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Abstract

Background: Advances in DNA sequencing have offered researchers an
unprecedented opportunity to better study the variety of species living in and on the
human body. However, the analysis of microbiome data is complicated by several
challenges. First, the sequencing depth may vary by orders of magnitude across
samples. Second, species are rare and the data often contain many zeros. Third, the
specimen is a fraction of the microbial ecosystem, and so the data are compositional
carrying only relative information. Other characteristics of microbiome data include
pronounced over-dispersion in taxon abundances, and the existence of a phylogenetic
tree that relates all bacterial species. To address some of these challenges, microbiome
analysis workflows often normalize the read counts prior to downstream analysis.
However, there are limitations in the current literature on the normalization of
microbiome data.

Results: Under the multinomial distribution for the read counts and a prior for the
unknown proportions, we propose an empirical Bayes approach to microbiome data
normalization. Using a tree-based extension of the Dirichlet prior, we further extend
our method by incorporating the phylogenetic tree into the normalization process. We
study the impact of normalization on differential abundance analysis. In the presence
of tree structure, we propose a phylogeny-aware detection procedure.

Conclusions: Extensive simulations and gut microbiome data applications are
conducted to demonstrate the superior performance of our empirical Bayes method
over other normalization methods, and over commonly-used methods for differential
abundance testing. Original R scripts are available at GitHub (https://github.com/
liudoubletian/eBay).
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Background
It is well known that microbes interact with their human host. The human micro-
biome, which refers to the collection of microbes and their genetic information in the
human body, contributes to healthy human physiology and development, and dysbiosis
of microbial communities is linked to many diseases, such as obesity, type 2 diabetes,
and inflammatory bowel disease [1–3]. Host genetics and environmental factors, in turn,
affect the health and diversity of the human microbiome [4, 5]. However, the mechanisms
underlying human health and disease remain largely unknown because of the complexity
and dynamics of microbial communities. In order to understand the taxonomic compo-
sition and biological function of microbiomes, high-throughout sequencing technologies
and advanced bioinformatics tools are now routinely employed in microbiome studies
[6]. For example, marker gene analysis involves extracting DNA from primary samples,
sequencing a highly variable region, and clustering sequence reads into Operational Tax-
onomic Units (OTUs) by sequence similarity (e.g., 97%). The evolutionary relationships
among OTUs can also be inferred, by using a reference database, or by inferring the
phylogenetic tree de novo [7].
Like differential expression analysis in microarray studies, one fundamental task in

microbiome studies is differential abundance analysis, that is, to detect OTUs or species
that have differential abundance between two or more experimental conditions, e.g.,
health versus disease [8]. Although differential expression analysis has been extensively
studied, methods designed for continuous microarray data are not directly applicable for
discrete microbiome data. The problem is further complicated by inherent characteris-
tics of microbial community sequencing data [9]. In particular, the total reads per sample,
known as the sequence depth or library size, can vary by orders of magnitude, and some
OTUs are rare and therefore the data matrix is sparse. Consequently, there is a need
to develop specialized analytical tools for microbiome data. Microbiome analysis work-
flows often begin with some type of normalization. Two commonly-used normalization
approaches are rarefying, which subsamples the data without replacement to uniform
sequence depth across samples, and total sum scaling, which divides read counts by the
total count in each sample and bases downstream analyses on relative abundances [10].
While these two methods work well for the purpose of ordination, they often result
in a high rate of false positives when testing for differentially abundant species [11].
Although rarefying is a recommended option in major data analysis toolkits [12, 13], it
is inadmissible because it throws away some data and ignores the compositionality [10].
Microbiome data are compositional because the abundance of an OTU in a specimen is
not the abundance of the corresponding taxon in the microbial ecosystem [14]. The spe-
cial feature of compositional data is that a composition carries only relative abundance
information.
Total sum scaling conditions on sequence depth and results in compositional data, i.e.,

