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The development of the human gut microbiota is characterized by a dynamic sequence of
events from birth to adulthood, which make the gut microbiota unique for everyone. Its
composition and metabolism may play a critical role in the intestinal homeostasis and
health. We propose a study on a single mother-infant dyad to follow the dynamics of an
infant fecal microbiota and metabolome changes in relation to breast milk composition
during the lactation period and evaluate the changes induced by introduction of
complementary food during the weaning period. Nuclear Magnetic Resonance (NMR)-
based metabolomics was performed on breast milk and, together with 16S RNA targeted-
metagenomics analysis, also on infant stool samples of a mother-infant dyad collected
over a period running from the exclusive breastfeeding diet to weaning. Breast milk
samples and neonatal stool samples were collected from the 4th to the 10th month of life.
Both specimens were collected from day 103 to day 175, while from day 219–268 only
stool samples were examined. An exploratory and a predictive analysis were carried out by
means of Common component and specific weight analysis and multi-block partial least
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squares discriminant analysis, respectively. Stools collected during breastfeeding and
during a mixed fruit/breastfeeding diet were characterized by high levels of fucosyl-
oligosaccharides and glycolysis intermediates, including succinate and formate. The
transition to a semi-solid food diet was characterized by several changes in fecal
parameters: increase in short-chain fatty acids (SCFAs) levels, including acetate,
propionate and butyrate, dissapearance of HMOs and the shift in the community
composition, mainly occurring within the Firmicutes phylum. The variations in the fecal
metabolome reflected the infant’s diet transition, while the composition of the microbiota
followed a more complex and still unstable behavior.

Keywords: gut microbiota, NMR-based metabolomics, metabolic profiling, breast milk, targeted metagenomics,
HMOs, omics data integration

1 INTRODUCTION

The human body can be considered as a holobiont, namely the
complex ecosystem that involves not only the interrelations
across the activities of different cells, tissues and organs, but
also those with the microbiota colonizing the host (van de Guchte
et al., 2018). The gut microbiota plays a major role in health and
disease in humans by transforming the dietary compounds that
are not directly digestible by the host enzymes, as well as by
providing intestinal protection from pathogen colonization,
inducing cell differentiation and modulation of the immune
system of the host (Lynch and Pedersen, 2016; Mulligan and
Friedman, 2017). The gut microbiota is unique to each individual
and originates during childbirth, even though recent studies have
provided evidence for the presence of bacteria in the fetal gut
prior to birth, meaning that colonization could occur prenatally
(Blaser and Dominguez-Bello, 2016; Walker et al., 2017). The
microbial colonization of a healthy human gut is characterized by
a dynamic sequence of events from birth to adulthood, playing a
pivotal role in promoting intestinal homeostasis. Its composition
varies throughout life (Yatsunenko et al., 2012). Type of delivery,
pregnancy complications, preterm birth, antibiotic exposure,
environmental factors including geographical background and
household exposures, use of complementary formula milk and
age at the start of weaning are all well-known factors that act on
the inter-individual variability in the first year of life (Claesson
et al., 2011; Lozupone et al., 2012; Wampach et al., 2017; Iozzo
and Sanguinetti, 2018; Fettweis et al., 2019; Bayar et al., 2020;
Differding et al., 2020). Gut microbiota can affect the host
metabolism via processes including energy harvesting from
diet, modulation of lipid metabolism, endocrine function and
inflammatory response (Nyangale et al., 2012; Nauta et al., 2013),
hence its compositional alterations, especially during early life,
may lead to pediatric disorders and/or, later in life, contribute to
the onset of diseases (Milani et al., 2017). The development of gut
microbiota during breastfeeding has been well described so far
(Bergstrom et al., 2014; Wampach et al., 2017; Bittinger et al.,
2020), but just a study characterized the transition from exclusive
breastfeeding to the introduction of complementary feeding in
modulating the microbiota composition (Differding et al., 2020).
Moreover, the mother’s fucosyltransferase 2 (FUT2) genotype,
the Lewis histo-blood group antigens and the qualitative content

of human milk oligosaccharides (HMOs) are also key factors in
the establishment of the gut microbiota (Bai et al., 2018). HMOs
are host-indigestible bioactive molecules that contribute to shape
the gut microbiome by acting as prebiotics to favor beneficial
microbes in the infants’ gut (Milani et al., 2017; Boudry et al.,
2021). Some studies have applied an NMR-based metabolomics
approach to investigate breast milk composition and its changes
in relation to the lactation time, as well as to assess the mother’s
Secretor genotype (Praticò et al., 2014; Cesare Marincola et al.,
2015; Dessì et al., 2018). Stewart and colleagues divided the
microbiota development into three distinct phases of
progression: a developmental phase (months 3–14), a
transitional phase (months 15–30) and a stable phase (months
31–46) (Stewart et al., 2018). During the first two phases, the
composition of microbiota inhabitants changes significantly.
Over the third phase, the microbial components seem to gain
a more stable structure (Stewart et al., 2018). The change in gut
microbiota shaping reflects a shift in metabolism of the infants’
gut (Di Mauro et al., 2013). The high degree of inter-individual
variability still makes unclear how a variation in its composition
may modify the functionality of the infant’s microbiome
immediately at birth and for the next years of age, (Fouhy
et al., 2012; Madan et al., 2012). Indeed, the main microbiota
metabolic activities result from the cooperative, synergic,
syntrophic, agonist and antagonist interactions of diverse
microbial species, with a special focus on the links between
the diet and the gut microbiota and between the microbiota
metabolic activity and host metabolism (Holmes et al., 2012;
Postler and Ghosh, 2017). Gut microbiota metabolic functions
are mainly performed via diverse array of metabolites originating
1) from the transformation of residual dietary compounds that
escape digestion in the upper gastrointestinal tract, 2) from
compounds released from flaked enterocytes, 3) from the
transformation of host-produced metabolic intermediates, 4)
from de novo synthesis by gut microbes (Postler and Ghosh,
2017). The investigation of the metabolite levels in infants stool
samples during lactation allows to disentangle the complexity of
the gut microbiota evolution during the first stage of life, in
relation to neonate diet. The aims of the longitudinal study were
to follow the dynamics of an infant fecal microbiota and
metabolome in relation to the breast milk composition during
the lactation period, then to evaluate the changes induced by the
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introduction of complementary food during the weaning. We
then focused on the gut microbiota developmental phase, where
the transition from breastfeeding to weaning turned out to be a
deterministic factor of the microbiota’s structure (Stewart et al.,
2018). The relationship among diet, fecal microbiota composition
and metabolism can be more easily identified by means of NMR-
based metabolomics coupled with and 16S rRNA-based
metagenomics on a single mother-infant dyad. Indeed, the
choice to study multi-samples from a single mother-infant
dyad avoids the superimposition of inter-variability onto
individual intra-variability, allowing to disentangle the intricate
dynamic involving diet, microbiota composition and metabolites.
To that end, a multi-block (data integration) approach was
applied to extract the maximum information from both the
metabolomics and taxonomical metagenomics experimental
data-blocks.

