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ABSTRACT
Radiofrequency ablation (RFA) is a local-ablative therapy for unresectable 

hepatocellular carcinoma (HCC). At present, there is no predictive marker for RFA 
treatment outcomes. This work aimed to valuate myeloid ecotropic viral integration 
site 1 (MEIS-1) in predicting post-RFA treatment outcomes of unresectable HCC 
patients. The time to progression (TTP) and overall survival (OS) of 81 HCC patients 
who received RFA treatment were measured. The protein level of MEIS-1 in tumor 
specimens was measured by western blot. The role of MEIS-1 in RFA-treating HCC in 
vivo growth nude mouse model was examined via PET/CT imaging. Higher level of 
MEIS-1 in tumor tissue is associated with better RFA treatment outcomes. The median 
TTP was 9.0 (95% confidence interval [CI]: 6.8–11.3) months in patients with high 
MEIS-1 expression (n = 43) versus 6.0 (95% CI: 4.6–7.4) months in patients with low 
MEIS-1 expression (n = 38). Moreover, in rodent HCC model we found overexpression 
of MEIS-1 enhanced the anti-tumor effect of RFA treatment. We conclude that high 
level of MEIS-1 expression predicts better RFA treatment outcome in HCC.

INTRODUCTION

High proportion of hepatitis viruses infection 
makes China a heavily afflicted country of hepatocellular 
carcinomas (HCCs); effective HCC treatment approaches 
will relieve this urgent medical burden [1–3]. Normally 
HCC cannot be diagnosed until developed into advanced-
stage which is not suitable for liver transplantation or 
surgical resection. There are limited treatment options 
available for advanced HCC patients, current HCC 
treatments have poor clinical outcomes and poor prognosis 
[4–6]. Radiofrequency ablation (RFA), an in situ ablative 
therapy which selectively destroys HCC tissues, is a 
promising treatment for advanced-stage HCC patients 
with cirrhosis and compromised liver function [7–10]. 
However, rapid or aggressive recurrence of HCCs after 
RFA treatment is a major obstacle [11]. It is urgent to 
study the mechanisms of the recurrence of HCCs after 

RFA treatment and identify predictive prognosis marker 
of HCC patients. 

Transcription factor myeloid ecotropic viral 
integration site 1 (MEIS-1) is a member of the triple 
amino acid loop extension family, which are thought to 
play important roles in cell growth and differentiation 
during vertebrate embryogenesis [12]. MEIS-1 contains 
four functional domains: a N-terminal MEIS-A domain, 
a MEIS-B domain, a C-terminal transcription factor 
activity region, and a homeodomain, which links MEIS-B 
domain and the C-terminal region [13, 14]. Previously, 
MEIS-1 was reported as a positive tumor inducer [15–
19]. However, MEIS-1 can also function as a negative 
regulator of cancers by inhibiting cell proliferation and 
inducing cell cycle arrest [20–21]. A previous study 
reported higher expression of MEIS-1 in healthy prostate 
tissues than in prostate carcinoma tissues, and concluded 
that MEIS-1 may serve as a predictive biomarker of 
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prostate cancer prognosis [21]. Similar studies reported 
that MEIS-1 is a suppressor of non-small-cell lung cancer, 
esophageal squamous cell carcinomas and clear cell renal 
cell carcinomas [14, 22–25]. A recent paper reported that 
MEIS-1’s expression level can predict treatment outcome 
in HCC patients [26]. 

In this study, we examined the predictive value of 
MEIS-1 expression in determining post-RFA treatment 
outcomes in HCC patients with advanced-stage 
disease. MEIS-1 may function as a negative regulator 
of HCC growth. Overexpression of MEIS-1 enhanced 
the efficiency of RFA’s anti-tumor effect on HCC 
cell proliferation in vivo. Thus, high level of MEIS-1 
expression predicts better RFA treatment outcome in HCC.

RESULTS

Association of MEIS-1 protein level and RFA 
treatment outcomes

The endogenous protein level of MEIS-1 in clinical 
specimens was detected by western blot. The results of 
the quantitative analysis of the western blots are shown in 
Figure 1A. According to the median value of intratumoral 
MEIS-1’s protein expression, the 81 patients were divided 
into two groups: those with low MEIS-1 expression (n = 
38) and those with high MEIS-1 expression (n = 43), as 
shown in Figure 1B.

