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Abstract

The brown planthopper (Nilapavata lugens: BPH) and whitebacked planthopper (Sogatella

furcifera: WBPH) co-occur as the principal pests of rice in Asia. A review of previous studies

suggests that the two species have similar temperature tolerances and similar temperature

thresholds for development. However, the distribution and seasonality of WBPH suggest

that its temperature optima for performance (survival, oviposition and growth) may be lower

than for BPH. We compared adult longevity, oviposition, nymph survival and development

success, as well as nymph biomass in both species across a gradient of constant tempera-

tures from 15˚C-40˚C, at 5˚C intervals. The most suitable temperatures for oviposition,

nymph biomass and development success were 5–10˚C lower for WBPH than for BPH. Fur-

thermore, compared to BPH, WBPH demonstrated clear differences in oviposition on differ-

ent rice subspecies and on rice at different growth stages at 25˚C and 30˚C, but not at other

temperatures. The results suggest that aspects of herbivore performance within tolerable

temperature ranges, which are not often included in temperature models, may be more use-

ful than thermal tolerances or development thresholds in predicting the effects of global

warming on pest damage to crops.

Introduction

Global temperatures have increased by between 0.5 and 0.9˚C since records began in the 1850s

and are predicted to increase a further 1.0–2.1˚C before 2100 [1,2]. Ectothermic species, such

as insects and other arthropods, have already been affected by these changes [3–6]. Develop-

ment times and temperature tolerances are widely used to describe insect responses to temper-

ature and have become an important component for predictive models of insect distributions,

voltinism, migration, and overwintering under global warming scenarios [7–9]. However,

despite numerous studies conducted using climate chambers, relatively few have examined

aspects of herbivore-plant interactions within tolerable temperature ranges. For example,
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many studies of herbivore temperature tolerances (high and low lethal temperatures) and tem-

perature profiles (temperature-dependent development rates) have reared target herbivores on

artificial diets or were conducted as short-term experiments without host plants [10–13]. Fur-

thermore, although insect herbivores can develop over a range of temperatures and increase

their development rates at higher constant temperatures (~25–34˚C), they may also attain

lower body weights, or display reduced fecundities under more rapid development or where

their host plants are negatively affected by the same high temperatures [14,15]. Therefore, in

insects the optimal temperatures for development may not always correspond with optima for

other life history traits or ecosystem functions (e.g., egg quality, feeding efficiency, or dispersal

capacity) [15–17].

Although some studies have also examined insect responses to temperature as they feed on

their plant hosts as opposed to artificial diets, particularly in plant-sucking insects [14,18,19],

few studies have examined the effects of developmental changes in the host plant (ontogeny)

on insect fitness (survival × reproduction) across temperature gradients. These effects could be

important in identifying realistic responses to temperature where host plant quality influences

herbivore reaction norms [20]. As a further complication, different herbivore species from a

single assemblage might respond differently to temperature gradients depending on prefer-

ences for host plants of a specific age or condition. Herbivores may also be affected by variabil-

ity in the strength of host defenses across different temperatures [1,21,22]. Therefore,

interactions between herbivores, plants and their ambient temperatures can be more influen-

tial in determining herbivore-herbivore and herbivore-plant interactions under a changing cli-

mate than are thermal tolerance limits or development rates and deserve increased research

attention.

Rice (Oryza sativa) is the staple food for over half the World’s population and is produced

on more than 160 million hectares worldwide [23]. Climate models predict that, compared to

other major crops such as wheat or maize, rice production will be less affected by climate

change and yields may actually increase as a result of CO2 fertilization [24]. However, rice may

be affected by increased levels of insect herbivory as the climate warms. For example, an

increase in the abundance of planthoppers (Homoptera: Delphacidae) and leaffolders (Lepi-

doptera: Pyralidae) since the beginning of the millennium has been associated with increasing

temperatures in Asia [25–27]. Furthermore, planthopper and leaffolder migrations in East

Asia have occurred progressively earlier in recent decades and herbivore overwintering ranges

in southern Asia have expanded poleward, and are predicted to expand even further in coming

decades [28–30]. Among the most damaging pests of rice in Asia are the rice planthoppers

(brown planthopper—BPH, Nilaparvata lugens; whitebacked planthopper—WBPH, Sogatella
furcifera; and small brown planthopper—SBPH, Laodelphax striatellus) [31,32]. Because of

their economic importance, a number of studies have assessed the temperature tolerances and

temperature profiles of these planthopper species [10,11,33–35] (Fig 1). For example, the lower

and upper temperature tolerances for adult female BPH have been estimated at 8–16˚C and

36–41˚C, respectively [10,11,33], and upper temperature tolerances of WBPH and SBPH were

estimated as 37–41˚C and ~40–41˚C, respectively [33](Table 1).

BPH and WBPH are frequently the most abundant arthropod species in rice fields of South

and Southeast Asia [57]. Studies of the development rates of these planthoppers across temper-

ature gradients have generally indicated linear increases in development until reaching an

optimum temperature (usually between 25–30˚C), followed by a rapid decline in survival [53].

Furthermore, several researchers have assessed aspects of planthopper behavior and popula-

tion development under temperature gradients, including studies of planthopper mating

behavior, planthopper feeding responses, and planthopper population growth [49]. Despite

these studies, there is still little knowledge of the potential interactions between planthoppers
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and their host plants under temperature gradients, including knowledge of oviposition, bio-

mass accumulation and damage from planthoppers grown on different hosts (species or varie-

ties [21,22]) or on plants at different growth stages. Furthermore, compared to BPH, few

studies have assessed responses by WBPH to temperature gradients or to any other changes in

global climate (Fig 1). WBPH has gained prominence in Asia over the last several decades due

to high levels of adoption by Asian farmers of hybrid rice varieties, particularly those with a

cytoplasmic male sterile lineage, that are highly susceptible to the planthopper [57]. However,

it is also possible that gradual changes in global temperatures or other changes in regional cli-

mate might have contributed to the increasing prominence of WBPH in rice herbivore

assemblages.

Fig 1. Approximate distribution of the whitebacked planthopper (Sogatella furcifera: WBPH) and brown planthopper (Nilaparvata lugens: BPH) around the

Indian and Pacific Oceans. Distributions are based on national or provincial (Australia and China) records. The locations of population sources for planthopper

colonies that have been used in climate and temperature studies are indicated. Open points with blue outlines were not used in our species level analyses (Section 2.3);

colored points correspond with colored symbols used in the present paper. Numbers are regions where planthopper populations have been assessed for their responses

to temperature. Some regions include multiple published studies. 1 = South Korea [35,36]; 2 = Kafr-el-Sheikh, Egypt [37]; 3 = Hangzhou, China [33,38–40]; 4 = Niigata,

Japan [41]; 5 = Guangzhou, China [42]; 6 = Laguna, Philippines [43,44]; 7 = Kagawa, Japan; 8 = Jiangsu, China; 9 = Jiangxi, China; 10 = central Japan [34];

11 = Hiroshima, Japan; 12 = Guangxi, China [45]; 13 = Godavari, India [46,47]; 14 = Shanghai, China; 15 = Yunnan, China; 16 = Pulau Pinang, Malaysia [10,11];

17 = Odisha, India [48]; 18 = New Delhi and Haryana, India [19,49]; 19 = Tamil Nadu, India [50]; 20 = Khin Kaen, Thailand [51]; 21 = Rajendranagar, India [52,53];

22 = Punjab, India [47,54]; 23 = Varanasi, India [55]. Sites are listed in chronological order of published studies; ‘b’ indicates studies with BPH, ‘w’ indicates studies with

WBPH. The map was created using public domain information available through Natural Earth [56] and is not identical to any images from the provider.