2 MATERIALS AND METHODS

2.1 Sample Collection
A mother-infant dyad was recruited for a non-interventional
study and followed-up from day 103 to day 268 after the neonate’s
birth, in order to assess the fecal metabolite levels during a pure
breast milk until a mixed milk/semisolid food diet. In this
longitudinal study, breast milk and neonatal stool samples
were collected in parallel from day 103 to day 108, from day
145 to day 147 and from day 165 to day 175 after the birth. Stool
samples were still collected from day 219 to day 228 and from day
262 to day 268 after birth. The dataset for stools is composed by a
total of 32 samples gathered in five sets of consecutive days and
subjected to metabolomics (n � 32/32) and taxonomical
metagenomics (n � 25/32) investigations (Supplementary
Table S3). Three diet-related groups were formed: the “BM
period” corresponding to breastfeeding (sets 103–108 and
145–147 days), the “FBM period” corresponding to the
introduction of a minimal dose of complementary food (set
165–175 days) and the “W period,” corresponding to weaning
(sets 219–228 and 262–268 days).

The peculiar experimental design of the study allowed to verify
reproducibility of the observations within sets of consecutive days
and to separate the possible variations due to the microbiota
adaptation from those induced by the diet.

The 30-year-old mother and her infant were healthy. The
infant was born at term by vaginal delivery. The mother-infant
dyad did not take any antibiotic therapy for the 24 months
preceding the collection of the first sample. The medical
history of the two subjects was registered and no major
disorders referred. The qualitative details of the infant diet
over these time intervals are reported in Supplementary Table
S3. In summary, for the first 147 days after birth baby was fed
only by breast milk. Around the day 165, a fruit snack based on
smashed raw pear or apple was daily added to the breast milk diet.
Then, a meal based on vegetable stock (fresh chard, zucchini,
carrots and string beans) enriched with tapioca or rice cream was
added to the day 173. Subsequently, a homogenized meat meal
dressed with Parmigiano Reggiano aged 30 months was

introduced to the diet. Starting from the seventh month of
baby life, the breast milk intake was reduced to single
breastfeeding while two semi-solid meals (lamb and beef),
based on meat, fish (sole and sea bass), vegetables, eggs,
cheese (basically ricotta cheese) and fruits were consumed
now on.

As a non-interventional study, the study was approved by the
Ethics Committee of the “Policlinico Hospital” of Bari (study
number 5908). The mother provided written informed consent
prior study beginning.

2.2 Sample Preparation
2.2.1 Nuclear Magnetic Resonance-Based
Metabolomics
The breast milk extraction procedure for the metabolomic
analysis was performed as previously described (Praticò et al.,
2014). Briefly, 1 ml of breast milk was vortexed in 4 ml of a
methanol–chloroform mixture (1:1 v/v) in polypropylene
tubes and kept overnight at 4°C. Polar and organic phases
were separated by centrifugation at 10,000 × g at 4°C for
20 min. The polar and the organic phases were separately
collected, dried under N2 stream and preserved at −80°C
until the subsequent analysis. The dried polar samples were
re-dissolved in 600 μl of D2O containing 2 mM (final
concentration) of 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid
sodium salt (TSP) (Sigma-Aldrich, St. Louis, MO,
United States) as an internal reference. Five mm NMR glass
tubes were used for the NMR analysis.

Fecal waters were obtained by adding 1 ml of PBS-D2O with
0.3% (final concentration) of sodium azide to 500 mg of the
infant’s frozen feces. The samples were thawed for 30 min at
room temperature and then vortexed to achieve a homogenous
solution. The fecal waters were separated from their solid phase
by a first centrifugation at 10,000 × g at 4°C for 25 min, hence
filtered on a 40 μm pores filter. Two-hundred μl of PBS-D2O with
0.3% of sodium azide were added to the samples and centrifuged
again at 10,000 × g at 4°C for 25 min. After withdrawing 600 μl of
supernatant, 60 μl of PBS-D2O containing TSP (2 mM final
concentration) were added. The samples were preserved at
−80°C until the subsequent analysis. NMR spectra were
acquired using a Bruker Avance III 400 spectrometer (Bruker
BioSpin GmbH, Karlsruhe, Germany) equipped with a 9.4T
magnet operating at 1H frequency of 400.13 MHz and at
298°K. Signals assignment was achieved by bidimensional
experiments (COSY, TOCSY, HSQC, HMBC and DOSY) on
selected samples and confirmed by comparison with literature
(Jacobs et al., 2008; Praticò et al., 2014; Del Chierico et al., 2015;
Dessì et al., 2018), web database (Wishart et al., 2012) and in-
house database. One-dimensional (1D) NMR spectra were
processed and quantified by using ACD/Lab 1D NMR
Manager ver. 12.0 software (Advanced Chemistry
Development, Inc., Toronto, ON, Canada), whereas bi-
dimensional (2D) NMR spectra were processed by using
Bruker TopSpin ver.3.1 (Bruker BioSpin GmbH) and MestreC
ver.4.7.0.0 (Mestrelab Research SL, Santiago de Compostela,
Spain). Phase and baseline of acquired NMR spectra were
manually corrected. Quantification of metabolites was carried
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out by comparing the integrals of the resonances with the TSP
signal integral and normalized for the number of protons.