raw proportions that sum up to 1. Since the data points map to a simplex rather than the
Euclidean space, standard data analysis techniques, such as the t-test, are invalid. Instead
of using the proportions directly, methods for analyzing compositional data all involve
some type of transformation, the most common of which is the log-ratio transformation
[15, 16]. Once the unit-sum constraint is removed, classical statistical methods apply, with
care and proper interpretation to transformed data. Indeed, log-ratio-based inferences
are increasingly popular in downstream microbiome analyses [14, 17–19].
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Note that the raw proportions from total sum scaling are operationally equivalent in
every way to the original count data when log-ratio transformed. Onemajor problemwith
this naive scaling normalization technique [20] is when the normalized data have zeros,
the log transformation is problematic. One approach to this issue is to replace the zero by
a small positive value and re-normalize the data. Nevertheless, the choice of the constant
is problem-dependent and its effect on the results is not well-studied [21]. Zero replace-
ment is an active area of research, and statistically rigorous methods have emerged in the
literature. For example, [22] and [23] respectively developed a non-parametric approach
and a parametric treatment for imputing zeros. More recently, motivated by the fact
that raw proportions from total sum scaling are maximum likelihood estimates of the
unknown parameters under the multinomial model, [24] and [25] proposed replacement
techniques from a Bayesian point of view. Assuming a Dirichlet prior for the set of pro-
portions, a zero value is replaced by its posterior Bayesian estimate. The Bayesian method
gives an estimate of the true composition, and hence can be viewed as a model-based
alternative to total sum scaling.
The posterior Bayesian estimator shrinks the maximum likelihood estimator towards

the mean vector of a Dirichlet prior. The smoothed estimates are more accurate than the
raw proportions for OTUs with extremely high or low read counts. However, the obvi-
ous drawback of the existing methods is that a uniform prior is used, and therefore the
shrinking point is uninformative. In addition, the prior is applied to single data points,
but the observations may have a lot in common, and these similarities can be used to
learn from the experience of others [26]. In this paper, we propose an empirical Bayes
approach to normalization. Rather than adopting an uninformative prior, we assume that
the parameters of the Dirichlet distribution is unknown, and we estimate them by using
all observations in the data set. In addition to uneven sequence depth, data sparsity,
and compositionality, the proposed method is designed to address over-dispersion and
phylogeny.
It is known that microbiome data, and sequencing data in general, are over-dispersed,

and that the multinomial distribution does not allow for over-dispersion. Over-dispersion
is also a natural consequence of the data laying on the simplex. To account for the excess
variation, the Dirichlet-multinomial (DM) distribution is commonly used in practice
[27, 28]. DM is an analytically tractable compound distribution. This is a consequence
of the fact that the Dirichlet distribution is a conjugate distribution to the multinomial
distribution. The DM parameters are the hyper-parameters in the Dirichlet prior. We
estimate these parameters from OTU counts by maximum likelihood. Then, we plug-
in the estimates into the prior distribution, and normalize the data using the posterior
mean. We further extend our method by incorporating phylogeny into the analysis. This
is accomplished by using a tree-based extension of DM, called the Dirichlet-tree multi-
nomial (DTM) distribution [29, 30]. Loosely speaking, DTM is a product of independent
local DMs on internal nodes of the phylogenetic tree. While DM intrinsically imposes a
negative correlation structure among bacterial counts, DTM allows for both positive and
negative correlations [31].

Results
We generated bacterial counts from a DM or DTM model, with the true vector of pro-
portions π estimated based on a real dataset [32], which contains the counts of 60 taxa
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from 1897 samples, together with a phylogenetic tree describing the evolutionary rela-
tionship among these taxa. We note that, as mentioned earlier, in microbial ecology
studies compositionality is not something imposed by post sequencing processing, and so
microbiome data are compositions off the machine.

Simulations without tree information

We first generated taxa abundance data from the DM model, with an over-dispersion
parameter θ = 0.15. We set the sample size n1 = n2 = 50 and the number of taxa
p = 40. The sequencing depth was drawn uniformly from 5000 to 50000. Denote φk =
(φk1, ...,φkp)

T as the vector of true proportions in group k ∈ {1, 2}. Initially, we generated
φ1 = φ2 as a random sample from the 60-dimensional vector π . We then normalized it
to have unit sum, and varied the relative abundances of 6 taxa as follows:{

πks ← πks + 0.05β ,
πkt ← πkt − 0.05β ,

(1)

where s ∈ {1, 22, 23}, t ∈ {7, 11, 40} for k = 1, s ∈ {7, 11, 40}, t ∈ {1, 22, 23} for k = 2,
and β ∈ {0.01, 0.15, 0.2, 0.25, 0.3, 0.35} represents the degree of difference between two
groups. We further explored the impact of over-dispersion. We fixed β = 0.25 and varied
θ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.
We estimated the recall and precision using 100 simulated data sets. The results are

shown in Figs. 1 and 2. Generally, the recall and precision increased as the effect size
β increased, and as the over-dispersion parameter θ decreased. From the upper panels
we see that the recall of the empirical Bayes method, with t-test, was higher than other
normalizationmethods. From the lower panels we can see that eBay-t and eBay-Wilcoxon

