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Background: Clinically, many esophageal cancer patients who planned for radiation
therapy have already undergone diagnostic Positron-emission tomography/computed
tomography (PET/CT) imaging, but it remains unclear whether these imaging results can
be used to delineate the gross target volume (GTV) of the primary tumor for thoracic
esophageal cancer (EC).

Methods: Seventy-two patients diagnosed with thoracic EC had undergone prior PET/
CT for diagnosis and three-dimensional CT (3DCT) for simulation. The GTV3D was
contoured on the 3DCT image without referencing the PET/CT image. The GTVPET-ref
was contoured on the 3DCT image referencing the PET/CT image. The GTVPET-reg was
contoured on the deformed registration image derived from 3DCT and PET/CT.
Differences in the position, volume, length, conformity index (CI), and degree of
inclusion (DI) among the target volumes were determined.

Results: The centroid distance in the three directions between two different GTVs
showed no significant difference (P > 0.05). No significant difference was found among
the groups in the tumor volume (P > 0.05). The median DI values of the GTVPET-reg and
GTVPET-ref in the GTV3D were 0.82 and 0.86, respectively (P = 0.006). The median CI
values of the GTV3D in the GTVPET-reg and GTVPET-ref were 0.68 and 0.72, respectively (P =
0.006).

Conclusions: PET/CT can be used to optimize the definition of the target volume in EC.
However, no significant difference was found between the GTVs delineated based on
visual referencing or deformable registration whether using the volume or position. So, in
the absence of planning PET–CT images, it is also feasible to delineate the GTV of primary
thoracic EC with reference to the diagnostic PET–CT image.

Keywords: deformable image registration, three-dimensional computed tomography, 18F-FDG PET/CT, thoracic
esophageal cancer, gross target volume
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INTRODUCTION

According to the newly published GLOBOCAN 2018 study (1),
esophageal cancer ranks seventh in cancer incidence and sixth in
cancer mortality, with 572,000 new esophageal cancer cases and
590,000 deaths. Radiotherapy, as one of the main effective
treatment modalities, is widely used in both the curative and
palliative treatment of patients with EC (2–5). Modern
radiotherapy techniques are largely affected by two crucial
issues to accurately achieve tumor control: the precise
quantification of tumor variations and complete identification
of underlying tumor tissue (6, 7). Therefore, an increasing
number of attempts have been made to accurately delineate
and define the target volume.

Recently, the combination of multiple modalities has become
one of the hottest topics in target determination research and
plays a fundamental role in improving the accuracy of tumor
delineation in EC. 18F-Fluorodeoxyglucose positron emission
tomography/computed tomography (18F-FDG PET/CT), as a
dual-modality imaging technique that provides both biological
and metabolic information, has advantages in determining and
correcting the gross tumor volume (GTV) as well as the extent of
tumor motion in several directions (8, 9). Jin et al. (10) integrate
the RTCT and PET modalities together into a two-stream
chained deep fusion framework, which represents a complete
workflow for the target delineation in esophageal cancer
radiotherapy and pushes forward the state of automated
esophageal GTV and CTV segmentation towards a clinically
applicable solution. Using extensive five-fold cross-validation on
110 esophageal cancer patients, they also demonstrate that both
the proposed two-stream chained segmentation pipeline that
effectively fuses the CT and PET modalities via early and late 3D
deep-network-based fusion and the PSNN model can
significantly improve the accurate GTV segmentation over the
previous state-of-the-art work (11). Yousefi S. et al. (12) found
that the proposed method, dubbed dilated dense attention Unet
(DDAUnet), could segment the gross tumor volume with a mean
surface distance of 5.4 ± 20.2mm, demonstrating that a
simplified clinical workflow based on CT alone could allow to
automatically de-lineate the esophageal GTV with acceptable
quality. Several studies also have demonstrated that adding PET
data to radiation treatment planning (RTP) might significantly
improve the accuracy of contouring tumors and reduce intra-
observer and inter-observer variability in GTV delineation (13,
14). Moreover, PET–CT effectively assesses the responses to
treatment and prognosis (15, 16).

Most patients with EC have had a diagnostic PET/CT scan
before radiotherapy. Vesprini D. et al. (17) demonstrated that the
addition of FDG-PET to computed tomography-based planning
for the identification of primary tumor GTV in patients with
gastro-esophageal carcinoma decreases both inter-observer and
intra-observer variability. However, Nowee M. E. et al. (18)
demonstrated that delineation variation of the primary tumor
GTV can be considerable both on CT and on PET-CT fusion and
is mainly located at the cranial and caudal border. Although the
addition of FDG-PET to CT significantly impacted the
Frontiers in Oncology | www.frontiersin.org
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delineated volume in two-third of the cases, PET did not
translate into reduced observer variation at the cranial/caudal
border in 50% of the patients with esophageal cancer. The
delineation of the GTV only referencing diagnostic PET/CT
leads to uncertainty for radiation oncologists. However, it is
unlikely that these patients would undergo a second PET/CT
scan owing to the significant cost and logistical problems
involved, as well as the increased radiation exposure of the
patient and staff during the scan. Thus, it is relatively difficult
to popularize dedicated treatment planning PET/CT as routine
management in clinical practice, and diagnostic PET/CT may be
the only PET data provided for RTP. Hence, the feasibility of
applying diagnostic PET–CT in delineating target volumes
would contribute to the widespread application of diagnostic
PET–CT in radiotherapy for EC.