2.2.2 16S rRNA Gene Profiling
DNA was extracted from stool samples using QIAamp Fast
DNA Stool mini kit (Qiagen, Germany), following the
manufacturer’s instructions. The variable region V3-V4 of
the 16S rRNA gene (∼460 bp) was amplified using the primer
pairs reported in the MiSeq rRNA Amplicon Sequencing
protocol (Illumina, San Diego, CA, United States). The
amplicons were purified from primes and primer dimers
by AMPure XP beads (Beckman Coulter Inc., Beverly, MA,
United States). A second step of amplification was performed
to attach a unique combination of Bar-coded Illumina
Nextera forward and reverse adaptor-primers to amplicons
of each sample. After a second purification step by AMPure
XP beads, each DNA library (630 bp) was quantified using
Quant-iT™ PicoGreen® dsDNA Assay Kit (Thermo Fisher
Scientific, Waltham, MA, United States) and diluted to a final
concentration of 4 nM. All libraries were pooled together and
sequenced on a MiSeqTM instrument, by MiSeq Reagent Kit
v2 (500 cycle) (Illumina), according to Illumina’s
instructions. Operational Taxonomic Units (OTUs) tables
were obtained by binding sequences into clusters with a 97%
of pairwise identity and representative sequences were
aligned using PyNAST v.0.1. software against Greengenes
13_08 database with a 97% of sequence similarity, Qiime 1.9.0
software (DeSantis et al., 2006; Caporaso et al., 2010). All raw
sequences have been archived in NCBI database:
PRJNA719939 (https://www.ncbi.nlm.nih.gov/bioproject).

2.3 Data Analysis and Statistics
To evaluate the differences in themilk and fecal metabolic profiles
during the period under study, multivariate and univariate
analyses were applied to the metabolite and OTUs matrices.
Principal Component Analysis (PCA) was used to highlight
possible clusters, to identify outliers and significant
metabolites. All data were autoscaled before further data
processing.

2.3.1 Classification Using Partial Least Squares
Discriminant Analysis
For the classification stage, different models were built using the
Partial Least Square-Discriminant Analysis (PLS-DA) algorithm
(Geladi and Kowalski, 1986; Ståhle and Wold, 1987) on stools
grouped on the basis of breast milk only or weaning diets. Since
PLS-DA is a predictive model, a validation phase is needed in
order to evaluate the reliability of its prediction and, as a
consequence of the candidate biomarkers suggested. To this
purpose, in the present study an approach based on repeated
double cross-validation (rDCV) coupled to permutation tests was
followed (Westerhuis et al., 2008; Biancolillo et al., 2019). The
term repeated indicates that, in order to avoid that the outcomes
are based on a single data splitting scheme, the whole procedure is
repeated a sufficiently large number of times (here 50): this
approach allows also to estimate confidence intervals for the
model predictions and stability/consistence of candidate

biomarkers, which are in fact evaluated on the basis of the
Rank Product (RP). To calculate rank product, at each DCV
iteration, the predictors are ranked according to their
contribution to the PLS-DA model (estimated as absolute
value of the associated model coefficient), the one contributing
the most being given rank 1 and so on. At the end of the rDCV
procedure, for each variable the geometric average of its ranks
across all the iterations is defined as the rank product index. Low
values of RP indicate variables highly contributing to the model
and, accordingly, candidate biomarkers. Finally, to rule out any
possibility that good classification results could be obtained by
chance, permutation tests are used to non-parametrically
estimate the distributions of the classification figures of merit
under the null hypothesis for significance testing. In the present
study, each permutation test was carried out based on 1,000
randomizations. Three figures of merit were used to summarize
the quality and the predictive ability of the classification model,
namely the number of misclassifications (NMC), the area under
the receiver operating characteristic curve (AUROC) and the
discriminant Q2 (DQ2). The number of misclassifications is the
number of samples which are wrongly classified by the model and
it is therefore inversely related to the predictive ability. For a
binary classifier, the ROC curve is a way of displaying how the
sensitivity and the specificity of the model vary as a function of
the discriminant threshold: the closer the area under the ROC
curve is to 1, the better and more accurate the classification
model. Lastly, the discriminant Q2 is a figure of merit which was
introduced for regression-based classification models, such as
PLS-DA: it is defined analogously to classical R2 but residuals are
differentially weighted depending on whether they lead to a
correctly or incorrectly classified sample. For further
interpretation and considerations, the metabolites highlighted
as relevant on the basis of their RP value were considered. Two
tailed Student’s t-test was applied to assess the differences on the
metabolite levels between two milk groups: at the beginning and
at the end of the breastfeeding. p value lower than 0.05 was
considered significant.

2.3.2 Omics Data Integration
Since data were obtained by NMR-based metabolomics and
taxonomical metagenomics, to extract the maximum
information from the experimental outcomes, a multi-
block (data integration) approach was followed (Qannari
et al., 2000). Indeed, in multi-block data analysis, the
matrices collecting the experimental data from the
different techniques (data blocks), rather than being
processed individually, are jointly elaborated, so to
highlight more clearly correlations between metabolites
and OTUs, information which is common between the two
platform and, also, information which is carried uniquely by
each of them. In particular, in the present study both an
exploratory (unsupervised) and a predictive (supervised)
analysis were carried out, by means of Common
component and specific weight analysis (CCSWA, most
commonly referred as ComDim; (Qannari et al., 2000);
and multi-block partial least squares discriminant analysis
(MB-PLSDA), respectively.
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2.3.3 Common Components and Specific Weight
Analysis (CCSWA, ComDim)
ComDim is an exploratory multi-block method which can be
considered as one of the possible generalizations of principal
component analysis for the case when multiple data matrices
should be simultaneously processed (Qannari et al., 2000). In
particular, ComDim aims at extracting components which
explain as much joint (common) variability between the data
blocks as possible. This results in generating a set of scores T,
which reflect the overall similarities/dissimilarities among
the samples based on the simultaneous analysis of all the
data matrices. These scores can, as in normal PC, be
graphically displayed in two- or three-dimensional plots to
provide a visual and immediate representation of the
relationships among the samples. The relative
contributions of the blocks to the individual components,
which allow to identify to what extent the various component
summarize information which is common among the
platforms or unique to some specific blocks, are called
saliences and indicated as λij, i being the component and j
being the block. On the other hand, the common set of scores
T can be projected onto the individual data matrices to obtain
an associated set of loadings Pj for each of the data blocks
under investigation, which allow to interpret the relationship
between the samples (e.g., as shown in a scores plot) in terms
of the measured variables.

