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Abstract: Several surgical procedures are performed for the treatment of obesity. A main outcome
of these procedures is the improvement of type 2 diabetes mellitus. Trying to explain this, gas-
trointestinal hormone levels and their effect on organs involved in carbohydrate metabolism, such
as liver, gut, muscle or fat, have been studied intensively after bariatric surgery. These effects on
endocrine-cell populations in the pancreas have been less well studied. We gathered the existing
data on these pancreatic-cell populations after the two most common types of bariatric surgery,
the sleeve gastrectomy (SG) and the roux-en-Y gastric bypass (RYGB), with the aim to explain the
pathophysiological mechanisms underlying these surgeries and to improve their outcome.

Keywords: sleeve gastrectomy; roux-en-Y gastric bypass; beta-cell; alpha-cell; epsilon-cell; islet;
trans-differentiation

1. Introduction

Bariatric/metabolic surgery has been a powerful tool for the treatment of diabetes
mellitus for a long time. Sleeve gastrectomy (SG) and roux-en-Y gastric bypass (RYGB) are
two of the most performed ones [1,2] as Figure 1 shows.

Changes in energy homeostasis and body fat mass have been proposed as a primary
mechanism to explain these phenomena [3,4], but other mechanisms such as changes
in several gastrointestinal hormones also seem to be involved with a large number of
publications written on the topic. Many of them have related the anatomical changes in
the gastrointestinal tract after surgery with the modification of serum levels of glucagon
like peptide-1 (GLP-1) [5], ghrelin [6], peptide tyrosine-tyrosine (PYY) [7], gastrointestinal
inhibitory peptide (GIP) [8], or even leptin [9], among others, in humans and animal models.
Their involvement is clear, but the exact mechanisms and their degree of participation
remain partially unknown.

At the other end of the entero-pancreatic axis, the endocrine pancreas containing
Langerhans islets determines changes in carbohydrate metabolism after bariatric/metabolic
surgery. Their hormonal secretions before and after bariatric/metabolic surgery have been
widely studied in plasma or serum from animals and humans [10,11] but the islet cell
composition and its paracrine interactions have been studied less. We will attempt to
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summarize what we know about the subject by means of a bibliographical review of the
most relevant works published on the subject.
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Figure 1. Schematic drawing of Sleeve Gastrectomy and Roux-en-Y Gastric bypass. (A) Sleeve Gastrectomy (SG). Repre-

sentation of a common human sleeve gastrectomy (SG) procedure. The SG is a surgical procedure including a reduction 

of final gastric volume, since most of the gastric major curvature is resected. The stomach is reduced to a cylindrical pouch 

removing most of the fundus, stomach-corpus and antrum. The pylorus and minor curvature is preserved. SG reduces the 

initial stomach volume by approximately 15–20%. In animal models this configuration is maintained since the final gastric 

pouch volume and valves are preserved. (B) Roux-en-Y Gastric Bypass (RYGB). Representation of a common human roux-

en-Y gastric bypass (RYGB) surgery. This includes a transverse section of the stomach performed from the major to the 

minor curvature, configuring a gastric pouch. This pouch of the stomach continues to the food handle with an alimentary 

bulb, which continues with the medium portion of the jejunum. RYGB, a mixed malabsorptive and restrictive technique, 

excludes the antrum and the proximal intestine to aliments by bypassing the duodenum and the initial part of the jejunum. 

This includes biliopancreatic secretion, which determines the malabsorptive component. The biliopancreatic bulb connects 

with the mid jejunum. In rats, the model was reproduced similarly with minor modifications according to the animal 

anatomy. Exempli gratia, the jejunal alimentary bulb was 10 cm due to the usual intestinal medium extension of 80 cm. 

Original figure seen in https://sagebariatric.com/about-surgery-home/sleeve-gastrectomy (accessed on 22 July 2021). 
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Figure 1. Schematic drawing of Sleeve Gastrectomy and Roux-en-Y Gastric bypass. (A) Sleeve Gastrectomy (SG). Represen-
tation of a common human sleeve gastrectomy (SG) procedure. The SG is a surgical procedure including a reduction of
final gastric volume, since most of the gastric major curvature is resected. The stomach is reduced to a cylindrical pouch
removing most of the fundus, stomach-corpus and antrum. The pylorus and minor curvature is preserved. SG reduces
the initial stomach volume by approximately 15–20%. In animal models this configuration is maintained since the final
gastric pouch volume and valves are preserved. (B) Roux-en-Y Gastric Bypass (RYGB). Representation of a common human
roux-en-Y gastric bypass (RYGB) surgery. This includes a transverse section of the stomach performed from the major to the
minor curvature, configuring a gastric pouch. This pouch of the stomach continues to the food handle with an alimentary
bulb, which continues with the medium portion of the jejunum. RYGB, a mixed malabsorptive and restrictive technique,
excludes the antrum and the proximal intestine to aliments by bypassing the duodenum and the initial part of the jejunum.
This includes biliopancreatic secretion, which determines the malabsorptive component. The biliopancreatic bulb connects
with the mid jejunum. In rats, the model was reproduced similarly with minor modifications according to the animal
anatomy. Exempli gratia, the jejunal alimentary bulb was 10 cm due to the usual intestinal medium extension of 80 cm.
Original figure seen in https://sagebariatric.com/about-surgery-home/sleeve-gastrectomy (accessed on 22 July 2021).