As shown in Figures 1C and 1D, and Table 1, the 
median post-RFA TTP is 9.0 (95% confidence interval 
[CI]: 6.8–11.3) months in the high MEIS-1 expression 
group, whereas it is 6.0 (95% CI: 4.6–7.4) months in the 
low MEIS-1 expression group (log-rank P < 0.001, Figure  
1C). However, the difference in the median OS of the two 
groups seem obvious but is not significant (log-rank P = 
0.212, Figure 1D). As shown in Table 1, patients with high 
MEIS-1 expression had higher CER and DCR (39.53% 
vs. 15.79%, P = 0.031 for CER; 67.44% vs. 42.10%, P = 
0.022 for DCR) compared with those with low MEIS-1 
expression (Table 1). 

MEIS-1 enhanced RFA-induced inhibition of 
HCC cells in vivo growth

To validate whether MEIS-1 intrinsicly expression 
affects tumor growth, we next established HCC cell 
lines with low or high MEIS-1 expression level. We first 
selected a HCC cell line MHCC97-H which has very 
low endogenous MEIS-1 expression (Figure 2A), MEIS-
1 was overexpressed via infection of its adenovirus 
-vectors in MHCC97-H cells (Figure 2B). We found the 
overexpression of MEIS-1 increased the expression of 
E-cadherin, an epithelial marker, and decreased the protein 
level of N-cadherin and Vimentin, two mesenchymal 
markers (Figure 2C and 2D). Therefore, MEIS-1 inhibits 
the epithelial-mesenchymal transition of MHCC97-H cells. 

Next, control MHCC97-H cells or MEIS-1 
overexpressing MHCC97-H cells were injected into nude 
mice subcutaneously. We observed that overexpression 
of MEIS-1 reduced tumor growth, and the RFA treatment 
resulted in shrinkage of the tumors (Figure 3A–3C). 
Moreover, RFA induced the EMT process of HCC tumors, 
MEIS-1 inhibited the EMT induced by RFA (Figure 3D–
3G). Thus, overexpression of MEIS-1 enhances the anti-
tumor effect of RFA treatment. 

Next, HCC cells were isolated from the 
subcutaneous tumors (Figure 3) that had been treated 
with RFA or infected with vectors; transwell assays (in 
vitro invasion or migration) and intrahepatic growth assay 
(injected into the liver lobe) were performed. As shown 
by the results of the soft agar assay, overexpression of 
MEIS-1 or RFA attenuated in vitro invasion (Figure 4A) 
and migration (Figure 4B) of HCC cells. 

To confirm the results in in vivo tumor growth, 
the effect of MEIS-1 on RFA was examined by inducing 
expression model. MHCC97-H cells infected with 
control virus or TET-on virus which express MEIS-1 
were injected into nude mice subcutaneously. When the 
volumes of subcutaneous tumors reach 1200mm3, the 
RFA was performed. Next, mice received solvent control 
or tetracycline (Tetracycline does not affect HCC tumor 
growth, shown in Supplementary Figure 1). As expected, 
tetracycline treatment induced the overexpression of 
MEIS-1 and reduced tumor growth (Figure 5); and the 
RFA treatment resulted in tumor size reduction (Figure 5).

Moreover, we validated our hypothesis in in situ 
HCC cell growth model in which the intraliver tumors 
were measured by PET/CT. As shown in Figure 6A, RFA 
treatment decreased the intrahepatic growth of HCC cells. 
Overexpression of MEIS-1 enhanced the inhibitory effect 
of RFA on HCC cells’ nodule formation in liver (Figure 
6A). The liver-to-blood radioactive data, tumor foci 
in the whole liver, and PET imaging of the whole liver 
confirmed the PET imaging of whole animals (Figure 6B). 
Thus, overexpression of MEIS-1 enhanced the anti-tumor 
effect of RFA treatment in in situ HCC. 