2.3.4 Multi-Block Partial Least Squares Discriminant
Analysis
Multi-block PLS-DAMB-PLSDA (Qannari et al., 2000) consists
in building a PLS-DA model after low-level data integration, i.e.
on a data set obtained by concatenating the experimental matrices
corresponding to the different blocks of data (usually, after
scaling each block by its Frobenius’ norm, so to “equalize”
their relative contribution). Validation of the MB-PLSDA
model by means of repeated double cross-validation and
identification of candidate biomarkers based on the values of
the rank product index were carried out as described for single
block PLS-DA in Classification Using Partial Least Squares
Discriminant Analysis.

3 RESULTS

The mother’s body mass index shifted from 24 at day 103 to
22 at day 268. Both weight and length of the baby ranged
within the 75th and 50th percentile during the follow-up
period.

3.1 Breast Milk Metabolic Profiles
The NMR metabolic profiling of the breast milk samples
revealed a total of 39 metabolites identified and quantified.
The 1H chemical shifts, multiplicity, 13C chemical shifts and
assignments are reported as supplementary material
(Supplementary Table S1). To detect the differences in
milk composition between the beginning and the end of

suction, we compared paired samples collected at both of
these points. The result showed a significantly higher content
of lactate (p � 0.007) at the end of suction (Supplementary
Figure S1). Then, the following analyses were performed on
breast milk samples collected at the end of suction. To assess
the evolution of milk composition as a function of lactation
time, expressed as days after the birth, PLS analysis was
carried out. The PLS model showed six significant latent
variables, with R2Y � 0.99 and Q2Y � 0.91. The regression
coefficients analysis showed a significant increase (p < 0.05)
of 3′-fucosyllactose (3′FL) levels and a significant decrease of
N-acetyl moieties of oligosaccharides, dimethylamine
(DMA), lacto-N-fucopentaose III (LNFP III), 2′-
fucosyllactose (2′FL) and lacto-N-fucopentaose I (LNFP I)
levels (Supplementary Figure S2).

3.2 Infant Gut Microbiota Metabolic
Profiling
In stool samples, a total of 61 metabolites were identified, 49
of which were quantified (Supplementary Table S1).
Figure 1 shows the comparison between two representative
breast milk and stool NMR spectra, corresponding to a milk-
based diet time point (day 104 after birth). The pattern of
human milk oligosaccharide resonances appeared mainly
preserved in the stool spectrum. However, the CH-1
HMOs lactosyl moieties (5.23 ppm) signal was barely
visible in the stool spectrum due to the disappearance of
the signal of lactose. The CH-1 α-galactose (α-Gal) resonance
was only present in the stool spectrum. The signal at 5.02 ppm
(possibly related to a fucosyl-moiety) was almost
undetectable in stool samples. Four representative NMR
spectra were reported in Figure 2 to show the evolution of
the HMOs trend in stools due to the infant’s gut microbiota
activity throughout the time. From day 103 to day 174, the
signals assigned to 2′fucosyllactose (2′FL), lacto-N-
fucopentaose I (LNFP I) and lactodifucotetraose (LDFT)
disappeared and only lower levels of lacto-N-difucohexaose
I, II (LNDFH I, II) and lacto-N-fucopentaose III (LNFP III)
were observed. The pattern of HMOs in the stool spectrum at
day 219 changed again showing the disappearance of the
3′fucosyllactose (3′FL), lacto-N-difucohesaose I, II (LNDFH
I, II), LNFP III and fucosyl (α1-4) resonances. As shown in
the HSQC spectrum of day 263 sample, the lactosyl moiety
cross-peak was the only still present, although barely visible,
whilst everything else disappeared over time. In order to
explore stools data, a PCA was performed on the
metabolite concentrations of 32 samples. The PCA model
showed two principal components (PC1 and PC2) accounting
for 51 and 13% of the overall variance, respectively
(Figure 3). We can easily observe two main clusters along
PC1: samples from days 103–175 and samples from days
219–268. A further clustering could be observed along PC2
axis (Figure 3), still related to the infant’s diet.

The PC1 loadings allowed to characterize these two
clusters in relation to the diet, indeed the first one was
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characterized by higher values of HMOs and glycolytic
intermediates, such as lactate and succinate, whilst the
second one was characterized by higher values of short
chain fatty acids (SCFA) (i.e., acetate, butyrate and
propionate), branched (i.e., valine, isoleucine) and
aromatic (i.e., phenylalanine, tyrosine) amino acids,
intermediates of aromatic amino acids, ethanol,
methylamine compounds (i.e., trimethylamine,
methylamine) and nicotinamide (data not shown). To
explore the data distributions more in the details, two
PLS-DA models were separately calculated on the first
cluster (Figure 4) as well as on the second cluster
(Supplementary Figure S5).