Deformable image registration (DIR) is an image processing
technique that maps voxels (the individual components) of a
scan to those of another scan, striving to resolve differences in
patient position and soft tissue displacement, and eventually
generate accurately transferred and propagated volumetric
tumor structures between image datasets (19, 20). Therefore,
changes in the anatomical structure and position of patients
between the planning CT and diagnostic PET/CT highlight the
need for DIR in RTP. In several studies, the use of DIR has been
demonstrated to permit the more accurate registration of
diagnostic PET/CT scans to planning CT scans in patients
with lung cancer and head and neck tumors (21–23). However,
the clinical impact of DIR in target volume delineation after
registering a diagnostic PET/CT scan on a planning CT scan for
primary thoracic EC remains unclear.

Presently, planning CT remains the most widely used imaging
modality to determine the GTV in clinical practice, although it is
not the only standard imaging approach. Therefore, the present
study aimed to evaluate geometrical differences in the GTV
contoured on planning CT, referencing PET/CT and the GTV
contoured on the deformed image derived from planning CT and
PET/CT for primary thoracic EC.
METHODS AND MATERIALS

Patient Selection and Characteristics
Our institute research ethics board approved this study, and
informed consent was provided by each patient before enrollment
in the study. Seventy-two patients with pathologically proven EC
and planned for radiotherapy at our hospital were consecutively
enrolled between July 2013 and July 2018. None of the patients
were scheduled to accept radiotherapy or chemotherapy
previously. The 72 patients had undergone diagnostic PET/CT
before treatment not longer than a week. Patients with an
absolute maximal standardized uptake value (SUVmax) ≥2
were enrolled, and the delineation standard chosen in our
study was the absolute SUVmax ≥2.5. In total, the imaging
data from 72 patients were available for analysis in our study.
The patient characteristics are listed in Table 1.
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Deformable Image Registration of PET/CT
Scan to Planning CT Scan
DIR at our institution was performed using MIM software, an
intensity-based, free-form, deformable registration algorithm with
limitless degrees of freedom. This algorithm has been evaluated for
clinical use by Piper (24). Given the low resolution of PET images
and lack of clear discernible normal landmarks, in all cases,
registration was performed using the CT components of the
PET/CT and planning CT scans. Resampling of the PET scan
was performed using the registration results from the deformable
CT–CT registration. For CT–CT registration, initially, a rigid
registration focusing on the dorsal spine was performed
automatically using MIM software. Following rigid registration,
deformable registration was then performed. In this process, the
CT component of the PET/CT scan was deformed to the planning
CT scan using the deformable registration algorithm described
above. Finally, we placed a bounding box over the region of
interest (ROI) to remove the influence of other parts of the
body because the automatic image registration algorithm
considers the entire image dataset. At the same time, PET voxels
were mapped to the planning CT scan during the transformation
used in the CT–CT registration process, resulting in a new PET/
CT dataset that was deformably registered to the planning CT
scan. Novel frameworks for deformable registration evaluation
and quality assurance were provided by MIM software to inspect
different properties of a deformable registration between two
volumes. After deformable registration was completed, we first
tested the intensity-based free-form deformable registration
algorithm using detailed statistics obtained from evaluation
tools, such as the Hausdroff Distance, Jaccard Coefficient,
Dice Score, and Standard Deviation. Finally, an experienced
radiotherapist performed visual assessment using Reg Reveal, an
evaluation tool provided by MIM software, and then manual
modification to ensure adequate accuracy of deformable
registration. In our study, we also provided the deformed images
of two patients to demonstrate the accuracy of DIR in MIM
software (Figures 1A, B).