2. Methods and Results

This paper is a narrative literature review text that aims to expose the framework
surrounding the effects of RYGB and SG on endocrine-cell populations in the pancreas. We
performed a selective search of numerous articles in different databases, as well as books.

The literature of the main scientific databases was reviewed. The search was limited
to documents published between 2001 and 2021. These databases were Medline, PubMed,
Chochrane and Scopus. In addition, a search was carried out on academic websites, such
as Google Scholar, SciELO and Dialnet. The main Boolean operators used were: AND, OR
and NOT, and the key words were sleeve gastrectomy; roux-en-Y gastric bypass; beta-cell,
alpha-cell; epsilon-cell; islet; trans-differentiation. Due to the large number of studies
found, the following criteria were applied to filter the results and work with the most
relevant studies.

Inclusion criteria: Original articles, systematic reviews and meta-analyses concerning
modifications of the endocrine pancreas after bariatric or metabolic surgery in humans or

https://sagebariatric.com/about-surgery-home/sleeve-gastrectomy
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animal models. Papers published in English in the last 20 years (2001–2021). We prioritised
information from systematic reviews and meta-analyses with high scientific evidence.

Exclusion criteria: Papers not related to the topic or not meeting the inclusion criteria.
In the end, a total of 435 articles were found that met the search criteria. Of these,

47 were selected for the preparation of this manuscript. As Table 1 shows, a large number
of disciplines are involved in the study of the topic.

Table 1. Search Results. Break down of the total number of articles used to prepare the work. The left column represents the
different fields of research of each journal citation (Journal Citation Report categories). The central column contains the
number of citations found in each category and the right column contains the number and percentage of citations selected
for the manuscript.

Research Field (JCR) Number of Articles Obtained Number and % of Articles
Selected

Endocrinology & Metabolism 223 22 (46.80%)
Surgery 91 6 (12.76%)

Cell Biology 29 4 (8.50%)
Medicine General & Internal 27 4 (8.50%)

Biochemistry & Molecular Biology 21 2 (4.25%)
Multidisciplinary Sciences 14 2 (4.25%)

Medical Research & Experimental 11 2 (4.25%)
Gastroenterology & Hepatology 11 2 (4.25%)

Genetics & Heredity 4 1 (2.12%)
Pediatrics 3 1 (2.12%)

Peripheral Vascular disease 1 1 (2.12%)
Total of Research fields 435 47 (100%)

3. Discussion
3.1. The Sleeve Gastrectomy and the Islet Architecture

Bariatric/metabolic surgery involves different techniques leading to different effects
on pancreatic cell populations. Currently, sleeve gastrectomy (SG) is one of the most
performed techniques. A consequence of this procedure is the drastic removal of the
gastric fundus and corpus ghrelin-producing cell population. This situation leads to
35–45% reduction of blood ghrelin levels after gastrectomy in humans [12–14]. However,
a recent study described the expansion of the pancreatic residual postnatal epsilon-cell
population with recovery of plasma ghrelin levels in rats twelve weeks after SG. This
expansion takes place at the expense of pancreatic cell progenitors that differentiate into
epsilon-cells showing a high expression of lineage markers such as neurogenin-3 (Ngn-3)
but not homeodomain protein Nkx2.2 (Figure 2) [15].

This leads us to believe in an adaptive response of the endocrine pancreas to low
circulating ghrelin levels and in a possible explanation of the improvement of beta cell
function after SG if we take into account the protective role of ghrelin on it [16].

Furthermore, this surgery does not only affect the epsilon-cells in the islets. It is clear
that SG preserves the beta-cell function, at least for a while [17,18]. This could be explained
by the increase of GLP-1 receptor expression in beta cells after SG, implying an increase
in paracrine sensitivity to GLP-1 [19,20]. However, there are doubts about this due to a
recent study with a modified mouse model involving an inducible knockdown of GLP-1r in
beta-cells (GLP1rβ-cell-ko), which showed improved glycemic profiles, to the wild-nature
level, after SG [21]. Other researchers have linked the maintenance of beta-cell mass and
beta-cell identity markers such as PDX-1 or MafA [22] (Picture 2) to high levels of gastrin
after SG, as well as to correction of long-term blood glucose levels in rodents [23].
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This brings us to the problem of diabetes relapse after SG, which is as high as 41.6% of
cases five years after surgery [2]. Liu et al. proposed long-term recovery of insulin
sensitivity without beta-cell dysfunction as an answer to the question [24], but a recent
work showed loss of beta-cell mass and a strong increase in alpha-cell mass in Wistar rats
twelve weeks after SG. Trans-differentiation of the beta-cell population under stressful
situations with loss of beta-cell markers such as PDX-1 and gain of alpha-cell markers such
as Pax-6 and Arx has been shown [25] (Figure 2). Moreover, this is supported by studies
performed on mice outside the scope of bariatric surgery where alpha-cell populations
labeled with Gcg-Cre lineage tracers showed a dilution of the marker at the expense of the
beta-cell population throughout life [26]. Therefore, the appearance of alpha-cells at the
expense of the beta-cell population may explain the long-term relapses in diabetes after SG.