Figure 4 shows that the first cluster distinguishes between the
BM period (days 103–108 and 145–147) and the FBM period
(days 165–175). The significant RP values of are reported in
Figure 4B. FBM stool samples showed high levels 4-
hydroxyphenylacetate (4-HPA), 3′SL, propionate, U04, 1,2-
propanediol (1,2-PD), malonate and low levels of fucosyl-
oligosaccharides as compared to BM samples. Intriguingly,
methanol and succinate levels in FBM samples were lower

than BM ones. The significance of the PLS-DA model in
DCV is witnessed by p � 0.007 value for NMC, AUROC and
DQ2 (Figure 4C). The total correct classification rate (ccr) was
87 ± 4% (ccr � 91 ± 7% and 82 ± 8% for BM and FBM,
respectively).

Supplementary Figure S3 shows the histograms of the time-
dependent changes in stools metabolite levels during the five
examined sets of consecutive days, highlighting interesting
trends of variation. Metabolite levels showed either a
increasing (i.e., SCFA, amino acids, ethanol, biliary salt 2) or
decreasing (i.e., oligosaccharides, succinate) trend, related to the
different period under study. Intriguingly, biliary salt 2 displays
a tendency which differs from that of the biliary salt 1
(Supplementary Figure S3). Their resonances represent the
protons linked to the C18 of unconjugated and conjugated
biliary salts. Comparing the levels of biliary salt 1 (0.67 ppm)
and biliary salt 2 (0.73 ppm), a similar trend is shown from day
103 to day 175 for both species but, starting from day 219 to day
268, an increase in levels of some particular species of biliary salt
2 appeared. This might be the deoxycholic salt and its glycine
and taurine conjugates, connected to the weaning period. Only

FIGURE 1 | In the upper panel are showed two representatives 1H NMR spectra of breast milk (red) and infant’s stool (blue) collected at day 104 after birth, as
focused on the human milk oligosaccharides (HMOs) anomeric region from 5 to 5.50 ppm. The corresponding Heteronuclear Single Quantum Correlation (HSQC)
experiment of the stool sample is showed in the lower panel. In the upper panel, the lactose resonance of breast milk is the highest in intensity. To better show that most
of the metabolites are shared in the two biological matrices at this specific time point, a cut-off has been defined and both spectra have been scaled in intensity. List
of abbreviations: α-Gal, α-galactose; Fuc, fucose; GlcNAc, N-acetylglucosamine; 2′FL, 2′fucosyllactose; 3′FL, 3′fucosyllactose; LDFT, lactodifucotetraose; LNDFH I, II,
lacto-N-difucohesaose I, II; LNFP I, III, lacto-N-fucopentaose I, III.
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FIGURE 2 | 1H NMR spectra of infant’s stool samples as focused on the human milk oligosaccharides (HMOs) anomeric region from 5 to 5.50 ppm. Spectra of
samples collected at days 103, 174, 219, and 263 after birth were reported in the upper panel. A representative Heteronuclear Single Quantum Correlation (HSQC)
experiment of a fecal sample collected at the last sampling point, corresponding to day 263, showed how the lactosyl resonance is the only left among the other HMOs
resonances (lower panel).

FIGURE 3 | PCA scores plot performed on the metabolomic dataset of stool samples. The first principal component (PC1) accounts for the 51% of the overall
variance, while the second (PC2) accounts for the 13%. Blue dots: 103–147 days; red dots: 165–175 days; green dots: 219–228 days; black dots: 262–268 days.
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few metabolites exhibited a peculiar trend in specific periods.
Formate and 1,2-PD are some of those, increasing their levels
just in the timeframe between day 165 and day 175,
concurrently with the addition of a fruit snack to an
exclusive milk-based diet (FBM period).

The Pearson’s correlation matrix restricted to 1,2-PD,
ethanol, acetoin, butyrate, acetate, propionate, formate,
succinate, and 2′FL (as representative of the oligosaccharide
class) was built as a heatmap in order to detect changes in the
metabolite correlation network occurring during the two main

FIGURE 4 | PLS-DA analysis in Double Cross Validation (DCV) of stool samples on BM (red) and FBM (blue) periods. Panel (A) reports latent variables (LV) scores
plot. Panel (B) reports the variables that significantly contributes to the PLS-DA model by means of the rank product (RP). The criterion RP <average RP was used to
identify the potential markers, that are the ones displayed as bar plot in the panel. Red variables were higher in the BM period; blue variables were higher in the FBM
period. Panel (C) reports the validation of the PLS-DA model. The figures of merit namely Number of Misclassifications (NMC), Area Under the Receiver Operating
Characteristic curve (AUROC) and Discriminant Q2 (DQ2), calculated on the outer cross-validation loop (red vertical bars) were compared to their respective distribution
under the null hypothesis (estimated by means of permutation test), indicating that the discrimination observed is statistically significant.
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diet-dependent periods: 103–175 days and 219–268 days
(Figure 5). Positive correlations among 1,2-PD, ethanol,
acetoin, butyrate, acetate, propionate and formate were
showed at 103–175 days (Figure 5A); succinate was
positively correlated with 2′FL but they were both
negatively correlated with the other metabolic products. At
220–268 days mostly all of the correlations between
fermentation products disappeared. Only a positive
correlation between butyrate and ethanol and a negative

correlation between butyrate and 1,2-PD were still observed
(Figure 5B).

3.3 Infant Gut Microbiota Bacterial
Composition
Targeted taxonomical metagenomics was performed on 25 stool
samples (out of a total of 32) collected in five sets of consecutive
days: 103–106, 145–147, 171–175, 220–228, and 262–268 days

FIGURE 5 | Heatmap built from Pearson’s correlation coefficients for the microbial metabolic products of carbohydrate degradation. Comparison between (A)
days 103–175, predominantly breastfeeding, and (B) days 219–268, predominantly solid food. Red: positive correlations; blue: negative correlations. Correlation
coefficient >0.6 and < −0.6 are significant with p < 0.05.

FIGURE 6 | Relative abundance of OTUs at phylum (A) and genus (B) levels of the gut microbiota profiling. Where the genus level was not detectable, order (o_) or
family (f_) was reported.