Target Volume Delineation
All target volumes were contoured using MIM software.
Although a total of six doctors participated in the course of
Frontiers in Oncology | www.frontiersin.org 3
GTV definition in this study, but in fact, all patients’ GTVs were
delineated by the same radiotherapist. The other five doctors
were respectively responsible for the development of GTV
delineation standards and review of the delineated GTVs. First
of all, the delineated standards were together developed by two
experienced radiation oncologists and one experienced imaging
specialist before performing our study. Using the mediastinal
window settings (window width = 400 HU, window level = 40
HU), GTVS were delineated following the standards for an
esophageal wall thickness >5 mm or an esophageal wall
diameter (without gas) >10 mm. Our study only evaluated the
primary tumor; however, if positive lymph nodes could not be
separated from the primary tumor visually, they were delineated
together with the primary tumor. First, GTV3D was manually
contoured based on planning CT by an experimented
radiotherapist who did not know the diagnostic PET/CT
results. After two weeks, regarding the planning CT scan as the
primary image and referencing the high-metabolism region
observed on PET–CT, the same radiotherapist added the high-
metabolism region observed visually on PET/CT without
planning CT and removed the low-metabolism region
observed visually on PET/CT within planning CT. In a word,
the uncertainty or excludable region in CT images could be
determined by referencing PET–CT images. The new GTV,
resulting from referencing PET/CT, was referred to as
GTVPET-ref. Two weeks later, the GTV was first automatically
contoured on the new deformed image derived from planning
CT and PET/CT using SUV values by MIM software and then
manually modified taking the registered PET–CT as reference by
the same radiotherapist. Finally, the contour was named
GTVPET-reg. During the auto-contouring process, we first
position the sphere over the region of interest and resize the
sphere with a right-click drag up or down from inside the sphere,
then setting the exact threshold by clicking on the threshold and
typing. Finally, contour was generated by clicking the green
Checkmark Button at the right edge of the viewport. Based on
many previous studies investigating the optimal method of PET-
based target volume delineation, the PET-based delineation
method of an absolute SUV threshold of 2.5 and a maximum
standardized uptake value (SUVmax) threshold of 20% were
used in the automatically contoured target images by MIM
software in our study (25–27). It should be make clear that the
absolute SUVs of the heart were less than two for most of the
patients in our study, and we would repair the heart using CT
image for some cases with a SUV≥2. The mediastinal high-
metabolism region was first contoured based on PET–CT, and
then the boundary of the heart was determined using CT images.
Finally, the heart would be repaired referencing the high-
metabolism region observed on PET–CT and the heart border
observed on CT images. The observer strictly adhered to the
standards and was guided by two experienced radiation
oncologists throughout the delineation. After all GTVs were
delineated, another radiotherapist and a nuclear medicine doctor
reviewed the images again. In our study, we also provided
pictures of one patient to show differences among the three
target volume delineations (Figure 2).
TABLE 1 | Characteristics of patients enrolled in the study.

Parameters Parameters

Sex
Male 64
Female 8

Age, median, years (range) 44–88 (63)
Tumor location
Upper 32
Middle 24
Distal 16

SUVmax 3.21–49.50 (mean: 12.95)
Pathological type
Squamous 70
Adenocarcinoma 2
February 2021 | Volume 11 | Article 550100
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GTV Comparison
Any two GTVs were compared in terms of the position, volume,
length, conformity CI, and DI.

To assess the positional change, the center of mass (COM)
coordinates for the GTV3D, GTVPET-ref, and GTVPET-reg for each
patient were measured. Next, the displacement in the x (left–
right, LR), y (anterior–posterior, AP) and z (cranial–caudal, CC)
directions between two different GTVs was obtained as ≥x, ≥y,
and ≥z, respectively. The 3D vector was calculated according to
the following formula: V = (≥x2 + ≥y2 +≥z2)1/2.

The CI (28) and DI (29) were determined to assess changes
in volumetric shape and position. The CI of volumes A and B
[CI (A, B)] was defined as the ratio of the intersection of A with B
to the union of A and B; that is, CI = A∩B/A∪B. The ideal
value of CI is 1 if the two volumes are identical. With any
change in the size, position, shape, or orientation, the value of
CI would be less than 1. The definition of the DI of volume A
included in B [DI (A in B)] is the intersection between volume A
and B in volume A. The formula is as follows: DI (A in B) = A∩B/A.
Assuming volume B is the reference for the standard volume,
if treatment planning is based on volume A, there will be 1-DI
(A in B) of volume A being unnecessarily irradiated and 1-DI (A in
B) of volume B missing irradiation.
Frontiers in Oncology | www.frontiersin.org 4
Statistical Analysis
Statistical analysis was performed using the SPSS software
package (SPSS 22.0). The Wilcoxon test was used to compare
the position, volume, CI, and DI, and paired sample t test
was used to examine differences in the maximum transverse
diameter and tumor length between target volumes. The Z
values represent the test statistics. Values of P <0.05 were
regarded as significant. The degree of association between
GTV motion vectors and continuous variables (such as the CI)
was calculated by the Spearman test.
RESULTS

