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Purpose: The purpose of the research was to assess the prognostic value of

three-dimensional (3D) texture features based on diffusion-weightedmagnetic resonance

imaging (DWI) for esophageal squamous cell carcinoma (ESCC) patients undergoing

concurrent chemo-radiotherapy (CRT).

Methods: We prospectively enrolled 82 patients with ESCC into a cohort study. Two

DWI sequences (b = 0 and b = 600 s/mm2) were acquired along with axial T2WI and

T1WI before CRT. Two groups of features were examined: (1) clinical and demographic

features (e.g., TNM stage, age and sex) and (2) changes in spatial texture characteristics

of the apparent diffusion coefficient (ADC), which characterizes gray intensity changes

in tumor areas, spatial pattern and distribution, and related changes caused by CRT.

Reproducible feature sets without redundancy were statistically filtered and validated.

The prognostic values associated with overall survival (OS) for each parameter were

studied using Kaplan-Meier and Cox regression models for univariate and multivariate

analyses, respectively.

Results: Both univariate and multivariate Cox model analyses showed that

the energy of intensity histogram texture (IHIST_energy), radiation dose, mean of

the contrast in distance 1 of 26 directions (m_contrast_1), extreme difference

of the homogeneity in distance 2 of 26 directions (Diff_homogeneity_2), mean

of the inverse variance in distance 2 of 26 directions (m_lnversevariance_2),

high-intensity small zone emphasis (HISE), and low-intensity large zone emphasis

(LILE) were significantly associated with survival. The results showed that 6 texture

parameters extracted from the ADC images before treatment could distinguish among

high-, medium-, and low-risk groups (log-rank χ2 = 9.7; P = 0.00773). The biased

C-index value was 0.715 (95% CI: 0.708 to 0.732) based on bootstrapping validation.
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Conclusions: The ADC 3D texture feature can be used as a useful biomarker to predict

the survival of ESCC patients undergoing CRT. Combining ADC 3D texture features with

conventional prognostic factors can generate reliable survival prediction models.

Keywords: esophageal squamous cell cancer, texture analysis, magnetic resonance imaging, diffusion-weighted

magnetic resonance imaging, chemo-radiotherapy

INTRODUCTION

Esophageal squamous cell carcinoma (ESCC) is a disease
with increasing incidence, and the diagnosis still carries a
poor prognosis despite advances in therapy (1). Currently,
chemo-radiotherapy (CRT) is the standard treatment for locally
advanced unresectable ESCC. Due to tumor heterogeneity, these
patients usually do not have the same response to a specific
therapy. Thus, many patients may receive therapy that provides
no benefit to them. Recently, a major research focus has been
on how to provide individualized therapy. Individualized therapy
requires the development of biomarkers to predict treatment
prognosis and outcome. Imaging biomarkers, particularly those
based on functional imaging techniques that can characterize
biological effects at the cellular level, offer great potential to
improve individualized therapy (2).

Diffusion-weighted magnetic resonance imaging (DWI) is a
powerful MR functional imaging sequence sensitive to water
diffusion (3) that can detect morphological changes in tumors
at the molecular or cellular level. DWI has been studied for its
potential to evaluate the treatment response to CRT for several
types of cancers, including rectal cancer (4, 5). The quantitative
apparent diffusion coefficient (ADC) map is obtained from two
different b values to remove the T2 “shine-through” effects. This
can allow quantitative assessment for a treatment response. The
ADC can also be used to characterize hypercellularity, distinguish
cystic lesion and solid regions, and monitor the change in
cellularity within the tumor over time (6). A recent study found
that the ADC map can be used to qualitatively assess the tumor
area and detect metastatic lymph nodes (LNs) in esophageal
cancer (EC) (7).