https://doi.org/10.1371/journal.pone.0235506.g001
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BPH and WBPH display strong oviposition preferences for rice at different stages of crop

growth. In studies of oviposition, WBPH performed best on younger rice plants, with oviposi-

tion declining rapidly as plants developed beyond ~30 days after seeding (DAS). In contrast,

although BPH also performs best on young rice seedlings, the species will continue to lay eggs

as rice plants develop and grow [58]. There are also indications that WBPH may be more prev-

alent on varieties from the O. sativa japonica subspecies than from the O. sativa indica subspe-

cies (henceforth japonica and indica rice, respectively) as damage by WBPH to japonica
varieties is often more severe than damage to indica varieties [59] (but see [60]) and because

WBPH lay more eggs on susceptible japonica than on susceptible indica lines [58]. The two

species also differ in their distribution ranges. Compared to migrant BPH, migrant WBPH

appear to disperse earlier in the spring [30] and distribute more widely in north temperate

regions (Fig 1) where they also feed on wheat (Triticum aestivum), maize (Zea mays) and other

grasses [61]. However, in comparative studies, BPH and WBPH display similar lower and

upper temperature thresholds for development [33,34]. These observations suggest that BPH

performs better than WBPH under warmer climates despite reports of similar thermal toler-

ances for the two species. Continuing gaps in knowledge of temperature profiles and planthop-

per response norms, particularly for WBPH, therefore hinder assessment of the relative risks

from these planthoppers to crops under current and future climates.

Table 1. Key temperature extremes for WBPH and BPH based on published studies.

Parameter Value estimates

WBPH BPH

Minimum

(˚C)a
Maximum (˚C) Minimum (˚C)a Maximum (˚C)

Eggs

Effective temperature for egg

development

12.6 [34] na 8.1 [53]; 8.4 [46]; 12.3 [51]; 12.7 [34] 35.0 [51,53]

Nymphs

Effective temperature for nymph

development

11.2M, 11.2F

[34]

na 8.1 [53]; 8.24 [46]; 9.4 [51]; 11.7M, 11.3F

[34]; 12.5–17.6 [11]b
35.0 [51]; 34.9 [10]c; 34.2–37.2 [11]b

Coma temperature for nymphs na na 6.2–6.8 [11]b 37.7 [10]c; 37.6–41.0 [11]b

Lethal temperature for nymphs na na 0.5–3.6 [11]b 41.8 [10]c; 40.8–42.9 [11]b

Adults

Effective temperature for adult male

development

na 37.8 [33]d; 40.7

[33]e
8.8–16.4 [11] 38.0 [51]f; 37.7 [10]c; 36.6–37.7 [11]b; 37.8

[33]d; 40.6 [33]e

Coma temperature for adult males na 41.8 [33]d; 42.6

[33]e
-0.3–3.5 [11]b 42.0 [10]; 40.6–43.2 [11]; 42.2 [33]d; 42.9

[33]e

Lethal temperature for adult males na 39.0 [33]d na 40.5 [33]d

Effective temperature for adult female

development

na 37.8 [33]d; 40.8

[33]e
8.1–16.4 [11]b 37.0 [10]c; 36.0–37.3 [11]b 38.5 [33]d; 40.8

[33]e

Coma temperature for adult females na 41.9 [33]d; 42.7

[33]e
-1.2–2.9 [11]b 43.4 [10]c; 41.6–45.0 [11]b; 43.3 [33]d; 43.1

[33]e

Lethal temperature for adult females na 41.2 [33]d -2.7–2.1 [11]b 42.5 [10]c; 42.1–43.6 [11]b; 41.6 [33]d

a M = male, F = female
b Values range between cold acclimated and heat acclimated colonies
c Values for colonies maintained at 23˚C
d For tests conducted without host plant
e For tests conducted with host plant
f Sexes not differentiated

https://doi.org/10.1371/journal.pone.0235506.t001
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The present study compares the responses by BPH and WBPH to ambient temperatures.

We describe oviposition by BPH and WBPH on japonica and indica rice subspecies and at two

stages of plant growth (20 and 30 DAS) across a gradient of temperatures. We also compare

the performance of nymphs of both planthopper species across the same gradient of tempera-

tures. Because nymphs demonstrated no apparent differences in performance on indica and

japonica varieties in a previous study [58], we assess nymphs of both species only on indica
rice. However, we focus on aspects of nymph-plant interactions that might reflect the func-

tions (i.e., survival, weight gain and development to adult) of each planthopper species in rice

production systems. Finally, we conduct a comprehensive review of previously published stud-

ies that examined the reactions of these two species to two or more ambient temperatures. We

compared our results with results from these previous studies to identify general patterns in

planthopper responses to temperature, to highlight continuing gaps in knowledge of tempera-

ture effects on the species’ life histories, and to develop predictions about the two species and

their potential interactions under continuing changes in the global climate. We discuss our

results in light of the importance of temperature tolerances and thresholds relative to defined

behavioural responses to temperature as tools for predicting future pest assemblages.

Materials and methods

Literature review

We conducted a review of literature on the relations between temperature and the life-histo-

ries, survival, fecundity, and other aspects of the biology of BPH and WBPH. We conducted

searches in Google Scholar for all papers until December 2019 using the keywords ‘tempera-

ture’, ‘climate’, ‘Nilaparvata’, ‘Sogatella’, and ‘planthopper’. We then screened the methods

used in each paper to identify comparative studies that assessed planthopper performance at

two or more temperatures. We also noted aspects of the study methods such as the origin of

planthopper populations, the numbers of replications performed, the host plants and plant

development stages used in the experiments, and other independent factors included in the

studies (i.e., elevated or ambient CO2 concentrations, viliferous or non-viliferous planthop-

pers, levels of nitrogenous fertilizers, and ambient humidity, among others). For the purpose

of our study, where factors other than temperature included two or more levels, we included

only standardized or control treatments (e.g., ambient CO2, non-viliferous planthoppers, no

or low nitrogen added). We retrieved a total of 72 papers, of which 35 included experiments

conducted under controlled environments (in climate or environmental chambers). Finally,

only 22 papers were included in an analysis of temperature effects on BPH and WBPH because

these papers used controlled temperatures, presented sufficient details of experiments (e.g.,

mean temperatures, ambient humidity, duration of experiments, or numbers of insects used in

experiments), avoided or explained confounding effects in their experiments, or presented

new information not previously published. We were also unable to access some papers pub-

lished in regional journals from China and South Korea.

Herbivores

We used BPH and WBPH from colonies maintained at the International Rice Research Insti-

tute (IRRI). The colonies were initiated in 2009 (three years before the initiation of the present

study) with > 500 wild-caught individuals of each species collected from Laguna Province

(Philippines: 14˚100N, 121˚130E). We used the laboratory colonies because they were free of

associated plant viruses and had largely synchronized development stages. The BPH colony

had noted virulence against a range of resistance genes including BPH1, BPH2, BPH5, BPH7,

BPH8, BPH18, BPH25 and BPH26 and displayed a high level of brachyptery [62]. The WBPH
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colony had noted virulence against Wbph2, Wbph3, wbph4, Wbph6, WbphAR, WbphM1 and

WbphM2 [62]. The planthoppers were reared continuously on the susceptible variety TN1

(� 30-day old rice plants) in wire mesh cages (91.5 × 56.5 × 56.5 cm; H × L × W). The colonies

were kept under greenhouse conditions (26–37˚C, 12:12 day:night [D:N]) with feeding plants

replaced every 3–5 days.