To investigate the correlation between different locations
of EC and changes in position, the patients were divided into
three groups according to the 2007 Tumor Node Metastasis
(TNM) classification system of the National Comprehensive
Cancer Network (NCCN): group A: 32 patients with lesions
located in the proximal segment; group B: 24 patients with
lesions located in the middle segment; group C: 16 patients
with lesions located in the distal segment.
A

B

FIGURE 1 | (A, B) Representative images in transversal, sagittal, and coronal sections show an ideal match between the before images and after images using DIR.
The gray images represent images before deformable registration, and the red images represent images after deformable registration.
February 2021 | Volume 11 | Article 550100
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Difference in the Tumor Centroid Distance
Table 2 shows the differences in the position between GTVPET-reg

and GTVPET-ref, GTVPET-reg and GTV3D, and GTVPET-ref and
GTV3D. The centroid distance in the three directions between
two different GTVs showed no significant difference in any
patient (P > 0.05). However, differences were found between
GTVPET-reg and GTV3D (Z = 4.94; P = 0.000), as well as between
GTVPET-ref and GTV3D (Z = −4.94; P = 0.000) in group A.

Differences in the Tumor Volume
Table 3 shows tumor volumes for all patients and the three
groups of patients. In group C, the GTV3D was significantly less
than the GTVPET-ref (Z = 2.430; P = 0.015), and no significant
difference was found between GTVPET-reg and GTVPET-ref (Z =
−1.823; P = 0.068) or between GTVPET-reg and GTV3D (Z =
0.402; P = 0.687).

Differences in the Tumor Length and
Maximum Transverse Diameter
Table 4 shows the lengths and maximum transverse diameters of
the GTVs. The paired sample t test results indicated that the
length of the GTVPET-ref was significantly longer than that of the
GTV3D in entire group patients, and patients in group C (t =
2.134, 3.204; P = 0.033,0.001).

The paired sample t test results indicated that the maximum
transverse diameters of the GTVPET-reg and GTVPET-ref were less
than that of the GTV3D for entire group patients, patients in
group A and patients in group B (t = −3.891–3.716; P < 0.05).
However, no significant difference was observed in group C (t =
0.778–1.678; P = 0.449–0.114).

Differences in the CI and DI
Table 5 illustrates the CIs for all patients with EC. The median CI
between the GTVPET-reg and GTV3D was less than that between
the GTVPET-ref and GTV3D (Z = −2.756; P = 0.006). The median
CI between the GTVPET-reg and GTV3D was less than that
Frontiers in Oncology | www.frontiersin.org 5
between the GTVPET-reg and GTV PET-ref (Z = −2.244; P =
0.025). Furthermore, the CI between the GTVPET-reg and
GTVPET-ref, GTVPET-ref and GTV3D, and GTVPET-reg and
GTV3D showed a significant negative correlation with the 3D
vector for all patients (R = −0.344, −0.517, −0.527; P < 0.05).

The DIs for all patients and the three groups are shown in
Table 6. The median DI of the GTVPET-reg in GTV3D was less
than that of the GTVPET-ref in GTV3D (Z = −2.741; P = 0.006).
However, the difference in the DI between the GTV3D in
GTVPET-reg and GTV3D in GTVPET-ref was not significant (Z =
1.429; P = 0.131). In group C, the median DI of the GTVPET-reg in
GTV3D was less than that of the GTVPET-ref in GTV3D (Z =
−2.534; P = 0.001). Furthermore, the DI of GTV3D in GTVPET-reg

was less than that of the GTV3D in GTVPET-ref (Z = 2.275, P =
0.023). Additionally, the DI of GTVPET-reg in GTV3D was less
than that of the GTVPET-reg in GTVPET-ref (Z = 2.585; P = 0.010).
However, a significant difference in the DI was not found
between the GTVPET-ref in GTVPET-reg and GTV3D in GTVPET-reg

(Z = 0.052; P = 0.959).
FIGURE 2 | Representative images contoured in the image sessions in the transversal (a1), sagittal (a2), and coronal sections (a3) show differences among the three
target volume delineations. The yellow contour represents the GTV3D, the red contour represents the GTVPET-ref, and the green contour represents the GTVPET-reg.
GTV, gross target volume; GTV3D, GTV contoured based on 3DCT without referencing 18F-FDG PET/CT; GTVPET-ref, GTV contoured on 3DCT referencing
18F-FDG PET/CT; GTVPET-reg, GTV contoured on the deformed image derived from 3DCT and 18F-FDG PET/CT using MIM deformable registration software.
TABLE 2 | Displacement of the 3D vector between different gross target
volumes for all and different segments of patients (X ± S, mm).