Recently, the application of texture analysis (TA) in tumor
diagnostics has caught the attention of clinical researchers.
Texture is an important feature of images that has been used
in qualitative and quantitative classification and analysis of
materials in industry and medicine. Medical applications of
TA provide a quantitative means to analyze and characterize
the properties of tumor tissues and their physiological and
pathological stages (8). Previous studies have reported that
texture analysis can predict the treatment response and predict
patient survival (9–11). It was reported that 3D texture analysis
can be more useful than 2D analysis in characterizing intra-
tumor heterogeneity (12). In the study of ESCC, because the
esophagus is a tubular organ, 3D TA is expected to provide richer
spatial heterogeneity information than slice samples.

The objective of this study was to prospectively investigate the
prognostic value of 3D DWI features in ESCC patients treated
with CRT. By studying different types of global and regional

3D features, we evaluate their potential prognostic value in
correlation with patient survival.

MATERIALS AND METHODS

Clinical Characteristics of the Patients
Eighty-two patients with newly diagnosed ESCC treated with
CRT between 2010 and 2014 were initially enrolled in this
prospective study. The inclusion criteria for the study included
the following: (1) a confirmed diagnosis of ESCC with tissue
pathology; (2) TNM staging according to AJCC 6th Edition,
2002; (3) a Karnofsky performance status (KPS) score >70; (4)
no distant metastases under routine medical care; (5) informed
consent to have DWI examinations before and during the course
of CRT. Ten patients were excluded from the study because
of a contraindication to MRI examination, such as those with
pacemakers, metal objects, or a claustrophobic disorder. The
clinical and treatment characteristics of the qualified 72 patients
are summarized in Table 1. The mean age at the time of diagnosis
was 62.8 ± 9.1 years (median, 62.5 years; range, 45–84 years).
The male patients comprised 69.4%. Fifty-nine patients had T3
or T4 primary lesions, 53 patients were determined to have N1
(61%) with lymph node metastases, and 11 and 8 patients were
at the N0 and N2 stages, respectively. No patient had distant
metastases (Table 1).

MRI Acquisition
MR imaging in expiration breath-hold was performed before
starting the treatment for tumor staging. The following imaging
protocols were used:

• 2D T1-weighted fast low-angle shot (FLASH) sequence
(TR/TE, 140/2.5 ms; flip angle, 70◦; slice number, 24; gap:
5mm; matrix, 512× 384; field of view (FOV), 380× 285mm);

• Axial TSE T2-weighted MRI (T2WI; slice thickness, 4mm;
slice number, 24; gap: 5mm; TR/TE, 1580/72 ms; flip angle,
140◦; matrix: 512× 512; FOV, 400× 400mm);

• DWI obtained in the axial planes using a single-shot spin-
echo echo planar (SE-EPI) technique (TR/TE, 6800/70ms;
slice thickness, 4mm; zero gap; matrix, 128 × 88; FOV, 430
× 295mm); the b values (diffusion-sensitive factor) of 0 and
600 s/mm2 were selected according to a previous pathological
study at our institution (13), showing that the tumor lengths
measured using a DWI scan of b = 600 s/mm2 were close to
the real tumor lengths based on a surgical specimenwith a high
concordance with pathology. As shown in Figure 1, the DWI
scan with b = 600 s/mm2 has a good image quality relative to
the other DWI scans with b= 800 s/mm2 or 1,000 s/mm2.
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TABLE 1 | Clinical and treatment characteristic.

Prognostic factors N %

No. of patients 72

AGE

>=62 38 52.8

<62 34 47.2

SEX

Male 50 69.4

Female 22 30.6

LESION LENGTH

<=5.5 cm

>5.5 cm

PRIMARY SITE

Cervical 2 2.8

Upper esophagus 24 33.3

Middle esophagus 35 48.6

Lower esophagus 11 15.3

TNM STAGE

T2 13 18.1

T3 20 27.8

T4 39 54.2

N0 11 15.3

N1 53 73.6

N2 8 11.1

M0 72 100

Treatment characteristics

RADIATION DOSE

50Gy at 2 Gy/fx 1 1.4

54Gy at 1.8 Gy/fx 5 6.9

54Gy at 2 Gy/fx 2 2.8

56Gy at 2 Gy/fx 1 1.4

57.6Gy at 1.8 Gy/fx 1 1.4

59.4Gy at 1.8 Gy/fx 4 5.6

60Gy at 2 Gy/fx 47 65.3

61.2Gy at 1.8 Gy/fx 5 6.9

63Gy at 2 Gy/fx 6 8.3

RADIATION TYPE

IMRT 58 80.6

3DCRT 14 19.4

3DRT, 3 dimensional conformal radiation therapy; IMRT, intensity modulated radiation

therapy; fx, fraction.