Host plants

We used two rice varieties in our experiments. IR22 is a relatively modern (1969) indica rice

variety that is susceptible to BPH and WBPH populations from South and Southeast Asia

(moderately susceptible to populations from Bangladesh and Indonesia) [62,63]. T65 is a

japonica variety that was first released in Taiwan in 1923. The variety is highly susceptible to

BPH and WBPH from South and Southeast Asia and is closely related to TN1, the variety on

which greenhouse colonies were maintained (see above)[62]. WBPH females lay significantly

more eggs on T65 than on IR22, particularly under moderate nitrogen levels [58]. Seeds of the

two varieties were acquired through the IRRI Germplasm Collection. The seeds were germi-

nated in a greenhouse at staggered intervals (i.e., T, T+10 days) and planted at 5–6 days after

sowing (DAS) (seedling stage S3, where the prophyll had emerged from the coleoptile [64]) to

#0 pots (7 × 11 cm: H × D) filled with paddy soil. This produced seedlings of 20 and 30 DAS

for use in bioassays at the same time. Sufficient numbers of plants were maintained to assess

daily egg-laying and to replace plants exposed to nymphs when they showed symptoms of

feeding damage (i.e., moderate yellowing) (see below). The pots and developing plants were

placed in climate chambers at the same temperatures as those used in the final bioassays (see

below) ten days before initial infestations to allow the plants to acclimatize.

Temperature bioassays

Bioassays were conducted IRRI using environmental chambers with the Conviron CMP6050

Control System (Conviron, Winnipeg, Canada). To avoid pseudoreplication and control for

errors due to spatial and temporal variability within climate chambers [65–67], the tempera-

ture treatments were rotated between four separate chambers and the temperature settings

changed after each experimental run such that each chamber was used to replicate each of the

test temperatures. Furthermore, each replicate (i.e., Run) included between three and five sub-

samples (i.e., rearing cages–see below) per variety and time treatment, with subsamples ran-

domized within chambers. Temperatures ranged from 15 to 40˚C, representing a low

temperature at which nymphs can survive and develop [34,53] and a temperature at close to

the upper lethal limits for survival of adult planthoppers [33], respectively. The bioassays were

conducted as follows:

Oviposition experiments. Plants of each variety and age were individually covered with

acetate rearing cages (50 × 10 cm: H × D). The cages had a mesh top to allow air circulation. A

single mated gravid female was introduced to each cage at 20 or 30 DAS (i.e., plant age treat-

ment) using a suction aspirator. All females used in the experiments were brachypterous. Tem-

peratures were set at 15, 20, 25, 30, 35 and 40˚C with relative humidity maintained at 80–85%

and with a 12h:12h day:night light regime. Temperatures were replicated across the chambers

(i.e., N = 4). Each replicate consisted of continual observations from one day to 20 days after

caging the females. The plants under each acetate cage were changed daily and the condition

of the adults noted (i.e., surviving or dead). Plants that were exposed to females were dissected

to count the numbers of egg clusters and the numbers of eggs per cluster. The plants were cut

above the soil and were dried in a forced draught oven at 60˚C after which they were weighed.

Replicates usually took several months to complete before any temperature was repeated in a
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new chamber. We examined the effects on female survival of manipulating the adults each day.

Changing the host plant each day, as was conducted in each of our treatments, had a greater

effect on BPH than on WBPH, with the greatest reduction in adult survival occurring at 30˚C

(S1 Fig). Because these observations were limited to one type of host plant (T65 at 20 DAS), we

did not correct for the ‘manipulation effect’ in our analysis but applied the observation to the

interpretation of results.

Nymph survival and development. Sufficient rice seedlings were prepared such that

nymph development could be assessed daily for 15 days through destructive sampling for each

variety during each temperature replicate (i.e., 15 days × 5 subsamples = 75 per variety per rep-

licate). A number of replicates at 15 and 20˚C were continued beyond 15 days to assess the

time for nymphs to develop to adults. Temperatures (15, 20, 25, 30, 35, and 40˚C) were each

replicated four times as described above. Ten newly emerged nymphs were placed on rice

plants of each variety and plant age and under each temperature treatment. Individual plants

were covered with acetate rearing cages (50 × 10 cm: H × D) with mesh windows for ventila-

tion. Nymphs were allowed to feed and develop for 15 days with plants arbitrarily selected for

sampling across each temperature, each day. All plants were monitored for signs of yellowing

due to nymph feeding. When the first and second leaves of the plants showed partial yellowing,

the plants were replaced by fresh plants of the same variety and age. The number of survivors

and their developmental stages were recorded and the insects were dried in an oven for five

days and weighed to estimate total nymph biomass per plant. Development stages were

recorded based on the examination of individuals from each cage under a binocular stereo-

scope with 10× magnification. The wing forms of emerged adults were also recorded. The

plants were cut above the soil level, dried at 60˚C in a forced draught oven and weighed. Each

run usually took several months to complete.

Data analyses

Results from the oviposition and nymph survival experiments were analyzed using repeated

measures general linear models (GLM) with days after first exposure as the repeated measure

and temperature, variety, plant stage, and their interactions as main factors. We conducted the

analyses with planthopper species included as a main factor, and for each species separately.

The results of analyses with species included are presented in S1, S2, S3 and S4 Tables. In the

main text, we highlight the results of GLMs for each species alone because of species-specific

differences in oviposition and survival rates, as well as large differences in body weights

between the two species. Because each run took several months to complete, we included run

as a blocking factor in each analysis to control for possible changes in the planthopper colonies

over the course of the experiment (e.g., short-term acclimation to variable temperatures in the

greenhouse). We did not include results from chambers at 40˚C in repeated measures GLMs

because of low survival of adults and nymphs at that temperature. Adults were alive across all

other treatments and replicates for only ten days; therefore survival, the numbers of egg

batches, and the numbers of eggs laid were analyzed up until ten days in the repeated measures

analyses. In our analyses, we assessed female longevity as survival over time (units = %) in

repeated measures GLMs but as maximum time before 0% survival (units = days) in univariate

GLMs (see below). Nymph survival and nymph biomass were analyzed across replicates and

treatments for 15 days (i.e., repeated measures GLM). Data for total batches and eggs were

ranked, nymph and adult survival was arcsine-transformed and nymph biomass was log-trans-

formed before analyses. Tukey post-hoc tests were performed for all significant temperature

effects. Residuals were plotted following all parametric analyses and were normal and

homogenous.
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The maximum adult female longevity, and the total number of batches and eggs laid by the

end of each experiment (including all 20 days), as well as nymph survival and maximum

nymph biomass at the end of 15 days were further analyzed using univariate GLMs. Results

from chambers maintained at 40˚C were included in the analyses. For the analyses, maximum

longevity was measured as the time in days to 0% survival. Nymph biomass was taken as the

highest biomass attained over the 15 days (because nymphs tended to lose weight as they devel-

oped to adults at 25 and 30˚C). The numbers of batches and eggs were log-transformed before

analyses. Nymph development was analyzed as the time for 50% of nymphs to reach the sec-

ond (N1), third (N2) and fourth instars (N3). The experiment was not sufficiently long to

include development to fifth instars (N4) or adults (N5) for bioassays conducted at 15, 20 or

35˚C (because < 50% of individuals reached these development stages at these temperatures).

Nymph development times (N1, N2 and N3) were analyzed using multivariate GLM. The pro-

portions of nymphs developing to adults at 25 and 30˚C were analyzed using univariate GLMs.

Runs were included in each analysis as a blocking factor, as explained above. Tukey post-hoc

tests were performed for all significant temperature effects. Residuals were plotted following

all parametric analyses and were normal and homogenous.

