 15/567,156 (Methods for Improving the Efficacy and Expansion of
Chimeric Antigen Receptor-Expressing Cells); N.S., M.R., and S.G. hold patent 17/
058,163 (Combination Therapy with Chimeric Antigen Receptor Therapies); M.R. and
S.G. hold patent 16/256,731(CD20 therapies, CD22 therapies, and combination therapies
with CD19 chimeric antigen receptor-expressing cells) which are related to investiga-
tional and commercial CAR T cell products. The remaining authors declare no com-
peting interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-31035-7.

Correspondence and requests for materials should be addressed to Nathan Singh.

Peer review information Nature Communications thanks Haopeng Wang and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31035-7 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3367 | https://doi.org/10.1038/s41467-022-31035-7 | www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-022-31035-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Antigen glycosylation regulates efficacy of CAR T�cells targeting CD19
	Results
	Loss of SPPL3 results in resistance to CART19
	Loss of SPPL3 in ALL impairs CART19 activation
	Hyperglycosylation of CD19 leads to CAR T cell failure
	Hyperglycosylation of CD19 N125 is responsible for failed CART19 function
	Increased SPPL3 activity results in loss of surface CD19

	Discussion
	Methods
	Genome-wide knockout screen
	Genomic DNA extraction, guide sequencing, and analysis
	CRISPR/Cas9-guide design, genomic engineering, and indel detection
	General cell culture
	Lentiviral vector production and transduction of human cells
	Co-culture assays
	Xenograft mouse models
	Flow cytometry
	Western blotting
	Immunoprecipitation
	Lectin blotting
	Protein modeling
	Statistical analysis

	Reporting summary
	Data availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