Fig. 1 Comparison of recall and precision with data from DM across different β . To detect differentially
abundant taxa, we simulated 100 data sets from the DMmodel with θ = 0.15 and
β ∈ {0.01, 0.15, 0.2, 0.25, 0.3, 0.35}. a and b Recall of t-test and Wilcoxon rank sum test with various
normalization methods. c and d Recall and precision of DESeq2, ANCOM, metagenomeSeq, Wrench, and
those of t-test and Wilcoxon rank sum test, both applied after counts were normalized by eBay
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Fig. 2 Comparison of recall and precision with data from DM across different θ . To detect differentially
abundant taxa, we simulated 100 data sets from the DMmodel with β = 0.25 and
θ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. a and b Recall of t-test and Wilcoxon rank sum test with various
normalization methods. c and d Recall and precision of DESeq2, ANCOM, metagenomeSeq, Wrench, and
those of t-test and Wilcoxon rank sum test, both applied after counts were normalized by eBay

were the overall winner. DESeq2,Wrench, metagenomeSeq had lower recall, and for small
values of β , the precision of ANCOM was low.

Simulations with tree information

In this section, taxa abundances were generated from the DTMmodel, with the tree struc-
ture shown in Fig. 3. We set θ = 0.27 and n1 = n2 = 50. The depth was sampled from a
uniform distribution on (5000, 50000).
The non-degenerate case. A pair of nodes, labeled as 55 and 56, were set to be differ-

entially abundant in a similar way as in the previous section. Specifically, at each tree split,
we sampled φ0 from π , and set φ1 = φ2 = (φ0, 1 − φ0)T. We then increased the relative
abundance of one of them, while decreasing the relative abundance of the other, by invok-
ing (1) with s ∈ {55} and t ∈ {56} for k = 1, and s ∈ {56} and t ∈ {55} for k = 2. This led
to 7 differentially abundant leaf nodes, labeled as 2–8 (Additional file 1: Figure S1). We set
the effect size β ∈ {0.1, 2, 4, 6, 7, 8}. We also used simulated data to investigate the effect
of over-dispersion by fixing β = 4 and setting θ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Figures
S2 and S3 summarize the simulation results. The empirical Bayes method eBay-tree was
superior to other normalization methods, and when applied with t-test or Wilcoxon rank
sum test, it outperformed DESeq2, ANCOM, Wrench, and metagenomeSeq.
The degenerate case. Two pairs of nodes, {55, 56} and {57, 58}, were set to be differ-

entially abundant, but only 5 leaf nodes, labeled as 2, 3, 6, 7, 8, inherited the differences
(Figure S4). This was achieved by taking s ∈ {55, 57} and t ∈ {56, 58} for k = 1, and
s ∈ {56, 58} and t ∈ {55, 57} for k = 2. We set β ∈ {0.1, 2, 4, 6, 7, 8}. On the other hand, we
fixed β = 4 and set θ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The simulation results were shown
in Figures S5 and S6. Again, the conclusions were similar.



Liu et al. BMC Bioinformatics          (2020) 21:225 Page 6 of 18

Fig. 3 An example of a binary tree with 50 leaves and 49 internal nodes

More simulations

Simulation from DM with a random tree. We further examined the behavior of eBay-
tree in the absence of tree, using the same data as in simulations without tree information.
We generated the tree structure randomly, and used eBay-tree for data normalization.
The results are summarized in Figure S7. We can see that incorporating the tree com-
pulsorily did not deteriorate the performance much. In the presence of tree, we also
compared the performance of the phylogeny-ware detection procedure and the global
method of applying t-test or Wilcoxon rank sum test after normalizing data using (15).
Figure S8 shows that the naive method failed.
Simulated data from the gamma-Poissonmodel. To assess the robustness of the pro-

posedmethodology, we generated taxa counts from the gamma-Poissonmodel which was
used for evaluating the performance of ANCOM [14]. We set the sample size n1 = 20
for case and n2 = 30 for control with p = 100. To generate the difference between
two conditions, for the first 5 significant features in case, we changed the proportions
of those features by adding uij to the Poisson parameter μij. For the remaining 5 fea-
tures, we subtracted uij from the Poisson parameter μij. The μij was sampling from a
Gamma distribution Gamma(200, 1) and uij was sampling from a uniform distribution
U((δ − 1) × 30, δ × 30) where δ ∈ {1, 2, 3, 4, 5}. The simulation results in Fig. 4 show that
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Fig. 4 Comparison of recall and precision with data generated from the gamma-Poisson model across
different δ. a and b Recall and precision of DESeq2, ANCOM, metagenomeSeq, Wrench, and that of t-test,
which was applied after counts were normalized by ALDEx2 or eBay