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 6884409

Conta et al. Multi-Omics Study of a Mother-Infant Dyad

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


after birth. The relative abundances of OTUs at phylum level,
expressed as percentage, are showed in Figure 6. The infant
enterotype was characterized by high levels of Firmicutes,
Proteobacteria and Actinobacteria (Figure 6A). Bacteroidetes
were lower than 1% abundance in most of these days. Results
did not show significant changes from day 103 to day 268.

Figure 6B shows the relative abundance of OTUs at genus-level.
OTUs exceeding 1% abundance were included in the study, hence
only 48 out of the 256 OTUs analyzed were considered. The
selection was made by using an identity threshold >80%. The
analysis of the qualitative data highlighted a high, albeit fluctuating,
abundance of Bifidobacteria from day 103 to day 268. On the
contrary, important variations in the abundance of other OTUs
were observed. Changes between days 103–106 and 145–147 could
not be ascribable to a different feeding. For instance, Veillonella
(green section) and f_Enterobacteriaceae (brown section)
abundance variations occurred during the breastfeeding period
(BM), when no diet change occurred. On the other hand, a
characteristic variation in the microbiota composition occurred
alongwith the transition from a dietmainly based on breastmilk to
weaning: from day 220 to day 268 high abundance of
Ruminococcus belonging to the family of Lachnospiraceae (light
blue section), g_Lachnospiraceae (violet section), and unclassified
Ruminococcaceae (orange section) were observed. However, these
patterns were unstable even whether the diet did not change. The
trend of some OTUs was reported as histograms for the five
examined sets of consecutive days in Supplementary Figure S4.

The changes between microbial products and OTUs during the
transition from exclusive breastfeeding to weaning can be
disentangled through the Pearson’s correlation matrix analysis,
reported in the heatmap in Figure 7. In Figure 7A, 1,2-PD,
ethanol, acetoin, butyrate, acetate and formate levels were

positively correlated with Bacteroidetes and Firmicutes genera
(known butyrate producers), including Bacteroides, Prevotella,
Flavobacterium, unclassified Gemellaceae, Faecalibacterium and
Veillonella. A positive correlation with Pseudomonas, belonging to
Proteobacteria, was also observed. The oligosaccharides, represented
by the metabolite 2′FL, were negatively correlated with these OTUs,
even though statistical significance was not achieved. In the weaning
period (Figure 7B) the previous correlation network strongly
changed, indicating just a positive correlation between those OTUs
and 1,2-PD. Correlation with butyrate levels became negative. On the
other hand, butyrate-producing OTUs belonging to Firmicutes and
Proteobacteria, such as Lactobacillus, SMB53, Ruminococcus,
Mogibacteriaceae, unclassified Aeromonadaceae and Citrobacter,
resulted positively correlated with butyrate, acetoin and ethanol.

3.4 Omic Data Integration: Metabolomics
and Taxonomical Metagenomics of Stool
Samples
The ComDim model was applied in order to extract
components that could account for as much common
variability as possible between the metabolomics and
taxonomical metagenomic data blocks. In particular, the
model was calculated after individual auto-scaling of each
data matrix and successive block-scaling (dividing each block
by its Frobenius’ norm). Figure 8 shows the scores plot and
the individual component loadings plots. For the first two
components, the contribution to the individual components
(salience) of the metabolome block was higher than that of
the metagenome block (data not shown). This finding was
confirmed by the CC score plot (Figure 8A) which showed a
score distribution very similar to the one obtained with the

FIGURE 7 | Heatmap built from Pearson’s correlation coefficients for the microbial metabolic products of carbohydrate degradation and OTUs. Comparison
between (A) days 103–175, predominantly breastfeeding, and (B) days 220–268, predominantly solid food. Red: positive correlations; blue: negative correlations.
Correlation coefficient >0.6 and < −0.6 are significant with p < 0.05. Only OTUs with significant correlation coefficient for carbohydrate degradation products were
reported in figure.
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PCA model performed on the single metabolomics matrix
(Figure 3). Of particular interest is the overlapping between
the loadings of Bacteroides, Prevotella, Flavobacterium,
Faecalibacterium, Pseudomonas and Veillonella
(Figure 8C) with 1,2-PD and formate (Figure 8B) in the
quadrant corresponding to the samples collected from day
171 to day 175 days. The results of multiblock PLS-DA in
DCV are graphically displayed in Figure 9. Also in this case,
prior to model building, the individual data matrices were
preprocessed by autoscaling followed by division by their
respective Frobenius’norm, and successively concatenated
row-wise. The mean scores of the outer loop (external
validation) samples along LV1 and the metabolites with
significant RP values are also given in Figures 9A,B,
respectively. The model turned out to be highly significant
at the permutation test (p < 10−4), as shown in Figure 9C, and
predictive with 100% correct classification rate.

4 DISCUSSION

In the present study, the longitudinal multi-omics investigation on a
single mother-infant dyad was proposed to examine in depth the
relationships among diet composition, gut microbiota metabolism
and composition during the transition from breastfeeding to
weaning. We focused on the time-course changes that occurred
in breast milk composition and in the fecal metabolome of the

newborn, analyzing its composition during the exclusive
breastfeeding until the transition to semisolid food.

The experimental design of the study was meant to verify
reproducibility of the observations within sets of consecutive days
and to separate the variations due to the microbiota adaptation
from those induced by feeding. In a previous study (Bäckhed
et al., 2015), the stronger impact in shaping the gut microbiota
composition was suggested to be due to the cessation of the
breast-feeding, rather than the introduction of solid foods. In our
study the breastfeeding was not completely stopped over time,
even if largely reduced, guaranteeing a minimum intake of
HMOs. Nevertheless, the gut microbiome changes occurred
concurrently with the introduction of solid foods, as Bäckhed
and colleagues also observed (Bäckhed et al., 2015), suggesting a
more complex dynamic that involves the microbiota adaptation
to a more diversified diet along with the host’s development.