Group Total
(n = 72)

Group A
(n = 32)

Group B
(n = 24)

Group C
(n = 16)

GTVPET-reg and
GTVPET-ref

2.54 ± 7.41 0.80 ± 1.72 1.61 ± 2.70 5.65 ± 14.06

GTVPET-reg and GTV3D 1.32 ± 2.40 0.93 ± 1.70 1.62 ± 2.70 4.19 ± 13.32
GTVPET-ref and GTV3D 1.92 ± 7.00 0.64 ± 0.52 1.82 ± 0.99 4.96 ± 13.98
Z,P −0.23,0.815 −0.49,0.620 0.32, 0.753 0.65, 0.529

−0.06,0.946 4.94,0.000 −4.29,0.068 −0.47,0.638
−0.11,0.912 −4.94,0.000 −7.56,0.125 0.03, 0.975
Feb
ruary 2021 |
 Volume 11 | A
3D, represents the centroid distance in the 3D directions between two different GTVs;
GTV, gross target volume; LR, left–right; AP, anterior–posterior; CC, cranial–caudal;
GTV3D, GTV contoured based on 3DCT without referencing 18F-FDG PET/CT; GTVPET-
ref, GTV contoured on 3DCT referencing 18F-FDG PET/CT; GTVPET-reg, GTV contoured on
the deformed image derived from 3DCT and 18F-FDG PET/CT using MIM deformable
registration software.
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DISCUSSION

PET/CT-guided precise radiotherapy for EC is now widely
accepted by radiologists. Most patients with EC have already
undergone diagnostic PET/CT imaging before radiotherapy
simulation. Thus, how to delineate and define the target
volume using diagnostic PET/CT efficiently, economically, and
simply is an urgent issue. Because of the lack of validation,
unfortunately, the volume contour of EC only referencing PET/
CT, which is widely used clinically, may lead to uncertainty for
radiation oncologists.

Incorporating diagnostic PET/CT into planning CT using
rigid image registration (RIR) may lead to misalignment and
cannot be used clinically because of significant changes in patient
position and anatomy. DIR may be a powerful tool that
potentially account for such changes by estimating the non-
uniform or non-linear relationships between the volumetric
Frontiers in Oncology | www.frontiersin.org 6
elements of corresponding structures in the imaging data (30).
However, DIR is also time-saving for clinicians and reduces the
intra-observer variability by automatically defining the target
volumes with a determined SUV-based thresholding strategy
(31). The performance and utility of DIR have been investigated
to allow for its application in patients with head and neck tumors
(32–34).

However, few studies have aimed to improve the accuracy of
the target volume definition for primary thoracic EC in recent
years (35, 36), and related research has only explored the
advantages of deformable registration.

We initially analyzed the tumor position variation in different
directions for all subjects with EC and found a significant
difference in the displacement of the COM in the AP direction
between the GTVPET-ref or GTV3D and GTVPET-reg (P = 0.037,
0.000). However, no significant difference was observed in the
displacement in the LR or CC direction in any comparison
TABLE 4 | Maximum transverse diameter of the Target volumes and tumor length Target volumes of the GTV3D, GTVPET-ref, and GTVPET-reg for all and different
segments of patients (X ± S).

Group Length (cm) Maximum transverse diameter (cm)

GTV3D GTVPET-ref GTVPET-reg GTV3D GTVPET-ref GTVPET-reg

Total (n = 72) 8.54 ± 3.43 9.29 ± 4.48 8.38 ± 4.21 3.94 ± 1.00 3.75 ± 0.94 3.80 ± 0.94
Group A(n = 32) 8.41 ± 3.57 8.56 ± 4.99 7.50 ± 3.91 3.62 ± 0.82 3.49 ± 0.76 3.49 ± 0.73
Group B(n = 24) 8.52 ± 2.54 9.51 ± 3.78 8.71 ± 3.39 4.05 ± 1.00 3.76 ± 0.89 3.89 ± 0.96
Group C(n = 16) 8.58 ± 4.44 10.30 ± 4.59 9.53 ± 5.18 4.15 ± 1.09 4.02 ± 1.11 3.87 ± 1.07
Februar
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GTV, gross target volume; GTV3D, GTV contoured based on 3DCT without referencing 18F-FDG PET/CT; GTVPET-ref, GTV contoured on 3DCT referencing 18F-FDG PET/CT; GTVPET-reg,
contoured on the deformed image derived from 3DCT and 18F-FDG PET/CT using MIM deformable registration software.
TABLE 3 | Target volumes of the GTV3D, GTVPET-ref, and GTVPET-reg for patients
in group C (n = 16).

GTV(cm3) M IQR X ± S

GTV3D 44.82 (19.76, 55.47) 48.65 ± 40.11
GTVPET-ref 49.87 (28.93, 55.56) 55.75 ± 41.18
GTVPET-reg 41.15 (31.66, 41.15) 53.29 ± 36.82
M, median; IQR, interquartile range; GTV, gross target volume; GTV3D, GTV contoured
based on 3DCT without referencing 18F-FDG PET/CT; GTVPET-ref, GTV contoured on
3DCT referencing 18F-FDG PET/CT; GTVPET-reg, GTV contoured on the deformed image
derived from 3DCT and 18F-FDG PET/CT by MIM deformable registration software.
TABLE 5 | CI between different gross target volumes for all patients (n = 72).