DISCUSSION

It is well known that advanced HCC patients have 
a poor prognosis due to the ineffectiveness of systemic 
chemotherapy and local radiation therapies [27, 28]. Recent 
studies reported that Sorafenib, an oral kinase inhibitor, 
improved the OS and life quality of HCC patients [29–31]. 
However, intrinsic or acquired Sorafenib resistance in tumor 
tissue restricts the effect of this promising approach [29–
31]. On the other hand, local-ablative therapy has becoming 
a new hope for patients suffering from unresectable HCC. 
RFA is widely used to treat advanced HCC patients, as it 
presents better therapeutic outcomes compared to other 
local ablative methods [32]. Nevertheless, there is not an 
effective indicator of post-RFA prognosis.
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Table 1: MEIS-1’s protein level and outcomes of post-RFA
MEIS-1 protein level

PHigh (n = 43) Low (n = 38)
TTP 9.0 (M) 6.0 (M) < 0.001

6.8–11.3 (M) 4.6–7.4 (M)
OS 14.0 (M) 11.0 (M) 0.212

8.7–19.3 (M) 9.4–12.6 (M)
Overall response rate (CR + PR) 17 (39.53%) 6 (15.79%) 0.031

Disease control rate (CR + PR + SD) 29 (67.44%) 16 (42.10%) 0.022
TTP: time to progress; OS: overall survival; PR: partial remission; CR: complete remission; SD: stable of disease; M: 
months. 

Figure 1: Expression of MEIS-1 and post-RFA outcomes of advanced HCCs. The protein level of MEIS-1 in HCC clinical 
specimens was identified by a Western blot. (A) Representative photograph of MEIS-1 expression in clinical specimens. Tissue No. 1 to No. 
5 indicated MEIS-1 high group, and No. 6 to No. 10 indicated the MEIS-1 low group. (B) Scatter diagram showing the intratumor levels and 
relative protein levels of MESI-1 in the two patient groups. (C) Kaplan–Meier estimates of the TTP in the two patient groups (P < 0.001). 
(D) D: Kaplan–Meier estimates of OS times in the two patient groups (P = 0.212). 
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MEIS-1 play a critical role in several important 
physiological processes, such as organ development and 
stem cell differentiation [33, 34]. It also participates in the 
development and progression of cancers. For example, 
aberrant expression of MEIS-1 promoted the development 
of acute myeloid leukemia [15–19, 35]. However, MEIS-1 
has been reported as a negative regulator of some other 
cancers, such as non-small-cell lung cancer, esophageal 
squamous cell carcinomas, clear cell renal cell carcinomas 
and prostate cancer [22–25]. In these studies, the authors 
proposed that MEIS-1 inhibits tumor cell proliferation and 
induces cell cycle arrest [22–25]. In the present study, the 
patients with high MEIS-1 expression show better post-
RFA outcomes than those with low MEIS-1 expression. 
The median TTP was also longer in the high MEIS-
1 group than in the low MEIS-1 group. Furthermore, 
the CER and CDR of the patients with high MEIS-1 
expression were better than those of the patients with low 
MEIS-1 expression. These results indicated that MEIS-
1’s expression level indicates the anti-tumor effect and 
prognosis of RFA therapy. 

RFA is one of the most suitable treatment option for 
advanced-stage HCC, particularly when a patient’s liver 
functional reserve precludes radiotherapy. However, HCC 
can recur after RFA, and the phenotype, e.g. Epithelial-
mesenchymal transition, of the tumor cells often changes 
[36]. Previous research suggested that incomplete 
ablation in RFA may induce cellular stress and lead to 
pathological changes [37, 38]. Zhu et al. suggested that 
overexpression of MEIS-1 inhibits the EMT process and 
decreases the expression of pro-survival genes in clear 
cell renal cell carcinomas [25]. Yasui et al. [26] indicated 
that MEIS-1 may be a suppressor of TGFβ signaling 
pathway, which is one of the foremost mediators of EMT. 
TGFβ/Smad signaling pathway plays a crucial role in 
tumorigenesis and tumor development, included HCC 
[39, 40]. It has been previously reported that TGFβ/Smad 
can be a tumor suppressor and mediate the expression 
of tumor suppressor p15 and p21 [41–44]. Zhou et al. 
showed that Smad3 can sensitize HCC cells to cisplatin 
treatment by repressing Akt phosphorylation [44]. At 
same time, other papers also reported that TGFβ/Smad 

Table 2: Baseline clinical data of 81 patients with advanced HCC
Presentation Case (%)
Median age, yr (range) 49 (28–67)
Gender, male (%) 68 (83.95%)
Aetiology (%)
  HBV positive 71 (87.65%)
  HCV positive 10 (12.35%)
ECOG PS (%)
  0 31 (38.27%)
  1 46 (56.79%)
  2 4 (4.94%)
AFP (%)
  Normal 17 (20.99%)
  Elevated 64 (79.01%)
extrahepatic metastasis (%) 32 (39.50%)
LN metastasis (%) 39 (48.14%)
Portal vein invasion (%) 43 (53.08%)
Chilg-Pugh (%)
  A 69 (85.18%)
  B 12 (14.82%)
Median size of index tumor, cm (range) 1.4 (1–3.0)
Median number of index tumors 2 (1–3)
Differentiation
  Well 10 (12.34%)
  Moderately 44 (54.32%)
  Poorly 27 (33.33%)
Prior local therapy (%) None
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pathway may facilitate tumor growth [45–47]. It is well 
known that TGFβ/Smad pathway plays a central role in 
EMT process [48]. 