eBay-t compared favorably with ANCOM and both were superior to Wrench, DESeq2,
and metagenomeSeq.
Simulated data from the zero-inflated log-normal (ZILN) model. As suggested by

a referee, we also generated taxa counts from the zero-inflated log-normal model which
was used for assessing the performance of metagenomeSeq [8]. We set the sample size
n1 = n2 = 50 and the number of taxa p = 100. To generate the difference between
conditions, for the first 5 significant features in one of the conditions, we changed the
proportions of those features by adding 1/50 × δ percentage of the sample’s total counts.
For the remaining 5 features, we subtracted 1/50 × δ percentage of the sample’s total
counts. The δ was set to be {0.1, 0.3, 0.5, 0.7, 0.9}. As expected, we see from Fig. 5 that
metagenomeSeq outperformed DESeq2. Unfortunately, methods treating microbiome
data
as compositions, especially eBay and ALDEx2 in the Bayesian framework, failed in this
case. The reason is that the zeros generated by the ZILN model are all structural zeros,
while in eBay and ALDEx2 it is assumed implicitly that zeros are the result of under-
sampling. As will be discussed later, extending the empirical Bayes method to handling
both structural zeros and sampling zeros is interesting and important.
Finally, in Figure S9, we show comparative timings in seconds and space in bytes for

problems with n1 = n2 = 50 and different numbers of taxa.While eBay was computation-
ally more efficient, with parallel computation the computational complexity of eBay-tree
performed similarly with eBay.

Fig. 5 Comparison of recall and precision with data generated from the zero-inflated log-normal model
across different δ. a and b Recall and precision of DESeq2, ANCOM, metagenomeSeq, Wrench, and that of
t-test, which was applied after counts were normalized by ALDEx2 or eBay
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Gut microbiota andmalnutrition

Childhood undernutrition is a significant health problem in Southern Asia and sub Saha-
ran Africa, and severe acute malnutrition (SAM) remains a major cause of child mortality
worldwide [33]. For this reason, the World Health Organization updated guidelines for
the improved management of SAM in infants and children [34]. In a recent study of
996 stool samples collected monthly from 50 healthy Bangladeshi children during the
first 2 years of life, [32] identified bacterial taxonomic biomarkers for characterizing gut-
microbiota maturation. By applying random forests from the perspective of regression,
they determined a list of 60 bacterial species, ranked in descending order of their impor-
tance to the regression. Incorporating these biomarkers into a prediction model, and
applying this model to children with SAM enrolled in a randomized trial, they showed
that SAM is significantly associated with microbiota immaturity.
Rather than summarizing the relative abundances of these 60 bacterial taxa into a sin-

gle index (i.e., the predicted value), we revisited the problem in terms of differential
abundance testing. To eliminate the effect of age, we restricted our analysis to 12 to 18-
month-old children. There were 20 healthy children in the singleton validation dataset
and 27 children with SAM. We further filtered bacterial species with prevalance less
than 20%, resulting in 50 taxa. We extracted representative sequences for these taxa, per-
formed sequence alignment, and then constructed a phylogenetic tree (Figure S10), using
the default and recommendedmethods PyNAST and FastTree in QIIME [12].We applied
t-test and Wilcoxon rank sum test after normalizing counts by the tree-based empirical
Bayes method and other methods in Table 1, and compared them to DESeq2, ANCOM,
Wrench, and metagenomeSeq. Note that eBay took 0.41 seconds to analyze the data on a
Macbook Pro (Intel Corei5, 1.4 GHz, 8GB RAM).
To assess the performance of our method and other methods, we recorded the lists

of differentially abundant taxa. In addition, for each method, we ordered the taxa
according to their p-values, and calculated the number of matches between the top
K differentially abundant taxa and the top K taxa in the ranked list of 60 bacte-
rial species, where K = 10, 15, 20, and 25. The results are summarized in Fig. 6
and Figure S11. From Fig. 6a, we can see that eBay-t and eBay-tree-t detected more

Table 1 Normalization methods

Method Description

none Raw counts are not transformed.

tss Total sum scaling. Raw counts are divided by the library size.

css

Cumulative sum scaling. As above, except that for each sample a quantile is calculated
and the total sum is replaced by the sum up to and including that quantile.

rarefying

Each observation is subsampled to even depth. This method is implemented in
the R package phyloseq [35]. We use the function rarefy_even_depth with sam-
ple.size=0.90*min(sample.size).

uBay

A standard Bayesian method that infers the posterior distribution of proportions as the
product of the multinomial likelihood with a Dirichlet prior. Following [24], we set α =
(1/2, . . . , 1/2)T and convert raw counts to proportions by (6).