Starting from the description of the microbiota dynamic
progression of a single individual, the purpose of the work
was not intent on providing a unique physiological reference
model, but to make the main findings as generalizable and, also,
to make the conceptualization of the multi-omic approach
transferable to wider study-cases, either within the field of
strategies for precision nutrition and/or treatments.

The maternal breast milk contained (α 1-2)-linked fucose
HMOs (i.e., as 2′FL, LNFP I, LNDFH I and LDFT) thus
confirming mother’s Secretor genotype (Praticò et al., 2014),
which is common in many populations (Lewis et al., 2015).

FIGURE 8 |ComDim scores and loadings plots of the individual components built frommetabolomics and taxonomical metagenomics data. Panel (A): scores plot;
panel (B): loadings plot for the metabolomic data set; panel (C): loadings plot for the metagenomic data set.
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The intestinal degradation of these oligosaccharides is up to the
ability of certain bacterial taxa to cleave the (α 1-2)-linked fucose,
exposing the core of the oligosaccharides to the sequential
enzyme attacks of other commensals (Lewis et al., 2015;
Milani et al., 2017). High levels of fucosyl-oligosaccharides
were observed in infant’s stools, identifying this trait as a not
common occurrence (Del Chierico et al., 2015).

The consumption of fucosyl-(α 1-2)-oligosaccharides is
commonly associated with an increased abundance of
Bifidobacterium species (Bidart et al., 2014; Lewis et al., 2015).
However, their efficient utilization is not exclusive for infant’s
Bifidobacteria but it is strain-dependent and linked to the

presence of ATP-binding cassette transporters (ABC)
transporter (Matsuki et al., 2016).

Furthermore, many strains of Bifidobacterium are also
reported to use Lacto-N-Tetraose (Sela et al., 2008). According
to these findings, data collected from the BM period appeared to
be in line with an increased abundance of Bifidobacteria non-
consuming fucosyl-(α 1-2)-oligosaccharides. Moreover, CH-1
α-galactose resonance is only present in the stool spectrum,
due to intestinal lactose hydrolysis. Despite the high
Bifidobacterium spp. abundance, the galactose intracellular
metabolism was not efficient enough because of the absence
Tagatose pathway, in agreement with previous results (Wu

FIGURE 9 | Results of Multiblock PLS-DA in repeated Double Cross Validation for the comparison between 103–175 days and 220–268. Panel (A): plot of the
mean scores of the outer loop samples along the only latent variable of the model (LV1). Blue: 103–175 days; red: 220–268 days. Panel (B): significant variables for the
PLS-DA model by means of the rank product (RP). The criterion RP <average RP was used to identify the potential markers, which are the ones displayed as bar plot in
the panel. Blue: values higher in samples collected at 103–175 days; red: values higher in samples collected at 220–268 days. Panel (C): validation of the PLS-DA
model. The figures of merit namely Number of Misclassifications (NMC), Area Under the ROC curve and Discriminant Q2, calculated on the outer cross-validation loop
(red vertical bars) are compared to their respective distribution under the null hypothesis (estimated by means of permutation test), indicating that the discrimination
observed is statistically significant.
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et al., 2015). Concurrently with the intake of a fruit snack (FBM
period), 2′FL, LNFP I, LNDFH I and LDFT levels dropped, thus
suggesting the development of bacterial strains consuming
fucosyl-oligosaccharides. Because of the breast milk intake per
day was nearly constant, the decrease in fecal fucosylated HMOs
cannot be explained just by the physiological reduction of the
HMOs content. Although 16s rRNA profiling data could not
prove variations at genus level, changes occurring in the FBM
period for both 1,2-PD abundance and Bacteroidetes phylum
suggested the development of fucosylated-HMOs consuming
bacterial strains, possibly influencing the other commensals.

Through the exploration of the loadings plot of the two data
blocks, the ComDim analysis allowed to point out the co-
occurrence of Bacteroides, Prevotella, Flavobacterium,
Faecalibacterium, Veillonella and Pseudomonas with an
increasing in 1,2-PD and formate levels.

Co-fermentation experiments of oligosaccharides and fucosyl-
oligosaccharides was found to promote 1,2-PD concentrations,
suggesting a synergistic effect (Dedon et al., 2020). Its production
has been related to the super-pathway of fucose degradation
through the intra-cellular α-fucosidase activity and a series of
phosphorylated intermediates (Boronat and Aguilar, 1981).
Bifidobacterium strains i.e., Bifidobacterium longum ssp.
infantis lack the genes encoding proteins to use fucose via
phosphorylation (Sela et al., 2008), which are however
possessed by other bacteria such as Escherichia coli. Moreover,
some studies reported that the Eubacterium hallii, an early
occurring commensal, can metabolize 1,2-PD to produce
propionate, butyrate and formate, all metabolites which have
positively impact on the trophic relationship within the infant gut
microbiome (Schwab et al., 2017; Bunesova et al., 2018).

In line with these results, a recent glycomics and
metagenomics analyses conducted on two infants showed a
shift of fecal bacterial populations from HMOs-non-
consuming to HMO-consuming bacteria during the first
13 weeks of life, associated with an increase in
Bifidobacteriaceae and Bacteroidaceae (De Leoz et al., 2015).
However, in the present study, the abundance of Bacteroidetes
remained below the expected levels previously observed. The
increase in 1,2-PD levels observed during the FBM period is likely
to be ascribable to the fucose degradation pathway depending on
the development of mutualist bacteria selected by fruit
carbohydrates and polysaccharides. The correlation analyses
on metabolite from BM and FBM samples showed a strong
positive relation among 1,2-PD, SCFA, formate and a negative
correlation between these metabolites and 2′FL, succinate.
Ethanol was significantly correlated with acetate, acetoin and
formate. Exploring the correlations among metabolites and
OTUs in the same sample-sets, Bacteroides, Prevotella,
Flavobacterium, Faecalibacterium, Veillonella and Pseudomonas
appeared to be directly correlated with SCFA, acetoin, 1,2-PD,
ethanol, and inversely correlated with 2′FL and succinate. These
metabolites are involved in pyruvate catabolism carried out by the
human gut microbes (Oliphant and Allen-Vercoe, 2019).