Motion artifacts were minimized by acquiring all images with
breath hold in the expiration phase. Because the tumor volumes
could change slightly at the breath hold, two DWI scans with
b = 0 and b = 600 were acquired in one cycle, improving the
estimation of signal decay. This was expected to provide sufficient
imaging information to describe tumor heterogeneity.

Image Preprocessing
An image preprocessing procedure was performed that included
tumor segmentation and intensity normalization. The MRI
data set in the DICOM format was imported into MATLAB

(The Math Works Inc., Natick, MA). An in-house-developed
radiomics image analysis program implemented in MATLAB
was used for TA (available for share, https://pan.baidu.com/
s/1Tl_PsXrQj-OBJt-1cNjaZQ). The method used in this study
is described in the Data Supplement. To perform reliable
measurements, as suggested by Collewet et al. (14), the MRI data
were kept in the raw data form, and voxels within the tumor
region with intensities outside the range µ ± 3δ were excluded
in subsequent texture computations. Voxel intensity values were
typically resampled in four discrete values (16, 32, 64, or 128):

p (x) =



Range×

I (x) −min i
i∈2

max i
i∈2

−min i+ 1
i∈2



 (1)

where “Range” is the discrete values chosen (16, 32, 64, or 128),
I (x)is the intensity of the original image, and2 is the set of pixels
in the delineated area. The use of different resampling schemes
was tested. As discussed in the Data Supplement, 32 discrete
values for renormalization produced the most reliable results.

Tumor Delineation Using MRI Data
The tumor was delineated based on abnormal regions from T2-
weighted imaging (T2WI), DWI and ADC maps. Axial ADC
maps were generated using an Extended SiemensMRWorkspace
workstation. The lesions showed relatively higher signals on
DWI maps and lower signals on ADC maps. Pre-CRT MRI was
first evaluated using the combination of corresponding T2WI
and ADC images and matching between DWI and ADC to
correctly position the regions of interest (ROIs) in the primary
tumor. Axial T2 images in the same plane were referenced by
the observers due to a lack of anatomic details because of the
low signal-to-noise ratio (SNR) on DWI or ADC. Therefore, the
registration accuracy between ADC/DWI and T1WI/T2WI was
important for the process, which relies on careful registration by
the alignment of local bone structures between ADC and T2WI
images. The ROI was drawn along the border of the low signal
of the tumor on the b = 600 mm/s2 ADC images to cover the
entire tumor area of each selected slice, avoiding regions with
distortions or artifacts by verifying the lesion boundaries on
T2WI. Delineation of the lesions was performed independently
by two observers. Manual delineations were performed using
MIM software (MIMvista Corp, Cleveland, OH). Independent
samples t-test or the Kruskal-Wallis H test, where appropriate,
was used to assess the differences between the features generated
by reader 1 and those by reader 2, as well as between the twice-
generated features by reader 1. Inter- and intra-class correlation
coefficients (ICCs) were used to evaluate the intra- and inter-
observer agreements of the contour agreement and feature
extraction. ICC values >0.80 indicated good agreement. A free-
hand ROI was drawn along the border of the low signal of
the tumor on the b = 600 images to cover the entire tumor
area of each selected slice, by referencing T2WI to verify the
lesion boundaries and ensure inclusion of the entire tumor
area (Figure 2).
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FIGURE 1 | The DWI scans of b = 600, 800, 1,000 s/mm2 from the same patient (82 years old, male, T3N0M0).

FIGURE 2 | A free-hand ROI was drawn along the border of the low signal of the tumor on the b = 600 images to cover the entire tumor area of each selected slice.

(A,B) show image heterogeneity by the histogram (C). (D) illustrates a tumor slice of the resulting resampled ROI for each of these discretization ranges.