ALDEx2

A Bayesianmethod that infers the posterior distribution of proportions in the sameway
as uBay. However, rather than using the posterior mean, Monte–Carlo draws from the
posterior distribution are used in downstream analysis [36].

eBay

The same as uBay, except that hyper-parameters of the Dirichlet prior are estimated
from data by maximizing the marginal likelihood. We use the proposed empirical Bayes
formula (9).

eBay-tree The tree-based extension (15) of eBay.
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Fig. 6 Differentially abundant bacterial species between healthy children and children with SAM. a
Visualization of set intersections among differential abundance testing methods in Table 2. b The number of
matches between the top K taxa identified by random forests and the top K differentially abundant taxa
detected by various testing methods. metaSeq: metagenomeSeq

differentially abundant species than other methods. The two taxa detected uniquely by
eBay-t and eBay-tree-t were Rumicnococcus_sp_5_1_39BFAA and Megamonas. Million
et al. [37] indicated that Ruminococcus_sp_5_1_39BFAA tends to be depleted in mal-
nourished children, while Megamonas was reported to be significantly altered in the
malnourished children compared to age-matched healthy children [32]. Furthermore,
Fig. 6b shows that the ranked list of taxa detected by eBay-t and eBay-tree-t was more
concordant with that identified by the random forests algorithm. FastTree infers the
phylogeny by maximum likelihood. Alternatively, we computed the distances between
any two species based on an evolution model [38], and then built a phylogenetic tree
(Figure S12) based on these distances [39]. The corresponding results are summarized in
Figures S13 and S14, and the conclusions are qualitatively similar. These results confirm
that compared to healthy children, children with SAM had significant gut-microbiota
immaturity.



Liu et al. BMC Bioinformatics          (2020) 21:225 Page 10 of 18

Gut microbiome and bodymass index

Studies have shown that gut microbiome is associated with body mass index (BMI) and
explains a significant fraction of BMI variation [5]. In a study of the impact of long-
term dietary patterns on gut microbiome composition, [40] showed that taxa correlated
with BMI also correlated with fat and percent calories from saturated fatty acids. In this
study, the researchers enrolled 98 healthy volunteers and collected their stool samples
as well as diet information. DNA samples were extracted and analyzed by 454/Roche
pyrosequencing, and sequence reads were processed by the QIIME pipeline. To explore
the relationship between BMI and gut microbiota, we reanalysed the data via differential
abundance testing. Following the World Health Organization guideline, we categorized
BMI as normal weight, overweight, and obese, and for simplicity we focused on the nor-
mal weight and obese individuals. After filtering the taxa with prevalence less than 10%
and abundance <0.2% in all samples, we were left with 314 taxa and 70 samples. eBay took
1.678 seconds to process the data on a Macbook Pro (Intel Corei5, 1.4 GHz, 8GB RAM).
The results are summarized in Fig. 7. The 9 taxa identified uniquely by eBay-t were mainly
from the families Lachnospiraceae and Ruminococcaceae, both of which were reported to
be significantly correlated with BMI [41, 42].

Discussion
Although the important role of microbiota in human health and disease has been rec-
ognized increasingly over the past decade, data from high-throughput DNA sequencing
present challenges to statistical analysis and interpretation. We have proposed an empir-
ical Bayes technique for microbiome data normalization prior to downstream analysis.
Assuming a multinomial distribution for the read counts and specifying a Dirichlet prior
for the underlying proportions, our method shrinks the relative abundances towards
the mean vector of the prior. The marginal distribution of the data allows for over-
dispersion and has the same set of parameters as the prior distribution. We estimated
these parameters empirically from the data by maximizing the evidence. To incorporate
the phylogenetic tree in the normalization process, we extended our method by taking as
the prior a product of Dirichlet distributions that factorized over the tree. We examined
the downstream effect of normalization in the context of differential abundance analysis,

Fig. 7 Differentially abundant bacterial species between normal weight and obese individuals. Visualization
of set intersections among differential abundance testing methods in Table 2
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by applying t-test and Wilcoxon rank sum test to the normalized data. In the presence
of tree, rather than using the normalized data directly, we proposed a phylogeny-aware
differential abundance detection procedure by carrying out local tests at tree splits.
The excessive number of zeros in bacterial counts can lead to some inefficiency in the

normalization and downstream analysis. In this paper, we have introduced an empirical
Bayes method to normalize data and we assume implicitly that all microbes are present
in the microbial ecosystem and the zeros are the result of undersampling. However, in
the presence of hundreds or thousands of bacterial species, these zeros can also represent
components that are truly absent from the community [8, 9], especially when the speci-
mens are drawn from different environments. How to normalize count data that allows
zero-inflation is an interesting research topic. The zero-inflated generalized Dirichlet
model [43] can potentially provide a solution to this problem. Work along this line is in
progress.