CI M IQR X ± S

GTVPET-reg and GTVPET-ref 0.69 (0.62, 0.78) 0.67 ± 0.15
GTVPET-reg and GTV3D 0.68 (0.56, 0.78) 0.64 ± 0.19
GTVPET-ref and GTV3D 0.72 (0.57, 0.78) 0.68 ± 0.15
CI, conformity index; M, median; IQR, interquartile range; GTV, gross target volume;
GTV3D, GTV contoured based on 3DCT without referencing 18F-FDG PET/CT; GTVPET-ref,
GTV contoured on 3DCT referencing 18F-FDG PET/CT; GTVPET-reg, GTV contoured on the
deformed image derived from 3DCT and 18F-FDG PET/CT using MIM deformable
registration software for all patients.
TABLE 6 | DIs of different gross target volumes for all and different segments of patients.

DI Total (n=72) Group A(n=32) Group B(n=24) Group C(n=16)

M,IQR X ± S M,IQR X ± S M,IQR X ± S M,IQR X ± S

GTVPET-reg in GTV3D 0.82 (0.75,0.90) 0.78 ± 0.20 0.84 (0.75,0.90) 0.82 ± 0.13 0.82(0.78,0.90) 0.82 ± 0.10 0.76(0.32,0.90) 0.60 ± 0.35
GTVPET-ref in GTV3D 0.86 (0.76,0.92) 0.81 ± 0.19 0.87 (0.78,0.92) 0.84 ± 0.13 0.84(0.77,0.92) 0.83 ± 0.11 0.83(0.40,0.90) 0.70 ± 0.25
GTV3D in GTVPET-reg 0.84 (0.66,0.92) 0.77 ± 0.22 0.82 (0.68,0.92) 0.80 ± 0.14 0.85(0.65,0.93) 0.78 ± 0.20 0.83(0.40,0.90) 0.65 ± 0.40
GTV3D in GTVPET-ref 0.87 (0.72,0.93) 0.81 ± 0.15 0.82 (0.72,0.92) 0.81 ± 0.15 0.86(0.70,0.92) 0.80 ± 0.15 0.90(0.81,0.95) 0.83 ± 0.18
GTVPET-reg in GTVPET-ref 0.82 (0.76,0.89) 0.80 ± 0.13 0.84 (0.78,0.89) 0.82 ± 0.10 0.80(0.74, 0.89) 0.80 ± 0.12 0.83(0.67,0.90) 0.76 ± 0.22
GTVPET-ref in GTVPET-reg 0.84 (0.77,0.90) 0.81 ± 0.15 0.84 (0.78,0.91) 0.83 ± 0.10 0.85(0.80, 0.89) 0.80 ± 0.20 0.80(0.65,0.88) 0.75 ± 0.17
DI, degree of inclusion; M, median; IQR, interquartile range; GTV, gross target volume; GTV3D, GTV contoured based on 3DCT without referencing 18F-FDG PET/CT; GTVPET-ref,
GTV contoured on 3DCT referencing 18F-FDG PET/CT; GTVPET-reg, GTV contoured on the deformed image derived from 3DCT and 18F-FDG PET/CT using MIM deformable
registration software.
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between two different GTVs (P = 0.178−0.771). Furthermore, we
compared the position variation in all three groups, and minimal
variation was found for tumors in the middle lobe, with no
significant difference in the LR, AP or CC direction (P = 0.127
−0.550). By contrast, patients with distal EC showed the maximal
variation, with a difference in the centroid coordinates between
GTVPET-reg and GTVPET-ref (P = 0.031) or GTV3D (P = 0.021) in
the AP direction. In patients with upper lobe tumors, a
significant difference was found in the centroid coordinates
between GTVPET-reg and GTV3D in the AP direction (P =
0.017). The magnitude of motion was larger for tumors in the
distal lobe than tumors in the upper and middle lobes due to
peristalsis, respiration, and involuntary motion. Additionally,
anatomical structures around the distal esophagus are complex.
Therefore, these observations may suggest that tumor motion
and its adjacent structures are still key factors leading to target
position variation between all contours based on planning CT
scans, planning CT scans referencing PET/CT scans and
planning CT scans registered using DIR to PET/CT scans. The
findings also suggest that differences in the LR and CC directions
should be noted when using PET/CT for EC. Thus, no significant
measurements based on PET/CT, either deformed or referenced,
should be performed in these two directions.