Texture Analysis
From ADC images, four subset features were extracted (Table 2)
to characterize tumor heterogeneity at global and regional
levels using first-order and higher order statistics. These
parameters were used to predict the patient response to CRT
and survival. Global information was described by intensity
histogram parameters (IHIST), including variance, mean, energy,
entropy, skewness, and kurtosis, while regional information was
characterized by intensity size-zone variability features (ISZFs).
Regional heterogeneity information included intensity variability

in the size and tumor zones [see Tixier et al. (15) for the
mathematical definition of the regional heterogeneity formula
used in this study]. Local heterogeneity information was derived
using the co-occurrence of the gray-level co-occurrence matrix
(GLCM) and gray-level gradient co-occurrence (GLGCM).
Twenty-six gray-level co-occurrence matrices were computed in
the direction of the 26 uniform distributions on the sphere from
each voxel data area. GLGCM was acquired in the original ADC
image, and the corresponding gradient image of the ADC image
and 15 Haralick features (16) were extracted from GLGCM. To
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TABLE 2 | Extracted texture features.

IHIST GLCM* GLGCM* ISZFs

Mean Mean/diff energy Small gradient emphasis Small zone emphasis

Variance Mean/diff entropy Large gradient emphasis Large zone emphasis

Median Mean/diff correlation No homogeneity of gray Gray intensity change

Maximum Mean/diff contrast No homogeneity of gradient Zone size change

Minimum Mean/diff homogeneity Energy Zone percentage

Up quarter value Mean/diff variance Mean of gray High intensity emphasis

Down quarter value Mean/diff mean Mean of gradient Low intensity small zone emphasis

Energy Mean/diff inertia Variance of gray High intensity small zone emphasis

Entropy Mean/diff cluster shade Variance of gradient Low intensity large zone emphasis

Skewness Mean/diff cluster tendency Correlation of gradient High intensity large zone emphasis

Kurtosis Mean/diff max probability Entropy of gray

Mean/diff inverse variance Entropy of gradient

Mean/diff inverse difference moment Mix entropy

Mean/diff sum mean Inertia

Mean/diff sum entropy Inverse difference moment

Mean/diff difference entropy

IHIST, Intensity histogram texture; GLCM, gray level co-occurrence matrix; GLGCM, gray level gradient co-occurrence; ISZFs, Intensity size-zone variability features; diff, the extreme

difference of feature.

*128 GLCM features are constructed by 64 mean values and 64 extreme difference values. Similarly, 60 gray gradient features were extracted from GLGCM.

obtain isotropy properties, the mean value and difference in the
maximum and minimum value from the same Haralick features
were computed in 26 directions and four distances (1, 2, 4, and
8 voxel distance). One hundred twenty-eight GLCM features
were constructed by 64 mean values and 64 extreme difference
values. Similarly, 60 gray gradient features were extracted
from GLGCM. One hundred twenty-eight local heterogeneity
features of co-occurrence matrices characterized variations in the
intensity between consecutive voxels. For texture reporting with
GLCM, the notation convention “method”_“feature”_“number”
was used; for example, themean of the contrast in distance 2 of 26
directions would be identified by m_contrast_2 and the extreme
difference of cluster shade in distance 1 of 26 directions would
be identified by Diff_clustershade_1. The GLGCM features were
identified by GLGCM_“feature”_“distance”; the small gradient
emphasis in distance 4 would be identified by GLGCM_Small
gradient emphasis_4. The histogram-related features would be
abbreviated by IHIST_“feature”; for instance, the histogram
energy feature would be identified by IHIST_energy. The detailed
feature information is shown in Table 2. The algorithms for
texture feature extraction are described in theData Supplement.

Feature Selection Methods
In this study, 229 features in four categories were selected.
Notably, not all the features required evaluation because many
features would be irrelevant or redundant. Therefore, the number
of features tested must be reduced by feature extraction. The
three major reasons to perform feature reduction are as follows:
(1) to reduce the training time; (2) to improve the robustness; and
(3) to enhance the reliability.