Finally, the protective effect of the somatostatin-14 isoform on Min6 pancreatic beta
cells of mice has recently been verified, limiting the stress markers HSPa1 and Ddit3
and apoptosis [27]. This together with the occurrence of delta-cell hyperplasia in Goto-
Kakizaki diabetic mice [28] makes us think about a possible role of this delta population
in the mechanisms underlying SG. This seems to be reinforced by the ability of ghrelin to
activate the paracrine secretion of somatostatin [29] as mentioned above. However, due
to the difficulty in carrying out these studies in humans and the ethical aspects, further
investigation on animal models is needed to clarify this issue and the possible involvement
of other pancreatic endocrine populations.

3.2. The Roux-en-Y Gastric Bypass and the Islet Architecture

Roux-en-Y gastric bypass appears to be the most powerful tool for the management of
obesity and hyperglycemia in patients [30]. This procedure has demonstrated its efficiency
in increasing beta-cell function in animal models and patients [31,32]. It also appears to
increase beta-cell mass after surgery in both animal models and patients [33,34]. GLP-1
activity has been proposed as responsible for these effects on beta-cell mass after RYGB [35].
On the other hand, glucose improvement after RYGB has long been reported in mice
models of functional GLP-1 and GLP-1 receptor deficiency, suggesting a GLP-1 independent
mechanism for glycemic control after surgery [36]. Another very interesting candidate
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is intra-islet PYY. Guida et al. reported a large increase in islet PYY content after RYGB,
mediated by locally produced PYY but not GLP-1 glucose-stimulated insulin secretion.
Furthermore, interleukin-22 (IL-22) seems to play a key role in the increase of intra-islet
expression of PYY after RYGB. This situation would imply that non-surgical treatment for
diabetes is possible [37].

An interesting study would be to determine the participation of pancreatic delta-cells
in the maintenance of beta-cell mass after RYGB surgery since a recent study demonstrated
that delta-cells become insulin-expressing cells after the ablation of insulin-secreting beta-
cells in human islets [38] (Figure 2). This should be investigated in the future.

Other cell types, such as pancreatic epsilon-cells, do not seem to be affected after
RYGB [15]. However, high plasma ghrelin levels were detected in obese mice six weeks
after RYGB, probably due to an expansion of ghrelin-producing cells in the duodenum and
stomach of these mice [39].

On the contrary, the plasticity of the pancreatic alpha-cell population under stressful
circumstances is well known. Pregnancy or intermittent fasting are capable of enhancing
the alpha-cell mass in mice [40,41]. Some factors related to the functionality of hepatic
glucagon receptors (GCgr) have been proposed as brakes and regulators of alpha-cell
population expansion in animal models [42]. In this sense, RYGB is also able to cause an
increase in the alpha-cell population in mice six months after the operation, including a
loss of beta identity markers such as PDX-1 and a gain of alpha-cell markers such as ARX
in the islets (Figure 2). All of this suggests long-term trans-differentiation of beta-cells into
alpha-cells after surgery [25].

This brings us to long-term relapse of diabetes again. Like SG, the outcomes of
RYGB published in relevant trials have shown a progressive worsening of diabetes-related
parameters such as glycated hemoglobin, reaching a 50% relapse in diabetes at five years [2].
Patel et al. proposed weak beta-cell function and peripheral insulin resistance as possible
causes of relapse after RYGB [43]. An decrease in beta-cell mass and an increase in alpha-
cell mass could explain this, but what is the mechanism that triggers trans-differentiation?
Hyperinsulinism and subsequent hypoglycemia have been a problem after RYGB but also
may be the answer [44]. In this sense, RYGB seems to cause an extreme requirement and
stressful situation to the beta-cell population, triggering conversion to alpha-cells [45].
According to this, a study in patients reported hyperinsulinism but elevated postprandial
glucagon secretion after RYGB. However, the same study did not report extremely increased
beta cell function [46]. The landscape is complex and exciting and could be a good line of
research to improve the efficiency of these surgeries in the remission of diabetes.

4. Conclusions

SG and RYGB are a therapeutic option not only for overweight but also for diabetes.
The effects of these surgeries on enterohormonal levels have been extensively studied
but on another level, further research on endocrine pancreatic cell populations is also
needed. Nevertheless, it seems that different pathophysiological mechanisms underlie
each of these surgeries, at least in reference to their pancreatic involvement. This is a
complicated issue in humans. However, a better understanding of the mechanisms and
cellular dynamics governing these populations after these two surgeries would allow us to
limit hypoglycemic episodes, the relapse of diabetes over time or even the development of
pharmacological alternatives to the use of bariatric/metabolic surgery.
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