We assessed temperature-dependent development and life-history parameters of WBPH

and BPH using published data combined with our own results. Across published studies, the

values for different life-history parameters (i.e., survival rates, fecundities, etc.) often varied

considerably. For example, Park and Hyun [35] reported> 600 eggs laid per BPH female,

whereas Srinivas et al [52] reported ~130 eggs/female at optimal temperatures. Such differ-

ences may be related to aspects of colony maintenance (e.g., inbreeding, acclimation) or to the

different conditions (e.g., relative humidity, light intensity) or rice varieties used in the experi-

ments. To compare trends in BPH longevity, fecundity and hatchability, we therefore stan-

dardized values at different temperatures as a proportion of the highest values. Too few studies

have examined adult longevity or fecundities in WBPH at different temperatures to make

meaningful comparisons. We plotted data for each trait against temperature and used Sigma-

Plot (v. 13.0) to identify models that best fit the global data sets based on R2 and the highest

associated F-values while fulfilling requirements for normality (Shapiro-Wilks test) and con-

stant variance.

A number of studies have reported egg, nymph and adult development times for either

BPH or WBPH, or have compared both. For egg development this included six published stud-

ies for BPH and three for WBPH. For nymph development this included nine published stud-

ies for BPH and four for WBPH. Stages in adult development have been divided into pre-

oviposition period, post-reproductive period, age at first oviposition, or age at last oviposition

in some studies; however, sufficient data was only available to examine pre-oviposition peri-

ods. For adult development this included five published studies for BPH and two for WBPH.

Most previous studies did not replicate their bioassays across temperatures (i.e., they used

only one temperature chamber per test temperature, or sometimes used the same chamber in

successive tests to assess development at different temperatures). We therefore combined the

studies as ‘true’ replicates for each planthopper species and included the mean values from our

own study in the analyses. This allowed some measure of variability for each temperature. We

plotted the data against temperature and used the Thermal Summation Model (TSM) of

Campbell et al. [68] to describe the relationships between development times and temperature.

The TSM uses the reciprocal of development duration at each temperature as a measure of

development rate. The linear model provides an estimate of the lower temperature threshold

for development (Tmin) as the x-intercept. The model’s upper temperature limits were set as

the temperatures before which development rates decline (i.e., where the relationship becomes

non-linear). This is strongly affected by the intervals between test temperatures; however, in
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our analyses, because of the number of studies and temperature points, intervals were relatively

narrow. Thermal constants (i.e., degree days required for development: k) were estimated as

reciprocals of the fitted regression lines for each developmental stage [68].

Results

Effects of temperature on BPH longevity and oviposition

BPH adult survival and egg-laying declined over the course of the oviposition experiment with

rates determined by temperature (Fig 2). Females survived longest at temperatures of 15–25˚C

(Fig 2A–2E). BPH produced more egg clusters (Fig 2F–2J) and more eggs (Fig 2K–2O) at

between 20 and 30˚C, compared to other temperatures (Table 2). There was no effect of variety

or plant age on BPH survival (Fig 2A–2E)(Table 2). Over the course of the experiment, BPH

tended to produce more egg batches and lay more eggs on T65 (Fig 2F–2O)(Table 2). Signifi-

cant interactions between Time and Temperature (Table 2) were due to similar survival rates

early in the experiment and similar numbers of eggs laid toward the end of the period analyzed

(i.e., 10 days)(Fig 2). Significant three-way interactions between Time, Variety and either Tem-

perature or Plant age (Table 2), were due to similar levels of female survival on both varieties

and at both plant ages only at 30 and 35˚C (Fig 2).

At the end of 20 days, BPH female longevity (time in days to 0% survival) was greatest at

20˚C (Fig 3A–3D, Table 3); however the number of batches produced and egg-laying peaked

at 20–30˚C (Table 3) and 30˚C (Fig 3A–3D, Table 3), respectively (i.e., batches were smaller at

20 and 25˚C than at 30˚C). BPH produced more egg batches on T65 plants initiated at 20

DAS, but these were generally smaller than batches produced on other plants such that there

were no apparent effects of variety or plant age on final egg numbers (Figs 2 and 3E–3H,

Table 3).

Effects of temperature on WBPH longevity and oviposition

WBPH female survival, egg batch production and the number of eggs laid by WBPH declined

over the course of the experiment (Fig 4). In general, the period of egg-laying was shorter in

WBPH than in BPH, with most females ceasing to lay eggs at about 10–15 days. There were

significant [Time�Temperature] interactions for batch and egg numbers because of different

rates of egg-laying early in the experiment but similar low levels of oviposition at the end of

the period analyzed (i.e., 10 days) (Fig 4F–4O; Table 2). The opposite occurred with female

survival, with high survival at the beginning of the experiment and varying rates of decline

across temperatures producing a significant [Time�Temperature] interaction (Fig 4A–4E;

Table 2).

WBPH females survived for longest at 15˚C (Fig 4A–4E; Table 2). At 25˚C, female survival

was greater on younger T65 plants than on other plants. WBPH produced more egg batches at

20 and 35˚C. However, batches produced at 35˚C were generally smaller, such that the highest

numbers of eggs were produced at 20˚C and 25˚C (Fig 4F–4O). WBPH females produced

more batches and laid more eggs on T65 and on younger rice plants (Fig 4F–4O; Table 2).

There were significant [Temperature�Plant age] interactions for all three parameters because

of similar values on plants initiated at 20 and 30 DAS at low (15˚C for adult survival, 20˚C for

batches and eggs) and high (35˚C for batches and eggs) temperatures, but greater differentia-

tion in performance at 25 and 30˚C (Fig 4, Table 2).

At the end of 20 days, WBPH female longevity (time to 0% survival) was greatest between

15–25˚C (Fig 3I–3L). Females survived for longer on the japonica variety infested at 20 DAS

(Fig 3I–3L). Egg laying in WBPH was highest at between 20–30˚C, with a tendency for females

to lay more eggs at 25˚C (Fig 3M–3P; Table 3). Egg-laying by WBPH at the end of the
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Fig 2. Effects of temperature on adult survival and egg-laying by BPH on indica (IR22) and japonica (T65) rice varieties. Infestations were initiated at 20 and 30

DAS; younger plants are indicated by green symbols and lines. Bioassays were conducted at 15˚C (A,F,K), 20˚C (B,G,L), 25˚C (C,H,M), 30˚C (D,I,N) and 35˚C (E,J,O).

Bioassays conducted at 40˚C are not shown (see text). Results for adult survival during the experiment (A-E), the total numbers of batches produced (F-J), and the total

number of eggs deposited (K-O) are presented. Standard errors are indicated (N = 4). Lowercase letters indicate homogenous temperature groups for each parameter

(Tukey: P� 0.05) based on repeated measure GLM. See also Table 2.

https://doi.org/10.1371/journal.pone.0235506.g002
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experiment was highest on younger plants (initiated at 20 DAS), but was not affected by vari-

ety, although females produced more batches on T65 (Fig 3M–3P; Table 3). There were signifi-

cant [Temperature�Plant age] interactions associated with WBPH oviposition because of low

numbers of batches and eggs produced at 35–40˚C, regardless of plant age (Fig 3M–3P;

Table 3).

Effects of temperature on growth and development of BPH nymphs

Survival of BPH nymphs generally declined over time. High nymph survival at temperatures

of between 15 and 30˚C, but a rapid decline in survival at 35˚C produced a significant [Time-
�Temperature] interaction (Fig 5A–5E; Table 4). BPH nymph biomass increased over the

course of the experiment with large increases at between 20–30˚C, but not at 15˚C or 35˚C,

producing a significant [Time�Temperature] interaction (Fig 5F–5J; Table 4). BPH nymph

development was generally faster at 25 and 30˚C (multivariate GLM—N2 F4,15 = 1347.00,

P< 0.001, N3 F4,155 = 1602.00, P< 0.001). Development of first instars showed a linear decline

from 15 to 35˚C (multivariate GLM—N1 F4,15 = 327.00, P< 0.001)(Fig 5K–5O).