To assess texture feature reproducibility, Fried DV’s method
was used to perform test-retest scans from 10 independent

patients (17). The results are shown in the Data Supplement.
Reproducibility of the characteristic parameters is an important
characteristic in repeated experiments. In this study, a
concordance correlation coefficient (CCC) value >0.9 was
considered to guarantee reproducibility. Another consideration
was the use of a defined “dynamic range” (DR) metric to select
highly differentiated features. Similar to CCC, DR≥ 0.9 indicates
that this feature has a large dynamic range (18). The R2 of simple
regression was equal to the square of the Pearson correlation
coefficient. Values close to 1 indicate that the data points were
close to the fitted line. These features were grouped by R2

between them. We recursively repeated the process to cover all
features. We also calculated R2 between the remaining features to
quantify the dependencies. Using the above methods, 38 features
were chosen in the penalized model with highly reproducibility
and a dynamic range.

To avoid an inadequate sample size to train and test, the
“leave one out” cross validation method was used to test the
model stability. Using many features, it was difficult to predict
which parameters would be useful to indicate patient treatment
responses and survival. Therefore, it was necessary to reduce the
number of features to improve the predictability and reliability
for analysis. The least absolute shrinkage and selection operator
(LASSO) method was used to select the most useful predictive
features from the primary data set.

The abovementioned features and clinically relevant
features were entered into a penalized multivariate Cox
proportional hazards model (Adaptive Elastic Net Cox model)
that simultaneously performs covariate selection in addition to
model development. The Adaptive Elastic Net method for the
Cox model has a grouping effect (19, 20). By minimizing the
opposite number of the Cox model first, and then adding the
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appropriate penalty, the Elastic Net estimator for the Cox model
was obtained:

β̂ (EN) = argmin







1

n

n
∑

i=1







−βTXi + ln





∑

j∈Ri

exp
(

βTXj

)











+ λ1‖β‖1 + λ2‖β‖2







(2)

Statistical Analysis
Statistical analysis was performed using SPSS19.0 (IBM, Armonk,
New York, United States) for Windows and R software (version
3.2.3; http://www.Rproject.org). The R packages (hdnom v 4.1,
survival v 2.39-5, penalized v 0.9-47 and survcomp v 1.20.0) were
used. OS was calculated from the date of the initial diagnosis to
the date of death or time for the most recent follow-up, if the
patients were still alive. The reported statistical significance levels
were all two-sided, with statistical significance set at 0.05.

RESULTS

Overall Therapeutic Response and Survival
After the completion of CRT, an overall therapeutic response
(TE) was estimated according to the RECIST 1.1 standard (21).
Thirty-six patients (50%) were determined to have a complete
response (CR), and 36 (50%) patients had a partial response (PR).
The overall effective response rate was 100.0%.

All patients were followed up for over 1 year, and 27 patients
(37.5%) were followed over 2 years. The median follow-up time
was 16.5 months. The 1 and 2 year OS rates for all patients
were estimated at 72.2 and 34.7%, respectively. According to the
overall treatment response (CR, PR), the 1 and 2 year survival
rates of CR patients were 86.1 and 38.9%, respectively, and those
of PR patients were 58.3 and 30.1%, respectively. Significant
differences were found between the two groups (log-rank test; χ2

= 4.153, P = 0.042).

Prognostic Value of ADC Radiomics Data
The possible association of ADC map features with survival
was explored by Kaplan-Meier survival analysis. No significant
correlation was found between any ADC value measurement
(ADCmean, ADCup, ADCdown, ADCmin, ADCmax) in ESCC
patients undergoing CRT (P = 0.224, 0.534, 0.549, 0.328, 0.369).
The results of the log-rank analysis of conventional prognostic
factors for OS in univariate analysis are given in Table 3.