Thoracic EC targets are generally cylinder-like in contour
with a long vertical axis and a short horizontal axis. The tumor
length and maximum transverse diameter are key factors
influencing the GTV. Hence, measurement of the GTV based
on different imaging modalities, which not only can reflect the
tumor shape but also indicate volumetric changes, would be
beneficial to our choice of appropriate images to construct the
target volume. When comparing the tumor length, we found that
the length of the GTVPET-ref was significantly longer than that of
the GTV3D for all the patients with EC and those in group C
(distal EC) (P = 0.033; P = 0.001). However, a significant result
was not observed between the GTVPET-reg and GTVPET-ref or
GTV3D for all patients or patients in the three groups. Thus, no
difference was found in the length between the GTV contoured
on planning CT registered using DIR with PET/CT and that
contoured on planning CT referencing PET/CT, although the
latter showed a trend of increasing longitudinal length. Hong et
al. (37) reported that the mean length of PET/CT-based contours
(6.53 cm) was longer than that of CT-based contours (4.8 cm).
Additionally, Grange et al. (38) compared the GTVs derived
from 3DCT images and PET–CT images and demonstrated that
the GTVPET (12.6 cm) was longer than the GTV3D (11.7 cm).
Furthermore, we analyzed the maximum transverse tumor
diameter and found that the maximum transverse diameters of
the GTVPET-reg and GTVPET-ref were less than that of the GTV3D

in all patients, patients in group A (upper EC) and patients in
group B (middle EC); however, no significant difference was
observed between the GTVPET-reg and GTVPET-ref. The upper
and middle thoracic esophagus are adjoined to high-density
tissues, such as the trachea and cardiac tissue, while the distal
thoracic esophagus is mainly adjoined to the lungs, which are
low-density organs. Therefore, our study reflects the advantage
of PET/CT in distinguishing tumors from high-density tissues,
Frontiers in Oncology | www.frontiersin.org 7
and this advantage is not affected by deriving the GTV from
3DCT referencing PET/CT or deformed PET/CT. We also
compared the GTV based on the length and maximum
transverse diameter of the tumor. Our study showed that the
volume of the GTVPET-ref was significantly greater than that of
the GTV3D in group C, and the difference between GTVPET-ref

and GTVPET-reg was close to statistical significance (P = 0.068).
These results reveal that the distal esophagus will be most
influenced by the tumor length among all three segments.

The CI and DI reflect synthetically geometrical differences in
the two selected target volumes and can be affected by factors
such as the volumetric shape, size, and spatial position. Our
study showed that the median CIs approximated to 0.7—that is,
any two different GTVs among GTVPET-reg, GTVPET-ref and
GTV3D corresponded well. However, the CIs of the GTVPET-reg

and GTV3D were significantly lower than those of the GTVPET-ref

and GTV3D (P = 0.006), and the CIs of the GTVPET-reg and
GTVPET-ref showed a significant inverse correlation with the
centroid distance (r = −0.517; P < 0.05). These results indicate
that the GTVs contoured on deformed images derived from
3DCT and PET/CT correlated well with those contoured on
3DCT referencing PET/CT. With increasing centroid distance
between the GTVPET-reg and GTVPET-ref, the conformity
decreased significantly. However, compared with the GTVs
contoured on deformed images derived from 3DCT and PET/
CT, the GTVs contoured on 3DCT referencing PET/CT
corresponded better with the GTVs contoured on 3DCT. The
cause may be the automatic delineation performed by MIM
software, which uses an absolute SUV threshold of 2.5 and an
SUVmax threshold of 20% within the target image, leading to
changes in the shape and size of the tumor. By further analyzing
the DI between the GTVPET-reg or GTVPET-ref and GTV3D, we
found that the difference in the DI between the GTVPET-reg in
GTV3D (0.82) and that of the GTVPET-ref in GTV3D (0.86) was
also statistically significant (Z = −2.741; P = 0.006). Although a
GTV contoured on planning CT is not a standard volume, it is
still often referred to as a control target volume due to its wide
clinical application. In our study, the GTVs contoured on 3DCT
referencing PET/CT correlated better with those contoured on
3DCT in terms of both the CI and DI compared with GTVs
contoured on deformed images derived from 3DCT and PET/
CT. These results indicate that using the GTVPET-reg for RTP will
increase the unnecessary irradiation of normal tissues and the
amount of unirradiated tumor tissue. Therefore, we suggest that
caution should be exercised when applying DIR to propagate
target volumes between planning CT and diagnostic PET/CT for
EC; further research is needed before large-scale clinical
applications. Our results are consistent with those of a
previous study by Guo et al. at our institution (25). They also
proved that the clinical application of DIR between diagnostic
PET/CT and planning CT should be performed with caution.
Hanna et al. (13) performed DIR between diagnostic PET/CT
and planning CT for 10 patients with lung cancer; the results
suggested that deformable registration had no obvious advantage
in defining the target volume due to inconsistent CI results
between PET-based and CT-based contours.
February 2021 | Volume 11 | Article 550100
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Notably, none of the thresholding approaches have been
standardized to conduct PET/CT-based delineation. Thus, the
accuracy of tumor delineation in EC may be affected by different
SUV-based thresholding strategies, leading to the misjudgment
of high-intake regions, resulting in sites of necrosis and
esophagitis being included as tumor tissues. Additionally, our
study was conducted under the premise that PET imaging in
PET–CT exactly matches CT imaging in PET–CT; however, PET
scans containing several breathing cycles provide functional
information, and CT scans obtain images rapidly in only a
certain position in a specific single phase, possibly resulting in
a mismatch due to respiratory motion (35). Of course, it cannot
be denied that the inter-observer variability are un-avoidable for
esophageal GTV delineation even using PET-CT (17, 18), and
there has been no report on the difference between the GTVs
with reference to the diagnostic PET–CT image by the different
observers. So, we will ask one of those five doctors to delineate
some of the patients and evaluate his/her performance under
those three conditions to study this difference in future.
CONCLUSION