Nymphs failed to develop beyond the fourth instar at 35˚C and did not develop to adults at

15 and 20˚C. We continued observations of nymph development in BPH until 30 and 23 days

at 15˚C and 20˚C, respectively, without observing development to adults. There were no

Table 2. Results from repeated measures GLMs of adult female survival and oviposition parameters (see Figs 2 and 4).

Sources of variation DF F-valuesa

BPH WBPH

Adult survival (%) Batches produced Eggs laid Adult survival (%) Batches produced Eggs laid

Within subject effects
Time 9 209.485��� 66.884��� 65.050��� 280.677��� 65.875��� 55.391���

Time�Variety 9 0.664ns 0.896ns 1.229ns 1.904� 1.536ns 1.405ns

Time�Plant age 9 1.259ns 1.353ns 0.713ns 3.440��� 0.283ns 1.263ns

Time�Temperature 36 4.924��� 5.062ns 4.802��� 9.609��� 5.226��� 2.981���

Time�Run 27 5.697��� 5.288ns 5.167��� 2.714���� 2.322��� 1.495�

Time�Variety�Plant age 9 3.433��� 0.605ns 0.728ns 1.563ns 1.582ns 1.581ns

Time�Variety�Temperature 36 1.511� 0.992ns 1.405ns 0.862ns 0.724ns 1.154ns

Time�Plant age�Temperature 36 1.338ns 0.944ns 1.076ns 1.075ns 1.392ns 1.240ns

Time�Variety�Plant age�Temperature 36 0.546ns 1.020ns 1.236ns 1.521� 0.718ns 0.985ns

Error 513

Between subject effects
Variety 1 0.944ns 8.920��� 6.443�� 5.442� 5.932�� 8.011��

Plant age 1 1.587ns 1.665ns 0.004ns 6.966�� 31.557��� 34.902���

Temperature 4 9.474��� 11.768��� 12.898��� 43.305��� 3.725�� 3.767��

Run 3 6.237��� 6.532��� 6.646��� 4.065�� 3.602�� 4.254��

Variety�Plant age 1 0.279ns 0.001ns 0.415ns 3.211ns 0.790ns 2.185ns

Variety�Temperature 4 0.588ns 2.190ns 2.129ns 0.663ns 0.474ns 0.465ns

Plant age�Temperature 4 0.712ns 1.707ns 1.321ns 2.905� 7.238��� 3.746��

Variety�Plant age�Temperature 4 0.438ns 1.354ns 1.526ns 0.159ns 0.038ns 0.172ns

Error 57

a ns = P > 0.05

� = P � 0.05

�� = P � 0.01

��� = P � 0.001

https://doi.org/10.1371/journal.pone.0235506.t002
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Fig 3. Adult female longevity and egg-laying by BPH (brown symbols: A-H) and WBPH (blue symbols: I-P). Planthoppers were maintained on indica (IR22: A,B,E,

F,I,J,M,N) and japonica (T65: C,D,G,H,K,L,O,P) rice varieties initially infested at 20 DAS (A,C,E,G,I,K,M,O) and 30 DAS (B,D,F,H,J,L,N,P) across a gradient of

temperatures. The times to 0% survival of adult females are indicated in A-D and I-L. The total numbers of eggs laid are indicated in E-H and M-P. Numbers are based

on accumulated data over 20 days of the experiments. Bars indicate standard errors (N = 4). The effects of temperature (T), variety (V), and plant age (A) and significant

interactions are indicated as ns (P> 0.05), �� (P� 0.01), and ��� (P� 0.001). See also Table 3.

https://doi.org/10.1371/journal.pone.0235506.g003
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differences between the times for adult emergence (14.25 ± 0.25 days), the proportions of

nymphs developing to adults before 15 days (0.87 ± 0.02), the proportions that were female

(0.45 ± 0.04), and the proportions of brachypterous females (0.92 ± 0.06) or brachypterous

males (0.38 ± 0.03) at 25 and 30˚C (F1,6� 2.00, P� 0.05)(Fig 5C and 5D).

At the end of the experiment, BPH nymph survival was greatest at between 15–30˚C (F4,15

= 19.384, P< 0.001) (Fig 6A). BPH nymphs showed a clear peak in biomass at 25˚C (F4,15 =

163.867, P < 0.001)(Fig 6B) and nymph development was greatest at 25–30˚C (Fig 6C).

Effects of temperature on the growth and development of WBPH nymphs

Survival of WBPH nymphs declined over time (Fig 5A–5E). Survival was generally high at

temperatures of between 15 and 25˚C, but declined at temperatures above 30˚C producing a

significant [Time�Temperature] interaction (Fig 5A–5E; Table 4). There was a moderate

decline in WBPH nymph survival towards the end of bioassays conducted at 30˚C (Fig 5D).

Nymph biomass increased at 20–30˚C producing a significant Time effect and a significant

[Time�Temperature] interaction (Fig 5F–5J, Table 4). Second instar nymphs developed more

quickly at 25 and 30˚C (multivariate GLM—N2: F4,15 = 305.25, P< 0.001) and third instars at

25–35˚C (N3: F4,15 = 833.752, P < 0.001). Development times of first instars was greatest at

35˚C (N1: F4,15 = 117.00, P< 0.001)(Fig 5K–5O); however, nymphs failed to develop beyond

the fourth instar at 35˚C and did not develop to adults at 15 or 20˚C during the 15 days of the

experiments. We continued to monitor WBPH nymphs at 15˚C for 30 days, during

which< 1% of individuals developed to adults (after 27 days), and at 20˚C for 23 days, by

which time 4% had developed to adults.

Nymphs developed to adults at 25 and 30˚C during the 15 days of observation. More

nymphs developed to adults at 25˚C (0.64±0.05) compared to 30˚C (0.06+0.03) during the 15

days of observation (F1,6 = 107.769, P< 0.001) (Fig 5C and 5D). There was no effect of temper-

ature (25 or 30˚C) on the proportion of adults that were female (0.69±0.10: F1,6 = 1.062,

P = 0.342) and all males were macropterous. All females that developed at 30˚C were brachyp-

terous, whereas at 25˚C, 49±15% were brachypterous (F1,6 = 7.860, P = 0.031).

By 15 days, WBPH nymphs had the greatest survival at 20˚C (F4,15 = 79.911, P < 0.001)

(Fig 6A) with nymph biomass also peaking at 20˚C (F4,15 = 128.423, P < 0.001)(Fig 6B) and

Table 3. Results from univariate GLMs for adult female longevity and oviposition at the end of 20 days (see Fig 3).