Age, sex, tumor site, TNM stage, and treatment type
were not significant prognostic factors according to the
results of univariate analysis. In univariate analysis, the
GTV (Gross Tumor Volume size), pathology lesion length,
therapeutic effect and radiation dose were significant prognostic
factors. Univariate analysis of image texture showed that the
IHIST_energy, m_contrast_1, m_Cluster shade_2, Diff_Clusetr
Tendency_2, Diff_homogeneity_2, m_lnversevariance_2, Small
gradient emphasis_1, GLGCM_small gradient emphasis, high-
intensity small zone emphasis (HISE) and low-intensity large

TABLE 3 | Conventional prognostic factors for patients.

Variables OS,% P-value Hazard ratio 95% CI

1 year 2 year Lower Upper

GENDER

Male 74 34 1

Female 68.2 36.4 0.325 0.710 0.360 1.403

AGE

>=62 66.7 25 1

<62 77.8 44.4 0.168 1.002 0.991 1.055

TUMOR SITE

Cervival 50 50 1

Upper esophagus 79.2 33.3 0.884 0.851 0.098 7.356

Middle esophagus 71.4 34.3 0.626 1.284 0.469 3.513

Lower esophagus 63.6 36.4 0.499 1.394 0.531 3.658

PATHOLOGY LESION LENGTH

<=5 (40) 77.5 35 1

>5 (32) 65.6 34.4 0.005 1.149 1.042 1.268

T STAGE

T2 0.85 0.38 1

T3 0.75 0.3 0.9042 1.0763 0.4629 2.5024

T4 0.66 0.36 0.2153 1.6345 0.7702 3.4688

N STAGE

N0 70 40 1

N1 73.6 34.0 0.835 1.135 0.345 3.728

N2 77.8 44.4 0.741 1.172 0.458 2.996

TNM stage I–II 78.1 34.4 1

III 67.5 35 0.120 1.274 0.939 1.727

GTV

<=40.35 83.3 36.1 1

>40.35 61.1 33.3 0.015 0.476 0.261 0.868

TE

CR 86.1 38.9 1

PR 58.3 30.6 0.042 1.851 1.024 3.346

RADIATION DOSE

>=60 81.5 40.7 1

<60 44.4 16.7 0.050 0.916 0.807 1.015

RADIATION TYPE

IMRT 69.0 32.8 1

3DCRT 85.7 42.9 0.906 1.043 0.516 2.108

3DRT, 3 dimensional conformal radiation therapy; IMRT, intensity modulated radiation

therapy; GTV, Gross Tumor Volume; TE, therapeutic effect. The bold values show that

the P ≤ 0.05.

zone emphasis (LILE) demonstrated a statistically significant
difference in association with the OS rates.

Feature Selection
Thirty-eight texture features were reduced to 6 nonzero
coefficients in the LASSO model with potential predictors based
on 72 patients in the primary cohort. The detailed results used in
this study were reported in theData Supplement.

To further define the predictive values of ADC, multivariate
Cox regression model analysis was performed using adjusted
clinical factors. Table 4 lists the multivariate analysis results.
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TABLE 4 | Multivariate analysis of prognostic factor for patients with ESCC.

Variables B SE Wald df P-value Hazard ratio 95% CI

Lower Upper

Radiation dose −0.125 0.067 5.112 1 0.026 1.211 0.925 1.326

IHIST_energy −0.056 0.021 7.482 1 0.007 0.952 0.911 0.995

m_contrast_1 0.146 0.028 19.47 1 0.001 1.152 1.128 1.195

Diff_homogeneity_2 −0.022 0.002 8.824 1 0.003 0.963 0.941 0.981

m_Inverencevariance_2 0.036 0.014 4.06 1 0.034 1.042 1.002 1.13

HISE −0.053 0.018 8.016 1 0.004 0.942 0.913 0.952

LILE 0.067 0.033 9.735 1 0.003 1.085 1.033 1.139

IHIST_energy, the energy of intensity histogram texture; m_contrast_1, the mean of contrast in distance 1 of 26 directions; Diff_homogeneity_2, the extreme difference of homogeneity

in distance 2 of 26 directions; m_Inverencevariance_2, the mean of inverse variance in distance 2 of 26 directions; HISE, high intensity small zone emphasis; LILE, low intensity large

zone emphasis.