In the present study, we established a subcutaneous 
tumor model and then performed RFA at 65–70°C for 3–5 
min to attenuate the growth of HCCs. Overexpression of 
MEIS-1 enhanced the anti-tumor effect of RFA. In the 
future, in addition to RFA treatment, anti-tumor agents 
could be injected into tumors to mimic TACE. In addition, 
intrahepatic growth of HCC cells in nude mice could 
be achieved by directly ablate the lesion in liver using 
abdominal surgeries in mice. Local ablation of intrahepatic 
HCC by RFA could also be performed in some larger 
animals, e.g. immunodeficient rat, guided by small animal 
molecular imaging system, e.g. small animal ultrasound 
systems. 

MATERIALS AND METHODS

Patients 

This prospective study consisted of 81 consecutive 
patients who underwent RFA between April 2014 and 

May 2016, and the baseline clinical data of patients with 
advanced HCC were shown in Table 2. The inclusion 
criteria were as follows [7, 49–51]: (A) a diagnosis 
of HCC and stage B or C unresectable cancer; (B) the 
presence of portal hypertension and Child’s class A or B 
cirrhosis according to endoscopy or imaging; (C) a life 
expectancy of at least 12 weeks according to the clinical 
presentation; (D) Eastern Cooperative Oncology Group 
performance status 0, 1, or 2; and (E) histological grade 
of HCC differentiation classed as well differentiated, 
intermediately differentiated, or poorly differentiated 
according to the criteria of Edmondson. The collection of 
the HCC specimens and study protocol were approved by 
the Ethics Committee of the 302nd Hospital, and informed 
consent was obtained from all the patients.

None of the HCC patients had received any prior 
treatment. Clinical specimens were obtained by a puncture 
biopsy using a coaxial needle (Cat. no.: MCXS1815BP, 
RITA Company, Crystal Lake, IL, USA) immediately after 
the RFA treatment. The primary endpoint was the time to 
progression (TTP) post-RFA, and the secondary endpoint 
was overall survival (OS). The association of the protein 
expression of MEIS-1 with post-RFA OS and TTP was 
assessed in the same cohort of patients. The efficacy of 

Figure 2: MEIS-1 inhibits the epithelial-mesenchymal transition (EMT) of MHCC97-H cells. (A) The protein level of 
MESI-1 was identified in a hepatic nontumor cell line (L-02) and HCC cells (HepG2, MHCC97-H, MHCC97-L, and Hu7). (B) MHCC97-H 
cells infected with an empty vector or MEIS-1 were harvested and analyzed by a western blot. (C, D) The Protein level of MEIS-1, 
E-cadherin, N-Cadherin or Vimentin was identified by its antibody. 
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Figure 3: Impact of overexpression of MEIS-1 on subcutaneous growth of HCC cells in RFA-treated nude mice. (A) 
MHCC97-H cells infected with an empty vector or MEIS-1 were injected into nude mice. When the tumoral volume reached 1000–1200 
mm3, RFA was performed. Tumoral growth was defined as the tumoral volume (B) and tumoral weight (C). The relative mRNA level of 
MEIS-1 (D), E-cadherin (E), N-Cadherin (F) or Vimentin (G) in tumors was shown as mean mean ± SD. *P < 0.05.
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RFA was based on the clinical efficacy response (CER)/
overall response rate or disease-control rate (DCR), in 
accordance with the protocols described in our previous 
work [7, 51]. The overall response rate was defined as: 
complete response (CR) + partial response (PR) [7, 51]. 
The disease-control ate was defined as: CR + PR + stable 
disease (SD) [7, 51].