Source of variation DF F-valuesa

BPH WBPH

Adult longevity (days) Number of batches Number of eggs Adult longevity (days) Number of batches Number of eggs

Temperature 5 22.047��� 61.150��� 49.707��� 44.991��� 16.669��� 12.104���

Variety 1 2.057ns 4.665� 2.173ns 6.580�� 6.100�� 3.480ns

Plant age 1 0.044ns 5.218� 1.222ns 10.674��� 43.356��� 33.356���

Temperature�Variety 5 0.858ns 1.024ns 0.513ns 0.685ns 0.962ns 1.342ns

Temperature�Plant age 5 0.968ns 0.915ns 1.285ns 1.665ns 11.169��� 5.202���

Variety�Plant age 1 1.203ns 0.001ns 0.135ns 2.538ns 0.141ns 1.809ns

Temperature�Variety�Plant

age

5 0.294ns 0.432ns 0.514ns 0.870ns 1.682ns 1.534ns

Error 75

a ns = P > 0.05

�� = P � 0.01

��� = P � 0.001

https://doi.org/10.1371/journal.pone.0235506.t003
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Fig 4. Adult WBPH female survival and egg-laying on indica (IR22) and japonica (T65) rice varieties. Infestations were initiated at 20 and 30 DAS; younger plants

are indicated by green symbols and lines. Bioassays were conducted at 15˚C (A,F,K), 20˚C (B,G,L), 25˚C (C,H,M), 30˚C (D,I,N) and 35˚C (E,J,O). Bioassays conducted

at 40˚C are not shown (see text). Results for adult survival during the experiment (A-E), the total numbers of batches produced (F-J), and the total number of eggs

deposited (K-O) are presented. Standard errors are indicated (N = 4). Lowercase letters indicate homogenous temperature groups for each parameter (Tukey: P> 0.05)

based on repeated measures GLMs. See also Table 2.

https://doi.org/10.1371/journal.pone.0235506.g004
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Fig 5. Effects of temperature on survival, weight gain and development of planthopper nymphs. BPH (brown symbols and lines) and WBPH (blue symbols and

lines) nymphs were reared on IR22 (20 DAS) growing at 15˚C (A,F,K), 20˚C (B,G,L), 25˚C (C,H,M), 30˚C (D,I,N) and 35˚C (E,J,O). Results for nymph survival (A-E),

nymph biomass (F-J), and nymph developmental times (K-O) are indicated. The proportions of nymphs developing to adults are also indicated (C, D)(N1 = first instar,

N2 = second instar, etc.). Standard errors are included (N = 4). Lowercase letters indicate homogenous temperature groups (Tukey, P> 0.05). See also Table 4. Note that

analyses for K-O only include N1-N3.

https://doi.org/10.1371/journal.pone.0235506.g005
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nymph development fastest at 25–30˚C (Fig 6C), but with lower adult emergence at the higher

temperature.

Temperature models for BPH and WBPH based on global data

There were insufficient published studies available to assess the effects of temperature on

WBPH adult longevity or fecundity (i.e., less than 3 studies). However, for BPH, data were

available from ten studies (Fig 7). Across the studies, BPH showed greatest longevity at

between 15–25˚C, declining in a linear manner until 40˚C (Fig 7A). The relationship between

temperature and longevity from the studies was best described by a linear model (six

Table 4. Results of repeated measures GLMs of nymph survival and biomass over 15 days (see Fig 5).

Source of variation DF F-valuesa

BPH WBPH

Nymph survival Nymph biomass Nymph survival Nymph biomass

Within subject effects
Time 14 3.199��� 367.900��� 6.797��� 221.146���

Time�Temperature 56 4.413��� 73.532��� 7.708��� 41.469���

Time�Run 42 1.115ns 1.335ns 1.064ns 0.886ns

Error 168

Between subject effects
Temperature 4 22.955��� 287.417��� 65.636��� 173.313���

Run 3 1.488ns 1.312ns 0.532ns 0.952ns

Error 12

a ns = P > 0.05

��� = P � 0.001

https://doi.org/10.1371/journal.pone.0235506.t004

Fig 6. Effects of temperature on the survival and development of planthopper nymphs. BPH (brown symbols and lines) and WBPH (blue

symbols and lines) nymphs were reared on IR22 at temperatures ranging from 15˚C to 40˚C. Temperature effects on (A) nymph survival, and (B)

the maximum biomass of surviving nymphs, as well as (C) the time for 50% of nymphs to develop to third instars are indicated. Numbers are based

on accumulated data over 15 days of the experiment. Bars indicate standard errors (N = 4). Lowercase letters indicate homogenous temperature

groups (Tukey, P> 0.05) based on univariate (A and B) and multivariate (C) GLMs.

https://doi.org/10.1371/journal.pone.0235506.g006
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populations: F1,28 = 39.183, P< 0.001)(Fig 7A). Across eight populations, BPH fecundity

peaked at between 25–32˚C. The relationship was best described by a quadratic curve (F2,39 =

18.870, P< 0.001)(Fig 7B). We did not examine egg hatchability in our experiments; however,

over 95% of eggs were viable in our study at between 20–30˚C (data for other temperatures

was not recorded). Among three studies that examined hatchability, a quadratic curve with a

peak at between 25–34˚C best described the relationship (F2,18 = 16.566, P< 0.001)(Fig 7C).

Our standardized data for longevity and fecundity aligned closely with results from previous

studies (Fig 7A and 7B).

BPH and WBPH had similar response curves for each development stage (Fig 8A–8F).

Using the Campbell model, we estimated the lower thresholds for development of WBPH

eggs, nymphs and adults as 8.7 (F1,15 = 34.586, P< 0.001), 10.8 (F1,17 = 80.193, P< 0.001), and

10.7˚C (F1,3 = 91.102, P = 0.01), respectively, and for BPH eggs, nymphs and adults as 9.4 (F1,24

= 93.046, P< 0.001), 9.2 (F1,25 = 95.617, P< 0.001), and 10.6˚C (F1,10 = 10.871, P = 0.009),

respectively (Fig 9). The upper thresholds for development across studies were 30.0, 28.5, and

28.5˚C for BPH eggs, nymphs and adults, respectively, and 32.5˚C for eggs, nymphs and adults

of WBPH. Using the global data sets, thermal constants were estimated as 147, 233, and 43

degree days, for BPH eggs, nymphs and adults (pre-oviposition period), respectively, and 130,

185, and 65 degree days, for WBPH eggs, nymphs and adults (pre-oviposition period),

Fig 7. Temperature-dependent BPH (A) adult female longevity, (B) fecundity and (C) egg hatchability. Models are based on compiled published studies with means

from the present study included. Lines, R2-values, and equations are for best fit models (based on averages at each temperature point [˚C]; i.e., data for the same

temperatures from different studies are averaged). For A, where studies distinguished male and female longevity, only females were included. Colored symbols represent

data sources as indicated (see also Fig 1). Data from Bae and Pathak [44] were excluded because the lowest temperature used was 25˚C.

https://doi.org/10.1371/journal.pone.0235506.g007
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Fig 8. Temperature thresholds for development of BPH and WBPH. Responses to temperature for egg development in (A) WBPH and (B) BPH, nymph

development in (C) WBPH and (D) BPH and the development of pre-ovipositional adult females of (E) WBPH and (F) BPH are indicated. Responses are based on

published studies and include data from the present study. Development of first (G,H), second (I,J), third (K,L), fourth (M,N) and fifth (O,P) instars are also shown for

WBPH (G,I,K,M,O) and BPH (H,J,L,N,P). Thresholds for developmental zero (solid lines), the limits of linear temperature-related increases in development (dashed

lines), and maximum critical temperatures (dotted lines) are indicated where available. Numbers are thresholds for WBPH (blue) and BPH (brown)(see also Tables 1

and 5). Colored symbols represent data sources as indicated in the legend (see also Fig 1 for population sources).

https://doi.org/10.1371/journal.pone.0235506.g008
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respectively. Our data for nymphs that successfully completed development (i.e., only at 25

and 30˚C for both planthopper species) closely fitted the global model (Fig 7C and 7D). Our

results for first instar development were similar to previous studies (Fig 8G and 8H), but for

other instars, our estimates of development times were among the highest at low and high tem-

peratures (i.e.,� 20˚C and 35˚C)(Fig 8I–8N). Whereas the analysis of nymph development

indicated largely similar Tmax values for BPH and WBPH (between 27.5–32.5˚C, slightly

higher in WBPH), the models also suggested that BPH have consistently lower Tmin values

than WBPH for each instar (i.e., ~2˚C lower than WBPH); however, BPH nymphs required

more degree days to complete each instar (Table 5).