Validation of Model Performance
The study used the “hdnom” package to assess the model
performance by time-dependent AUC using the “leave one
out” cross-validation method. We validated the Adaptive Elastic
Net multivariate Cox model performance every 6 months.
Figure 3 shows the mean, median, maximum, minimum, and
25 and 75% quartiles of time-dependent AUC at each time
point across all fold predictions. The median and mean values
could be considered the bias-corrected estimation of the model
performance. The “leave one out” validation could ensure robust
results. The figure shows that themedian andmean values at each
evaluation time point were relatively close. The results showed
that the model had a relative high AUC value at each time point.
The study used resampling methods of “leave one out” cross
validation for internal model calibration. We split the samples
into three risk groups according to the adaptive Elastic Net
multivariate Cox model. The model calibration results (median
of the predicted survival probability; median of the observed
survival probability by the Kaplan-Meier method with 95% CI)
are shown in Figure 4. The C-index for the prediction model was
0.720 (95% CI: 0.713 to 0.731) for the primary cohort, which was
confirmed to be 0.715 (95% CI: 0.708 to 0.732) via bootstrapping
validation. We used the Kaplan-Meier survival curve and values
in the risk table to further analyze the survival differences among
different risk groups. Here, we plotted the Kaplan-Meier survival
curve and assessed the amount of risk in three risk groups from 1
to 3 years (Figure 5; χ2 = 9.7, Log-rank P = 0.00773).

DISCUSSION

DWI is a powerful MR sequence that provides unique
information related to tumor cellularity and the integrity of the
cellular membrane. The technique can be applied widely to detect
and characterize tumors and to monitor the treatment response
(6). The ADC map can be acquired by two DWIs (e.g., b values
of 0 and 600 mm/s2) using an MR workstation. The ADC map
is independent of the magnetic field strength and can overcome
the effects of T2 shine-through, thus allowing more meaningful
comparison of the results. We also performed experiments using
800 mm/s2 and 1,000 mm/s2 (Figure 1). However, the results

FIGURE 3 | The mean, median, maximum, minimum, and 25 and 75%

quartiles of time-dependent AUC at each time point across all fold predictions.

were not reliable, the stability of the parameters was not high,
and the repeatability was not good. The possible reasons for the
above situation may be that a higher b value will introduce much
more noise in chest tumors.

Recent investigations have demonstrated that the
pretreatment ADC value may be applied as a biomarker to
predict and detect early the treatment response in ESCC, but the
results remain controversial. Koyama et al. (22) reported that
tumors with a lower pretreatment ADC value and a higher signal
intensity at DWI responded better to treatment. Koh et al. (6)
discussed the mechanism of this phenomenon and showed that
tumors with a high pretreatment ADC value were likely to be
more necrotic than those with a low ADC value. Necrotic tumor
tissues are frequently hypoxic, acidotic and poorly perfused,
leading to diminished sensitivity to CRT. However, not all studies
support this hypothesis. Aoyagi et al. studied 80 patients with
advanced EC and found that tumors with a higher pretreatment
ADC value responded better to treatment (23). They also
performed a further study and found that the pretreatment ADC
value was not significantly different between the responder and
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FIGURE 4 | The median of the predicted survival probability and the median of

the observed survival probability by the Kaplan-Meier method with 95% CI.

The x axis depicts the observed value; the y axis depicts the predicted values

in the corresponding point.

FIGURE 5 | The Kaplan-Meier survival curves and evaluation of the number at

risk from 1 to 3 years for the three risk groups using the “hdnom” package in R

software. The p-value of the log-rank test is 0.00773.

non-responder groups (24). Wang et al. also found no direct
correlation between the pretreatment ADC value and treatment
response in EC (25). The reasons for the controversy could be

that simple ADC values only show limited information (one
dimensional information) that only reflect variability (high or
low), not including geometric distribution. Texture features can
overcome the above defects, having the potential to show and
quantify pixels or the voxel geometric distribution. With the
development of imaging analysis, much evidence has suggested
that TA can aid clinicians in cancer diagnosis (26), staging (27),
prognoses (28), and response assessments (15). In our study of
82 patients with the diagnosis of ESCC, interestingly, we showed
that the pretreatment DWI texture features can provide useful
prognostic information for ESCC patients. Finally, previous
studies were mostly focused on limited tumor areas, such as
contouring ROIs in the largest section, rather than the global
tumor volume. In our study, to compensate for the 2D texture
feature defects (12, 29, 30), 3D texture parameters were chosen
to evaluate the prediction potentials.