Conclusions
Uneven library size, data sparsity, compositionality, and over-dispersion, all make drawing
valid biological inferences from microbial datasets difficult. To overcome these chal-
lenges, we proposed an empirical Bayes technique for microbiome data normalization
prior to downstream analysis. We further extended our method by incorporating the phy-
logenetic tree into the normalization process. We examined the downstream effect of
normalization in the context of differential abundance analysis. In the presence of tree,
we proposed a phylogeny-aware detection procedure. Results from an extensive simu-
lation study and real data applications showed that the empirical Bayes approach was
more efficient than other normalization methods, and the corresponding testing method
compared favorably with state-of-the-art methods.

Methods
Consider a microbiome dataset with n samples and p OTUs. For the ith sample, let xi =
(xi1, ..., xip)T denote the vector of read counts of p OTUs, and Ni = ∑p

j=1 xij the total
number of reads. Total sum scaling can be derived through maximum likelihood. Given
Ni, it is natural to model the abundance vector according to a multinomial distribution,
xi ∼ Mult(π i;Ni). The probability mass function is

fMult(xi;π i,Ni) = �(Ni + 1)∏p
j=1 �(xij + 1)

p∏
j=1

π
xij
ij , (2)

where π i = (πi1, ...,πip)T, 0 < πij < 1,
∑p

j=1 πij = 1, and �(·) is the gamma function.
Then the method of maximum likelihood yields the naive count normalization

π̃ij = xij
Ni

. (3)

Empirical Bayes normalization

One disadvantage of total sum scaling is that the estimates for OTUs with zero counts
are simply zero, causing difficulty in downstream analyses, such as log-ratio based com-
positional data analysis. To overcome this problem, we consider a Bayesian approach.
Specifically, we assume that xi ∼ Mult(π i;Ni), and specify a prior distribution for π i. We
then calculate the posterior for π i given xi, and compute the posterior mean estimate.
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The most common and convenient prior for π i is the Dirichlet distribution [44]. This
distribution, denoted by Dir(α), is parameterized by a p-vector of positive scalars, α =
(α1, . . . ,αp)T, and has probability density function

fDir(π i;α) = �(
∑p

j=1 αj)∏p
j=1 �(αj)

p∏
j=1

π
αj−1
ij . (4)

Multiplying the multinomial distributionMult(π i;Ni) by the Dirichlet prior Dir(α) gives
the posterior distribution

f (π |xi,α) = �(Ni + ∑p
j=1 αj)∏p

j=1 �(xij + αj)

p∏
j=1

π
xij+αj−1
j . (5)

This is the density of Dir(xi + α). The posterior mean is given by

E(πij|xi,α) = xij + αj∑p
j=1(xij + αj)

. (6)

Posterior Bayesian estimation produces non-zero estimates for the true proportions. Fur-
thermore, it is easy to check that the posterior mean is a weighted average of the vector
of raw proportions and the mean of the prior distribution:

E(πij|xi,α) = Ni
Ni + α+

π̃ij + α+
Ni + α+

φj, (7)

where φj = αj/
∑p

j=1 αj and α+ = ∑p
j=1 αj. Put another way, we shrink the maximum

likelihood estimates towards our knowledge about π i before we see the data.
In practice, the hyper-parameters αj are unknown, and so we cannot use posterior

Bayesian estimates. Uniform priors, which assume that α1 = · · · = αp, are used in [24]
and [25]. The mean vector of a uniform prior, (1/p, ..., 1/p)T, is the center or neural ele-
ment of the (p−1)-dimensional simplex with the Aitchison metric [16]. Nevertheless, we
do not have to take this composition as the preferred shrinking point. In the rest of this
section, we propose an empirical Bayes approach by empirically estimating αj from the
data.
Note that after integrating xi ∼ Mult(π i;Ni) over π i ∼ Dir(α), the marginal

distribution of xi is Dirichlet-multinomial, xi ∼ DirMulti(α), with probability mass
function

fDM(xi|α) = �(Ni + 1)�(α+)

�(Ni + α+)

p∏
j=1

�(αj + xij)
�(xij + 1)�(αj)

. (8)