Although some differences were observed between the GTVPET-reg

and GTVPET-ref for distal EC regions with significant anatomical
changes, no significant difference was found among all patients
with EC between the GTVs contoured on 3DCT referencing
diagnostic PET/CT and GTVs contoured on deformed images
derived from 3DCT and diagnostic PET/CT in either the volume
or spatial position. The CI and DI of the GTVPET-ref and GTV3D

were better than those of the GTVPET-reg and GTV3D. Therefore,
PET/CT can be used to optimize the definition of the target
volume in EC. However, no significant difference was found
between the GTVs delineated based on visual referencing or
deformable registration whether using the volume or position.
So, in the absence of planning PET–CT images, it is also feasible to
Frontiers in Oncology | www.frontiersin.org 8
delineate the GTV of primary thoracic EC with reference to the
diagnostic PET–CT image.
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APPENDIX

CT Image Acquisition
The X-ray image acquisition protocol was signed by every patient
before CT scanning. Two localization methods are used for
patients with EC in clinical practice, one using a negative
pressure band with the arms raised over the head and the other
using a thermoplastic mask with the arms placed along the side of
the body. Patients with lower thoracic esophageal cancer would
choose to use negative pressure bands, and patients with EC
requiring irradiation of the neck and upper mediastinum always
choose to use thermoplastic masks. Furthermore, using a
thermoplastic mask would also reduce some changes caused in
the position by keeping the shoulders fixed. Therefore, to unify
research standards, all the patients in our study were immobilized
using a thermoplastic mask in the supine position with the arms
placed along the side of the body during the simulation. Three
laser alignment markers were placed on the patient before image
acquisition. Each patient was injected with 85 ml of contrast
medium and rested for approximately 45 s. Next, enhanced
planning CT of the thoracic region was performed using a 16-
slice CT scanner (Philips Brilliance Bores CT, Cleveland, OH,
USA) under uncoached free-breathing conditions for every
patient. Planning CT was performed at a thickness of 2.4 mm
per gantry rotation (1 s) and interval (1.8 s) between rotations. The
three-dimensional computed tomography (3DCT) scanning
procedure requires approximately 30 s. The planning CT images
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were reconstructed using a thickness of 3 mm and then were
transferred to an Eclipse treatment planning system (Eclipse 15.5;
Varian Medical Systems, Palo Alto, USA).

PET/CT Image Acquisition
PET–CT was performed no longer than a week before the
planning CT as part of the routine diagnostic management for
EC. All the patients were asked to fast for at least 6 before the
PET/CT examination. Each patient was injected with 7.4 MBq/kg
body weight of 18F-FDG and then rested for approximately 1 in a
quiet room before scanning. 18F-FDG PET/CT scan of the chest
was performed using an integrated PET/CT scanner (Philips
Gemini TF, Cleveland, OH, USA). The patients were positioned
on a conventional curved diagnostic bed with a pillow for head
support. The 16-slice CT component was operated at a peak X-
ray tube voltage of 140 kV, 90 mA, a slice thickness of 5 mm and
an interval of 4 mm and was used for both PET data attenuation
correction and 18F-FDG uptake localization in PET images. CT
images without contrast were obtained during free breathing. A
dedicated PET scan was performed covering the same axial
range for 2 min per bed position (a total of 6–7 bed positions).
The PET images were reconstructed using CT-derived
attenuation correction and an ordered subset expectation
maximization algorithm with a postreconstruction Gaussian
filter at 5 mm full width at half maximum and then were
transferred to MIM software (MIM 6.8.5; MIM Software Inc.,
Cleveland, OH, USA).
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