We first analyzed the intensity histogram features with
highly reflected distribution of ADC values. The other texture
features mainly focused on the local and regional scales, which
were used to analyze the interrelationship between pairs of
voxels and arrangement of voxels. From microscopy, the
order of voxels reflected local non-uniformities. Our analysis
showed that IHIST_energy, m_contrast_1, Diff_homogeneity_2,
m_Inversevariance_2, HISE, and LILE have strong and
independent associations with the OS rates. The IHIST_energy
measures the homogeneity of gray distribution. The higher value
depicts more homogeneity than the lower one. m_Contrast_1
is a measure of the contrast or amount of local variation
present in the ADC. The tumor usually has a large amount
of local variations present in the image compared with the
normal part. The other parameters (Diff_homogeneity_2,
m_Inversevariance_2) were a measure of homogeneity of the
image. This represents the change in the tumor gray level and
reflects the aggregation of tumor cells on the macro level. The
HISE measures the joint distribution of small zones and high
gray-level values. The LILE has opposite characteristic to HISE
and measures the joint distribution of large zones and high gray-
level values. These features represent spatial ADC variability in
esophageal tumors, explaining why these ADC texture features
are better prognostic factors than simple global ADC values.

The OS variation in ESCC patients treated with CRT is
highly related to tumor heterogeneity due to its intra-tumor
spatial variation in the cellularity, angiogenesis, extravascular,
extracellular matrix, and areas of necrosis. The high tumor
heterogeneity was shown to have a poorer prognosis and
treatment resistance (31). Ganeshan et al. (32) found that tumor
heterogeneity in EC could be reflected by TA. Our study showed
that six 3D texture parameters extracted from ADC maps can
distinguish among the high-, median-, and low-risk group (Log-
rank χ2 = 9.7; P = 0.00773). The idea behind this performance
is that texture parameters can reflect the movement of water
molecules and tumor heterogeneity. This may become a major
mechanism to explain why texture parameters can accurately
associate with the OS of ESCC.

To ensure the model’s stability, the test-retest method was
used to test the selected feature stability in the feature selection
step. In the model validation step, the “leave one out” cross
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validation for both model validation and model calibration was
used. Compared with the general sampling test (splitting their
data into test and validation sets), the LASSO regularization
scheme was used to prevent over fitting (33).

This study has an important clinical significance.
Uncertainties remain in the treatment of ESCC, including
the scope of the radiotherapy target area, the dose of radiation
therapy, the consolidation chemotherapy maintenance period,
the assessment of the clinical effect and so on. The cause of the
above uncertainty remains a lack of effective means to describe
ESCC heterogeneity. The texture features combined with
conventional prognostic factors may present a more accurate
predictive tool. Our research showed that texture features can be
used to evaluate the prognosis of ESCC after CRT at the early
phase. However, our study is limited by several factors, the most
important of which is the prospective nature of the assessment
using a relatively small group of patients. It is necessary to
expand the sample size for further study to clearly explore the
relationship between the global ADC value and OS. Another
limitation of this study is that the tumor regions of interest
were drawn manually; inter- and intra-observer variation could
be reduced if automated methods were used in the future,
particularly for multicenter studies.

CONCLUSIONS

Based on the ADC images, the texture parameters extracted by
computer semi-automatic extraction are related to ESCC patient
survival. This study confirms that the combination of ADC
textures (histogram feature, GLCM feature, and ISZF feature)
and conventional prognostic factors (radiation dose) can be used
to generate robust models to predict OS. Future work needs
to further verify the practical value of related parameters in
clinical application.
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