Discussion

A number of studies have shown that BPH and WBPH have similar temperature tolerances.

We reviewed these previous studies and present their main findings in Table 1. Most notably,

Noda [34] described low temperature development thresholds for BPH and WBPH eggs as

12.7 and 12.6˚C, respectively, and for BPH and WBPH nymphs as 11.3 and 11.2˚C, respec-

tively. At the other extreme, in a recent comparative study, the effective lethal temperatures for

adult female BPH and WBPH were estimated as 41.6 and 41.2˚C, respectively [33]. The maxi-

mum effective temperature for BPH nymph development has been estimated by several

authors at about 35˚C [10,11,51]. Our results also indicate that the development of both BPH

and WBPH nymphs is severely restricted at� 35˚C. Our assessment of temperature-depen-

dent development further indicated that for both species the development of eggs, nymphs

Fig 9. Linear relations between temperature and development rates. Graphs indicate (1/development time) for (A)

eggs, (B) nymphs, and (C) pre-ovipositional adults of BPH (solid brown symbols) and WBPH (solid blue symbols).

Non-linear portions of the relations are indicated by open brown symbols (BPH) and open blue symbols (WBPH).

Estimates of developmental zeros (T0) are indicated based on the Campbell model with corresponding equations and

R2s indicated in brown (BPH) and blue (WBPH) font.

https://doi.org/10.1371/journal.pone.0235506.g009

Table 5. Threshold estimates based on Campbell model for nymph development using available data (see also Fig 8).

Species/instar DF F-valuea R2 b Tmin (˚C)b Tmax (˚C)c k (degree days)d

BPH

N1 10 59.236��� .894 .014 6.1 31.0 71.4

N2 8 91.322��� .938 .049 9.3 30.0 52.6

N3 9 68.921��� .932 .025 11.6 28.0 40.0

N4 7 57.055��� .919 .028 12.4 28.0 35.7

N5 8 102.653��� .954 .021 10.5 28.0 47.6

WBPH

N1 6 329.164��� .973 .024 10.8 32.5 41.7

N2 7 35.276��� .815 .030 11.7 28.0 33.3

N3 6 30.516��� .813 .033 12.8 28.0 30.3

N4 7 30.957��� .838 .031 13.9 27.5 32.3

N5 6 20.725��� .775 .024 12.9 27.5 41.7

a ��� = P < 0.001
b Tmax estimated based on initial decline in mean 1/development time
c Tmin estimated as y = 0
d Thermal constant (k) = 1/b, where b = slope of regression

https://doi.org/10.1371/journal.pone.0235506.t005
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and pre-oviposition adults each showed similar responses to temperature—albeit with a lower

estimate of developmental zero for eggs in WBPH and generally higher developmental zeros

for WBPH nymphs and adults, compared to the respective development stages in BPH (Fig 9,

Table 5). Together, these trends might suggest that WBPH and BPH respond similarly to

ambient temperatures and that, compared to BPH, the apparently wider distribution range of

WBPH in northern latitudes is due to the oligophagous nature of WBPH and the wide avail-

ability of food plants such as wheat and corn at high latitudes. However, whereas food avail-

ability may partially explain the distribution of these species, our results now clarify that

WBPH performs better at lower temperatures than BPH within the ranges of tolerable temper-

atures, and may therefore be less restricted—or perform relatively better than BPH—at the

cool temperatures of higher latitudes. Furthermore, estimated thermal constants based on the

combined results of previous studies (Table 5), indicate that, despite generally higher Tmin val-

ues than in BPH, WBPH may require fewer degree days to complete egg development and to

complete the development of each nymph instar. These results demonstrate a decoupling of

temperature tolerances and development thresholds from other aspects of planthopper life his-

tory (e.g., survival rates, biomass accumulation, and feeding and developmental success) that

might better determine crop damage potentials under varying temperatures.

Temperature thresholds and nymph development rates may be similar between BPH and

WBPH because they display similar molecular responses and tolerance mechanisms in coping

with changing temperatures [69]. Furthermore, in the case of eggs and nymphs, upper thresh-

olds for development are heavily determined by the detrimental effects of high temperatures

on yeast like symbionts (YLS). YLS have been studied extensively in BPH and much is known

of their biology and ecology [70]. BPH eggs and nymphs fail to develop when YLS numbers

are depleted through heat (~35˚C) treatment [71,72]. Similar YLS are known to occur in

WBPH [70,73] and are probably responsible for the same upper limits to WBPH nymph sur-

vival as for BPH. In effect, 35˚C is about the upper thermal tolerance for YLS. Survival rates,

developmental success (as opposed to development rates) and feeding and food conversion

efficiency (indicated by biomass accumulation) are also determined by the interactions

between planthoppers and either their host plant or endosymbionts, or by interactions

between all three (planthoppers, host plant and endosymbionts) within tolerable temperature

limits. According to our results, although BPH and WBPH are subject to the same physiologi-

cal restrictions at high and low temperatures, WBPH is better adapted than BPH to feed on

rice at lower temperatures. Indeed, our results suggest that WBPH nymphs might gain some

advantage from periods of low (~20˚C) temperature, where they continue to feed and grow for

longer (Fig 6), particularly if development accelerates during subsequent periods of higher

temperature to produce larger individuals than would occur under consistently high (~ 25˚C)

temperatures (i.e., temperature-size rule [17,74]). In rice ecosystems, a decline in the efficiency

of predators and parasitoids at cooler temperatures [75–78], further suggests that periods of

low temperatures might be advantageous for WBPH, despite prolonged nymph development.

These ideas require further testing.

Acclimation could potentially alter the shape of planthopper responses to temperature. For

example, Piyaphongkul et al. [11] demonstrated that BPH temperature tolerances could be

raised or lowered where planthoppers were acclimated to higher or lower temperatures,

respectively. Furthermore, these authors suggested that BPH could acclimate better to low

temperatures than to high temperatures [11]. In contrast, the results of several studies of tem-

perature effects on BPH, as indicated in Fig 7, demonstrate largely similar longevity, fecundity

and hatchability responses to temperature irrespective of population origin. Trade-offs

between longevity and fecundity at high and low temperatures generally resulted in maximum

oviposition by BPH at 30˚C and by WBPH at 25˚C in the present study. Although we did not
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estimate hatchability, optimal temperatures for oviposition in both species were below detri-

mental temperatures for hatching according to previous studies [35,37,43,48,52]. High egg

production during relatively short time periods at 35˚C in both species, as observed in the

present study, suggests that females rapidly became ‘spent’ after intense egg-laying, or that

rapid egg-laying was a stress response to the high temperature. The relatively low fecundities

at between 20–25˚C in a study by Rout and Jena [48] are likely related to the very low levels of

relative humidity (RH) at these temperatures in that study (i.e., humidity was not standardized

in the experiments and at 20–25˚C, RHs were below 70%, which is regarded as a lower limit

for BPH survival [79]). The source populations for studies ranged from cool temperate loca-

tions in Japan and Korea [34,35] to hot tropical locations in southern India [19,46](Fig 1).