Cell culture and Western blot analysis

A hepatic nontumor cell line, L-02, and HCC cell 
lines (HepG2, MHCC97-H, MHCC97-L, and Hu7) were 
cultured in Dulbecco’s modified Eagle medium (DMEM) 

with 10% fetal bovine serum at 37° C in an atmosphere 
of 5% CO2 [51, 52]. Tetracycline (Cat. no.: S2574) was 
purchased from Sellck Corporation, Houston, Texas, USA. 
An empty vector adenovirus and MEIS-1 were purchased 
from Vigene Company (Jinan, Shandong, China). A TET-
on Lentivirus of MEIS-1 was generated and prepared 
by Vigene Company (Jinan, Shandong, China). Cells 
were harvested for Western blot analysis. Total protein 
was extracted from cells or clinical specimens and 
subjected to sodium dodecyl sulfate polyacrylamide gel 
electrophoresis. The proteins were then transferred to a 
polyvinylidene fluoride film. Next, the blots were blocked 
by 5% bovine serum albumin and incubated with the 

Figure 4: In vitro invasion or migration of cells separated from subcutaneous tumors.  The subcutaneous tumors described in 
Figure 3 were harvested. Then, single cells were separated from the tumors and analyzed using a transwell experiment. The in vitro invasion 
(A) or migration (B) was shown as representative photographs or mean ± SD. *P < 0.05
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primary antibody anti-MEIS-1 immunoglobulin G (IgG) 
(Cat. no.: sc-101850, Santa Cruz, USA) in a 1:2000 
dilution, anti-E-Cadherin immunoglobulin G (IgG) (Cat. 
no.: sc-71009, Santa Cruz, USA) in a 1:5000 dilution, anti-
N-Cadherin immunoglobulin G (IgG) (Cat. no.: sc-59987, 
Santa Cruz, USA) in a 1:1000 dilution, anti-Vimentin 
immunoglobulin G (IgG) (Cat. no.: sc-73258, Santa 
Cruz, USA) in a 1:1000 dilution or anti-glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) IgG (Cat. no.: 
sc-47724, Santa Cruz, USA) in a 1:5000 dilution. After 
washing three times in tris-buffered saline, the blots 
were incubated with a secondary antibody (1:5000 
dilution) and developed by the addition of enhanced 
chemiluminescence reagents (Qiangen, Beijing, China) 

and X-ray film exposure. The quantitative protein level of 
MEIS-1 was determined by gray-scanning analysis using 
Alpha Innotech analysis software (San Leandro, CA, 
USA). The protein level of MEIS-1 was normalized to that 
of a loading control (GAPDH). What was calculated using 
the following formula: gray scale of MEIS-1 band)/(gray 
scale of GAPDH). 

RFA treatment

A multipolar 15 cm-long RFA needle (Cat. no.: 
UniBlate 700-103597, RITA Company, Crystal Lake, IL, 
USA), with a maximum ablation diameter of 5 cm was 
used in all cases. Percutaneous RFA was performed using 

Figure 5: Impact of overexpression of MEIS-1 on subcutaneous growth of HCC cells in RFA-treated nude mice. (A) 
MHCC97-H cells infected with an empty vector or TET-on-MEIS-1 were injected into nude mice. When the tumoral volume reached 1000–
1200 mm3, RFA was performed. Next, mice were received solvent control or tetracycline per day. The tumor growth was defined as the 
tumoral volume (B) and tumoral weight (C). (D) The expression of MEIS-1 in tumor tissues was identified by western blot via its antibody. 
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a radiofrequency therapy instrument (Cat. no.: RITA 
Model 1500X, RITA Company, Crystal Lake, IL, USA), 
with guidance provided by computed tomography (CT) 
scanning. The RFA needle was inserted in the direction 
of the tumor, and CT scanning was used to confirm the 
position of the RFA needle. Ablation started once the 
needle reached the required position. The ablation time 
was 15–20 min, and the temperature setting was 105°C.

Animal experiments

All the animal experiments were reviewed and 
approved by the Institutional Animal Care and Use 

Committee of the 302nd Hospital, People’s Liberation 
Army of China. Nude SCID (severe combined immune 
deficiency) mice aged 4–6 weeks were purchased from Si-
Bei-Fu Biotechnology Corporation, Beijing China. Figure 7 
shows the workflow of the animal experiments. 