The DMdistribution has the same set of parameters as the Dirichlet prior. Furthermore,
it is the most common distribution for modeling over-dispersed and multivariate taxa
count data [28, 45]. Let θ = 1/(1 + α+), we call θ the over-dispersion parameter. Let
α̂ be the maximum likelihood estimate. Substituting it into (6) gives the empirical Bayes
solution for normalization

E(πij|xi, α̂) = xij + α̂j∑p
j=1(xij + α̂j)

. (9)

Phylogeny-aware normalization

Suppose that the phylogenetic relationships among OTUs can be encoded by a rooted
tree T = (L, I), where terminal nodes, or leaves, in L correspond to OTUs, and internal
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Table 2 Differential abundance testing methods

Method Description

t-test

Welch two sample t-test. We use the R built-in t.test function with default parame-
ters. This test applies to either raw counts or transformed data.

Wilcoxon

Wilcoxon rank-sum test. We use the R built-in function wilcox.test with default
parameters. This test applies to either raw counts or transformed data.

DESeq2

A popular method from the field of RNA-seq. It is based on a negative binomial
model for raw counts, and is implemented in R package DESeq2 [50]. We use the
built-in library size normalization and default parameters.

ANCOM

A novel method for detecting differentially abundant taxa at the ecosystem level
using the specimen level relative abundance data. This test is implemented in the R
package ancom.R [14]. We use the default setting.

metagenomeSeq

As with ANCOM, this method is developed specifically for microbial datasets. It is
based on a zero-inflated Gaussian mixture model for log read counts. We use the
function fitFeatureModel in the R package metagenomeSeq [51], with cumulative
sum scaling and default parameters.

Wrench

A new technique for compositional bias correction in sparse sequencing count data
[20]. It fits a negative binomial log-linear model for reference-based data normaliza-
tion, and then runs a likelihood ratio test for detecting differentially abundant taxa.
We use the functions glmFit and glmLRT in the R package edgeR [52].

nodes in I represent bacterial taxa at different taxonomic levels. Figure 3 shows an exam-
ple of a binary tree over 50 OTUs. For each internal node A ∈ I , let C(A) be the set of
child nodes of A. For each A and w ∈ C(A), let xAw and πAw be the total count and prob-
ability in the branch from A to w. Here, for ease of notation, we omit the subscript i. One
attractive property of the multinomial distribution is that it can be factorized over T [29].
Specifically, let bAw = πAw/

∑
w∈C(A) πAw, bA = (bAw,w ∈ A), and xA = (xAw,w ∈ A),

then

fMN (xi;π i,Ni) =
∏
A∈I

fMN (xA; bA)

=
∏
A∈I

�(
∑

w∈C(A) xAw + 1)∏
w∈C(A) �(xAw + 1)

∏
w∈C(A)

bxAwAw . (10)

The conjugate prior for this parameterization is no longer a single global Dirichlet
density, but rather a product of local Dirichlet densities, one for each internal node:

∏
A∈I

fD(πA;αA) =
∏
A∈I

�(
∑

w∈C(A) αAw)∏
w∈C(A) �(αAw)

∏
w∈C(A)

π
αAw−1
Aw . (11)

This is known as the Dirichlet-tree distribution [46]. The posterior distribution has the
form ∏

A∈I
f (πA|xA,αA) =

∏
A∈I

�{∑w∈C(A)(xAw + αAw)}∏
w∈C(A) �(xAw + αAw)

∏
w∈C(A)

π
xAw+αAw−1
Aw . (12)

This density is exactly that of a Dirichlet-tree distribution, except that we update the
hyper-parameters after seeing the data.
The development so far is based on Dirichlet priors on branches. The posterior density

function of π given the data can be computed by a change of variables and is given in [47].
Furthermore, the posterior mean of π is

E(πl | x,αA,A ∈ I) =
∏
A∈I

∏
w∈C(A)

{
xAw + αAw∑

w∈C(A)(xAw + αAw)

}δAw(l)

, (13)

where we define δAw(l) to be 1, if the branch from A to w leads to l ∈ L, and 0 otherwise.
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The remaining step is the same: the Bayes estimator is itself being empirically estimated
from the data by maximizing the evidence, i.e., the marginal distribution of the data. This
distribution, known as the Dirichlet-tree multinomial distribution (DTM), is a product of
DM distributions that factorize over the tree

fDTM(x,αA,A ∈ I)

=
∏
A∈I

�(
∑

w∈C(A) xAw + 1)�(
∑

w∈C(A) αAw)

�{∑w∈C(A)(xAw + αAw)}
∏

w∈C(A)

�(xAw + αAw)

�(xAw + 1)�(αAw)
.