The correlation matrix confirmed a development of trophic
interactions among bacterial species, particularly when fruits
were added to the infant’s diet. With the introduction of

complementary foods to the diet (three meals out of a total of
five), these correlations reversed. At the beginning of weaning the
infant ate a significant proportion of starch (tapioca and rice),
plant metabolites (vegetable broth), animal proteins (lamb baby
food) and fibers. Due to the physiological immaturity of the
pancreatic exocrine function during this phase of growth, they
could escape from the complete digestion reaching the colon
microbiota, providing new substrates and promoting the
dominance of novel bacterial communities. The transition
from an exclusive breast milk-based diet to the introduction of
semi-solid foods was well described by the PCA in Figure 3,
where the separation along PC1 mainly reflected the effects of the
diet composition, thus the transition from the HMOsmetabolism
to the metabolic pathways involving starch and protein
degradation.

In the weaning period was observed a huge increasing in SCFA
(acetate, propionate, butyrate) and ethanol, associated to the
increase in amino acids and their intermediates, involved in
protein fermentation (β-alanine and 4-hydroxyphenylalanine)
and catabolism (branched SCFA).

High levels of biliary salt 2 appeared to be in agreement with
the recent results obtained by Tanaka et al. on healthy Japanese
infants during the first 3 years of life (Tanaka et al., 2020). They
found out that the fecal unconjugated and conjugated
deoxycholic acids were associated with an increment of
Lachnospiraceae abundance and Ruminococcus, during the
weaning (Tanaka et al., 2020).

The MB-PLSDA described the metabolites and the microbiota
structure changes induced by the transition diet. The increase of
SCFA, branched SCFA, amino acids and intermediates of protein
fermentation was positively correlated to Oscillospira,
Ruminococcus belonging to Lachnospiraceae, Eggerthella,
unclassified o-Clostridiales and f_Ruminococcaceae
abundances. Human observational studies found positive
associations between Lachnospira abundance and consumption
of fruits and vegetables (Herman et al., 2020). The fluctuation of
the abundance of Bifidobacterium seemed to be independent of
the feeding transition.

The end-products of the microbial anaerobic metabolism of
fucosyl-oligosaccharides or monosaccharides derived from starch
or pectins could act as an intermediate in a mixed mutualistic
microbiota. Embden-Meyerhof-Parnas (EMP) glycolysis can be
considered as the most important fermentation leading to the
production of pyruvate and acetyl-CoA.

In an anaerobic environment, bacteria regulate energy
production through the selection of a range of end-products,
during the substrate catabolism. This occurs through oxidation/
reduction processes which keep the redox balance constant by the
control of intracellular pH and ionic strength, crucial factors for
the metabolism thermodynamics. It was possible to distinguish
the infant’s gut microbiota metabolism between two phases: a first
phase mainly dependent on carbohydrate metabolism with
lactate, acetate, propionate, succinate and formate as microbial
fermentation’s end-products, with pyruvate as metabolic node
and a second phase mainly dependent on mixed substrates
catabolism producing acetyl-CoA, acetate, ethanol and
butyrate as end-products (Figure 10). This arrangement
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seemed to be in agreement with previous metabolic models
describing the microbial metabolic modulation by changes in
the redox potential, in a multi-substrate environment (Villano
et al., 2017).

5 CONCLUSION

The transition from an exclusive breastfeeding to the introduction of
complementary foods in the infant’s diet could be the driving force
underlying changes in fecal microbiota metabolism. However, a
direct impact of the microbiota composition was not yet observed.
The PCA scores plot and the ComDim scores plot turned out to be
very similar, thus suggesting that theweight of themetabolome block
was higher in determining the variations induced by diet changes
than the taxonomical metagenomic one. The values of ComDim
salience provided additional confirmation of this observation.
Moreover, the exploration of abundances of the main genera
presented in stool samples revealed a high variability that
appeared not to be dependent on the diet. However, the results
were similar enough within each block of days, thus confirming the
good reproducibility of a sampling carried out on consecutive days.

Our approach on a single mother-infant dyad could be
considered a strong limitation whether we look for a standard
physiological reference model. It is well known that the infant gut
microbiota is extremely variable among individuals in the first
2 years of life. The aim of our study was to get more information
regarding the relationship among microbiota structure,
microbiota metabolic functions and diet, and we believe that
the proposed model of single dyad can be better explanatory. In
general, this information was obtained by using an in vitro
intestinal model or gut-on-a-chip, simulating the intestinal
conditions and the digestion (Ashammakhi et al., 2020). As a

consequence, our approach can be able to give more consistent
evidence on the relationship between gut microbiota structure
and metabolism.

Furthermore, our aim was also to define a protocol study for
the microbiota changes during the diet transition from
breastfeeding to weaning, to be applied to more other different
mother-infant dyads.

The repetition of the sampling for some days during the
different periods gave evidence of the sampling reproducibility
within consecutive blocks of days; whereas it showed the
instability and the fluctuation of microbiota structure as
weaning proceeded.

The intestinal ecosystem in the first 10 months of life is yet not
stable. Although the gut microbiota composition is strongly
influenced by diet transition, the bacterial communities were
still in a constant evolution as a function of the infant’s
development and intestinal physical-chemical environment. In
this phase and during the weaning, in the absence of pathological
events, the microbiota metabolism seems to be more important
than the single bacterial genomes. Species can be substituted by
other species able to ferment those substrates and, therefore, the
gut environmental physical-chemical variables (pH, external
electron acceptors) appear to be the driving factors
conditioning the microbial complex metabolic response.

In this stage of life, the fecal metabolome appeared to be more
representative of the diet changes than gut microbiota.
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FIGURE 10 | Metabolic pathway of carbohydrate fermentation. In red are highlighted the microbial fermentation’s products as measured by NMR spectroscopy.
The products depending on Pyruvate hub are predominant during BM and FBM periods, the products depending on AcetylCoA hub are predominant during W period.
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