Despite the great range of ambient climates across these locations, the development responses

by different planthopper populations to temperatures were remarkably similar (Fig 8). Our

results for second, third and fourth instars, of BPH particularly, deviated most from the aver-

age models. This was probably reflective of the failure of BPH nymphs to develop to more

advanced instars at these low temperatures in our study and suggests that our colonies may

have been relatively poorly adapted to low temperatures due to intergenerational selection or

inbreeding depression. This would have occurred because our source colonies were main-

tained for several years in a greenhouse that often reached high temperatures, but rarely fell

below 25˚C [80]. Where details of colony maintenance are available from the other studies,

planthopper colonies were relatively newer, or the colonies had been maintained at relatively

lower temperatures. Furthermore, in studies of temperature-dependent development, most

researchers do not report on rates of nymph survival to adult (i.e., development success), but

instead rely only on the survivors to calculate development rates (i.e., only Sandhu and Suri

[54] reported nymph survival under different temperature gradients; but these authors did not

assess development rates). Such studies may often begin with large numbers of test subjects to

eventually attain data from a few surviving individuals from which to build temperature mod-

els. In contrast, our data for development until fourth instars at low and high temperatures

mainly include individuals that would eventually fail to develop to adults. Nevertheless, it is

noteworthy that our WBPH colony, which was maintained under the same conditions as the

BPH colony, still displayed apparently higher performance under comparatively lower temper-

atures. Furthermore, our BPH response curves for adult longevity and fecundity were similar

to those from previous studies (Fig 7A and 7B), and where nymphs did survive to adults (i.e.,

at 25 and 30˚C), our estimates of development times were closely aligned with those from pre-

viously published studies (Fig 8C, 8D , 8O and 8P). These effects of temperature on adult lon-

gevity, fecundity, hatchability and nymph development rates are ultimately determined by

interactions between the planthoppers and their biotic environment [21,70]. For example,

poor nymph development at low temperatures could be partially due to lower sugar concentra-

tions in rice sap at these temperatures with temperature-dependent changes in plant chemistry

further affecting responses at temperatures other than optimal [22]. Life-history parameters

may have appeared highly stable across populations in previous studies because relatively stan-

dard, susceptible rice seedlings were used in all the studies and the studies mainly focused on

BPH. However, our results also indicate that varying host plant quality can alter the shape of

reaction norms, particularly in experiments with WBPH.

Because of the wide distribution ranges of BPH and WBPH and the influence of vegetation,

topography, wind or rainfall patterns, and distances to the sea on temperature isoclines, it is

difficult to make general predictions regarding the effects of global temperature changes on

planthopper abundance at different latitudes. Our results suggest that, compared to BPH,

WBPH may be adversely affected by rising temperatures across a greater range of latitudes if

average temperature during the cropping season increase beyond 25˚C. Similarly,
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temperatures of above 30˚C will adversely affect BPH populations. We used constant tempera-

tures and constant humidity in our experiments. Studies have shown that results from experi-

ments conducted under constant temperatures can differ from those conducted under

fluctuating temperatures for some herbivore species [1]. We are unaware of the effects of daily

temperature fluctuations on BPH or WBPH development, although female BPH deposit fewer

eggs as temperatures drop (and humidity increases) during the tropical nighttime [58]. In

tropical rice fields, maximum (daytime) temperatures and minimum (nighttime) temperatures

can differ by > 10˚C. Fluctuations tend to be of a lower magnitude in regions or during peri-

ods of cooler temperatures. Representing such complexities in climate chambers can be chal-

lenging. Using open-top field chambers with natural or elevated temperatures can produce

more meaningful conditions [49], but will not give the temperature ranges that are possible

from climate chamber studies. We expect that the patterns we observed will be largely main-

tained where temperatures fluctuate about the temperatures that we used in our experiments;

however, we suggest that future studies might build on our results using fluctuating tempera-

tures and humidity in environmental chambers, or by evaluating temperature effects in field

cages.

Previous research has indicated that rice is more tolerant to damage (i.e., able to compen-

sate for lost tissues) from WBPH than from BPH, and that rice sometimes overcompensates

for damage from WBPH by increasing grain production [57]. Our results suggest that greater

performance by female WBPH at relatively low temperatures (i.e., 20˚C), at which plant

growth rates are lower [40,81], could reduce the relative tolerance of rice to WBPH in cooler

climates. This is because the size and growth rates of plant modules, such as rice tillers, are

associated with tolerance to herbivores [57,82]. In contrast, faster growth rates of rice at higher

temperatures, but a relatively low performance of WBPH at these same temperatures, could

enhance plant tolerance. Similarly, at higher temperatures (~28–32˚C), BPH will lay more

eggs, but the damage they cause to rice plants is likely to decline (because of declining rates of

feeding and weight gain), particularly if the plants also increase growth rates at higher temper-

atures. Such high temperatures have become increasingly prevalent in rice producing coun-

tries. For example, in 2019, temperatures of� 30˚C were experienced during 349 days at

Kampong Chhnang, in Cambodia, where temperatures have increased by 0.23˚C each decade

since the 1950s [1]. Based on the results of the present study, such temperatures are predicted

to favor BPH over WBPH because BPH continues to oviposit at night, whereas WBPH lay few

eggs during darkness, irrespective of ambient temperatures [58]. High nighttime temperatures

could, therefore, shift rice planthopper assemblages towards higher relative abundances of

BPH.

There have been relatively few studies of the effects of temperature on the interactions

between planthoppers and other components of the rice ecosystem. Some research has exam-

ined functional responses of the natural enemies of rice herbivores across temperature gradi-

ents [75,76], and studies have investigated the effects of temperature on interactions between

planthoppers and the rice plant as mediated by nitrogen levels [43] or based on the presence of

resistance genes [21,22]. WBPH outcompetes BPH for food and egg-laying resources where

the species occur on the same rice plants [83,84]. Feeding by BPH also induces rice susceptibil-

ity to WBPH [84]. Our results indicate that, compared to WBPH, BPH is a more effective rice

herbivore that performed well on japonica and indica rice varieties and on plants of two differ-

ent ages. Differentiation between oviposition performance in the two planthopper species was

greatest at 25–30˚C (producing significant [Time�Temperature�Species] interactions for lon-

gevity, number of batches and number of eggs in the full-factorial analysis: S1 Table). This sug-

gests that temperature could affect the partitioning of resources between BPH and WBPH in

the rice ecosystem. In particular, resource partitioning may break down at temperatures that
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are lower or higher than optimal (Figs 2 and 4). We did not examine the performance of

nymphs on different plants across temperatures (previous studies have been conducted at

about optimal [58,84]); however, similar temperature-dependent differentiation in feeding

responses to plant quality or condition might occur with nymphs. Therefore competition

between the two species may be relaxed at optimal temperatures for the superior competitor,

because only at optimal temperatures does host-plant quality (variety or age) differentially

affect performance.

Conclusions

Our results indicate the limitations of thermal tolerances and temperature thresholds for

development in predicting the impact of global warming on the relative incidences or potential

for outbreaks of two planthopper pests in rice. These traits are largely similar for BPH and

WBPH, and whereas they may be used to model distribution and overwintering ranges of the

two species, they say relatively little about the potential impacts of climate on relative damage

by the pests or interactions between the pests over their normal distribution ranges. We deter-

mined that for WBPH, the optimal temperatures for adult and nymph survival, fecundity,

nymph biomass gain and development success were all lower than for BPH. Whereas tempera-

ture tolerances may be affected by acclimation, a review of planthopper performance (longev-

ity, fecundity and development rates) across multiple studies with different planthopper

populations displayed remarkably similar responses to temperature. These factors are affected

by host plant quality, including aspects of plant ontogeny. Our results with planthopper ovipo-

sition, suggest that plant quality will have its greatest effects at about the optimal temperatures

for each planthopper, thereby increasing the potential for resource partitioning between differ-

ent planthopper species and increasing the opportunities for planthopper coexistence at opti-

mal temperatures. Differences in the growth rates of rice plants at different temperatures, and

potentially different responses by different rice varieties to temperature, could determine rela-

tive levels of plant tolerance to planthopper damage under global warming. We suggest that

further studies could examine the potential effects of temperature, and other climatic changes,

on herbivore-herbivore interactions and herbivore-plant interactions to improve predictions

about pest pressures under global warming.
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