To produce a subcutaneous tumor model [53–55], 
MHCC97-H cells infected with a control or MEIS-1 virus 
vector were injected into nude mice (1 × 106 cells per 
animal). After 4–6 weeks (26 days), the tumoral volume 
had reached almost 1200 mm3. RFA of the subcutaneous 
tumors was performed using a thyroid ablation needle 
(Cat. no.: UniBlate 700-103587 17G, RITA Company). 
The ablation time was 3–5 min, and the temperature 

Figure 6: Intrahepatic growth of cells separated from subcutaneous tumors. The subcutaneous tumors described in Figure 3 
were harvested. Then, single cells were separated from the tumors and injected into the right lobe of the liver. After 4–8 weeks, 18F-FDG/
PET images (n = 6) were obtained (A). (B) The results of the PET/CT were confirmed by the radioactivity of ablated livers and H&E 
staining. The arrows indicate intrahepatic tumor nodules. *P < 0.05.
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setting was 65–70° C. After the RFA treatment, the 
tumoral volume was calculated every 4 days using the 
following formula: width2 × length/2. Tumors were 
harvested 16 days after the RFA treatment, and their 
weights were measured. 

To produce a liver in situ tumor model [56–58], HCC 
cells were separated from subcutaneous tumors formed by 
MHCC97-H cells and directly inoculated into the right lobe 
of the liver (1 × 105 cells per animal). After 4–8 weeks, nude 
mice were injected intravenously with 100 μCi of 18F radio-
labeled fluorodeoxyglucose (18F-FDG), and the animals 
were examined using a positron emission tomography/
computed tomography (PET/CT) scanner (Philips Corp., 
Holland). Two-minute CT and 10-min PET scans were 
performed 45 min after the FDG injection. A NaI (Tl) well 
counter (China Atom Corp., Beijing China) was used to 
measure the radioactivity of organs (liver) and blood.

qPCR

The qPCR (Quantitative reverse-transcription 
PCR) was performed following the methods descripted 
by Feng et al., 2015 [59]. Briefly, RNA samples were 
extracted from subcutaneous tumor by PARISTM 
Kit (Applied Biosystems, Foster City, CA, USA) 

and reverse-transcribed to cDNA by a Multiscribe™ 
Reverse Transcriptase kit (Applied Biosystems, Foster 
City, CA, USA) according to the manufacturer’s 
instructions. The mRNAs level of MEIS-1, E-Cadherin, 
N-Cadherin or Vimentin was examined by qPCR. 
The sequences of the primers used were presented in 
Supplementary Table 1 [60].

Transwell analysis

MHCC97-H cells were injected into nude mice to 
produce subcutaneous tumors. Subsequently, the tumors 
were divided into an RFA-treatment group and a non-RFA 
treatment group. Next, single cells (3000 per well) were 
separated from the subcutaneous tumors and were analyzed 
by transwell assays performed in 24-well plates chamber 
(Corning, Lowell, MA, USA) fitted with a polyethylene 
terephthalate filter membrane with 8-μm pores. The invasion 
cells or migration cells were measured following the 
methods descripted by Zhou et al. and Yang et al. [61, 62].

Statistical analysis

All the statistical analyses were performed using 
SPSS software (version 16.0). Data are presented as 

Figure 7: Workflow of the animal experiments.  (A) MHCC97-H cells were injected into nude mice. (B) After 3-4 weeks, the 
subcutaneous tumors were treated with RFA. (C) After 2–3 weeks, the tumors were removed. (D) Single cells were separated from the 
tumors by tissue-grinding and sieve-filtrating. (E) The cells were then injected into the right lobe of the liver. (F) After 3–4 weeks, 
intrahepatic HCCs were identified by CT/PET. (G) The liver was anatomized and separated to show the intrahepatic lesions/intrahepatic 
nodules formed by HCC cells.
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the median and range. The OS rate was estimated by 
the Kaplan–Meier method, and groups were compared 
by the log-rank test. Pearson’s Chi-square test was 
used to test the difference between the CER and DCR 
of the MEIS-1 high and MEIS-1 low groups. In all the 
analyses, a P-value < 0.05 was considered statistically 
significant.

CONCLUSIONS

The endogenous level of MEIS-1 seems to be 
associated with post-RFA treatment outcomes. The median 
post-RFA TTP of patients with a low MEIS-1 expression 
level was significantly shorter than patients with a high 
MEIS-1 expression level. To validate this, we used rodent 
tumor growth model. Overexpression of MEIS-1 enhanced 
the tumor rejection effect of RFA in preventing subcutaneous 
growth of HCC cells. The findings indicate that MEIS-1 and 
RFA may exert a synergetic effect, resulting in a reduction in 
the tumor volume. Our data suggest that the expression level 
of MEIS-1 may serve as a clinical predictor of post-RFA 
treatment outcomes in HCC patients.
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