(14)

Comparing to DM, a distinctive property of DTM is that the correlations between bac-
terial counts can be simultaneously negative and positive [29, 31]. Since the distributions
placed on different internal nodes are independent, maximum likelihood estimation can
be carried out separately and in parallel. Let α̂A be the maximum likelihood estimate.
Substituting it into (13) leads to the phylogeny-aware normalization

E(πl | x, α̂A,A ∈ I) =
∏
A∈I

∏
w∈C(A)

{
xAw + α̂Aw∑

w∈C(A)(xAw + α̂Aw)

}δAw(l)

. (15)

Centered log-ratio transformation

The normalization methods investigated in this paper are shown in Table 1. Except for
rarefying, all methods infer proportions from the raw read counts. Because proportions
are constrained by the simplex, standard statistical methods for downstream analyses are
not applicable. To convert proportions into linear independent components, [48] intro-
duced the centered log-ratio transformation, which is an isometric transformation of the
simplex with the Aitchison metric onto a subspace of real space with the Euclidean met-
ric. Let (u1, . . . ,um)T denote a genericm-vector of proportions. This transformation has
the form

vj = log(uj) −
∑m

k=1 log(uk)
m

.

Transformed data are then analyzed in the same way as standard data. We employ this
strategy in this paper.

Differential abundance analysis

After effective normalization, a common downstream analysis is differential abundance
testing. In this section, we examine the impact of normalization using the results from a
differential abundance analysis. As with [10, 11], and [49], we focus on detectingmicrobes
that are differentially abundant between two conditions. Table 2 lists the methods consid-
ered in this paper. For the moment, we assume that the tree information is not available.
Among these, t-test and Wilcoxon rank sum test are standard methods for comparing
two groups, DESeq2 [50] is model-based and is borrowed from the field of RNA-seq, and
metagenomeSeq [8] andANCOM [14] are alsomodel-based and are proposed specifically
for microbiome sequencing data.
Note that t-test and Wilcoxon rank sum test apply to either raw counts or propor-

tions, and ANCOM normalizes the raw counts by taking ratios relative to a reference
taxon. DESeq2 and metagenomeSeq use raw counts, but each of them has a built-in
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normalization process . Furthermore, ANCOM involves the replacement of zeros by a
small positive number. For simplicity, a pseudocount of one is added to the raw counts
before applying normalization. To control the false discovery rate (FDR), all tests are
corrected for multiple testing using the Benjamini–Hochberg procedure [53].
Differential abundance analysis in the presence of tree structure is somewhat compli-

cated. To our knowledge, incorporating the dependence structure among the microbes
into any of ANCOM, DESeq2, and metagenomeSeq is not trivial and deserves further
study. Here, we propose a phylogeny-aware detection approach based on either t-test
or Wilcoxon rank sum test. One simple approach is to do the test directly after the
tree-based normalization (15). However, the obvious drawback of this naive approach
is that the estimation error in a tree split is propagated down to all of the splits below
it. To alleviate this problem, instead of a global test, we carry out local tests at tree
splits. If a node is differentially abundant, then so are all of its descendants. Since the
number of nodes at a split is much lower than the number of leaf nodes and the local
tests can be done split-by-split, this approach is computationally more stable and less
intensive.
There is an exception. If two nodes are differentially abundant and are both ancestors of

a leaf node, then it is possible that the leaf node is not differentially abundant. To finesse
the problem, we note that in these degenerate cases, there must be a path from the dif-
ferentially abundant nodes to the leaf node. We make a correction by locating the most
recent ancestor node to this path that is non-differentially abundant, and do test on the set
of all leaf nodes of this node and update the results. The tree-guided detection procedure
is summarized in Algorithm 1.

Algorithm 1 Phylogeny-aware differential abundance detection
Input: an OTU table of counts and a phylogenetic tree T = (L, I);
Output: A set of differentially abundant OTUs;
1: SetD = ∅;
2: for each tree split do in parallel
3: set S to be the set of tree nodes corresponding to this split;
4: normalization and differential abundance analysis on S ;
5: for A ∈ S do
6: if A is differentially abundant then
7: updateD ← D ∪ {l | l ∈ L is a descendant of A};
8: end if
9: end for

10: end for
11: for each tree path do
12: if this path contains two or more differentially abundant nodes then
13: locate the most recent ancestor node in this path that is
14: non-differentially abundant;
15: do the test on the set of leaf nodes to this node;
16: updateD accordingly;
17: end if
18: end for
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