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Abstract. We have determined the nucleotide se- 
quence coding for the chicken brain a-spectrin. It is 
derived both from the cDNA and genomic sequences, 
comprises the entire coding frame, 5' and 3' untrans- 
lated sequences, and terminates in the poly(A)-tail. 
The deduced amino acid sequence was used to map 
the domain structure of  the protein. The a-chain of 
brain spectrin contains 22 segments of which 20 cor- 
respond to the repeat of the human erythrocyte spec- 
trin (Speicher, D. W., and V. T. Marchesi. 1984. Na- 
ture (Lond.). 311:177-180.), typically made of 106 
residues. These homologous segments probably ac- 
count for the flexible, rod-like structure of spectrin. 
Secondary structure prediction suggests predominantly 
a-helical structure for the entire chain. 

Parts of the primary structure are excluded from the 
repetitive pattern and they reside in the middle part of 

the sequence and in its COOH terminus. Search for 
homology in other proteins showed the presence of the 
following distinct structures in these nonrepetitive 
regions: (a) the COOH-terminal part of the molecule 
that shows homology with a-actinin, (b) two typical 
EF-hand (i.e., Ca:*-binding) structures in this region, 
(c) a sequence close to the EF-hand that fulfills the 
criteria for a calmodulin-binding site, and (d) a do- 
main in the middle of the sequence that is homologous 
to a NH2-terminal segment of several src-tyrosine ki- 
nases and to a domain of phospholipase C. These 
regions are good candidates to carry some established 
as well as some yet unestablished functions of spec- 
trin. Comparative analysis showed that a-spectrin is 
well conserved across the species boundaries from 
Xenopus to man, and that the human erythrocyte 
a-spectrin is divergent from the other spectrins. 

S 
PECTRIN is the major constituent of the cytoskeletal 
network underlying the plasma membrane (for a re- 
view see Marchesi, 1985). It was considered to be 

specific for red blood cells until spectrin-like proteins were 
detected immunologically in many types of cells (Goodman 
et al., 1981; Levine and Willard, 1981; Bennett et al., 1982; 
Burridge et al., 1982; Glenney et al., 1982a,b; Repasky et 
al., 1982; Kakiuchi et al., 1982; Lehto and Virtanen, 1983). 
At present we know several proteins related to the red blood 
cell spectrin. Their kinship has been primarily investigated 
by peptide mapping and immunological techniques (Repasky 
et al., 1982; Glenney et al., 1983; Glenney and Glenney, 
1984a, b; Harris et al., 1985). These studies have shown that 
spectrins in different tissues occur as heterodimers and pos- 
sess a common (c~, Mr from 230 to 260 kD) and a variant 
(/3 or % Mr from 220 to 260 kD) subunit (Lazarides and 
Nelson, 1985). The latter show a high degree of variation 
while the common subunits are much alike in different types 
of cells (Glenney et al., 1982b). The mammalian erythroid 
a-chain is, however, a deviant member of the family and 
diverges from the others by its immunological and structural 
properties (Glenney and Glenney, 1984a; Harris et al., 
1985). 

The first spectrin-like molecule to be detected outside the 
realm of the red blood cells was found in brain (Levine and 
Willard, 1981; Goodman et al., 1981) and is also called fo- 

drin (Levine and Willard, 1981) or calspectin (Kakiuchi et 
al., 1982). Recently it has been shown that mammalian brain 
contains two isoforms of spectrin (Lazarides and Nelson, 
1983; Lazarides et al., 1984; Riederer et al., 1986; Virtanen 
et al., 1986), one located primarily in the axons and the other 
in the cell bodies and dendrites. Another spectrin-like pro- 
tein that is more thoroughly characterized, was detected in 
the avian intestinal tissue (Glenney et al., 1982b). This ter- 
minal web (TW) 260/240-protein differs from the others by 
its location in the terminal web of the enterocytes, distant 
from the plasma membrane. 

First data on the primary structure of spectrin were 
presented by Speicher et al. (1983). They sequenced some 
tryptic peptides of the human erythrocyte spectrin o~- and/3- 
chains. The sequences revealed repetitive structure where 
each unit typically consists of 106 amino acids. However, the 
compiled fragmentary data cover only •48 % of the ~- and 
18 % of the/3-chain (Speicher and Marches i, 1984). The first 
cDNA sequence of a nonerythroid spectrin was determined 
by us for a clone isolated from a chicken gizzard expression 
library (Wasenius et al., 1985). This 1.5-kb sequence 
showed that the basic architecture of the erythroid spectrin 
(i.e., the multiply repeated 106-residue motif) is also found 
in the nonerythroid spectrins. This finding was confirmed by 
Birkenmeier et al. (1985). Later, McMahon et al. (1987), 
Leto et al. (1988), and Giebelhaus et al. (1987) have provided 
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partial sequences of human spectrin, rat and human spec- 
trins, and of Xenopus oocyte spectrin, respectively. 

In this paper we present the primary structure of c=-spec- 
trin, based on the cDNA and genomic sequences, and map 
its domain structure. The primary structure reveals a multi- 
domain molecule. It is mostly comprised of regular homolo- 
gous repeats but also contains in its middle and COOH-ter- 
minal parts nonrepetitive sequences. The latter show sequence 
similarities to some functionally defined proteins and may 
thus carry specific functions of spectrin. 

Materials and Methods 

General Methods and Reagents 
General procedures, such as isolation of DNA, restriction enzyme diges- 
tions, PAGE and agarose gel electrophoresis, purification of DNA frag- 
ments from the gels, and nick translation of the probes, were performed by 
standard methods (Maniatis et al., 1982). Restriction and modification en- 
zymes and polymerases were purchased from Boehringer Mannheim Bio- 
chemica GmbH (Mannheim, FRG) unless indicated otherwise and radio- 
nucleotides from Amersham International (Amersham, UK). 

Isolation of cDNA and Genomic Clones 
A eDNA library was made in lambda gtl0 phage as described (Huynh et 
al., 1985). Total RNAs were prepared from various tissues of 14-d chicken 
embryos by a modified guanidine isothiocyanate/cesium chloride method as 
described earlier (Chirgwin et al., 1979). Poly (A)+-RNA was isolated by 
two cycles on an oligo-dT-cellulose column (Pharmacia Fine Chemicals, 
Piscataway, NJ). The RNA isolated from brain was used for eDNA synthe- 
sis. This was carried out by RNase H method (Guhler and Hoffman, 1983) 
using oligo-dT (Promega Biotec, Madison, WI) as a primer, eDNA was then 
treated with Eco RI-metbylase, Eco RI linkered, digested with Eco RI, and 
size selected on a Sepharose CL-4B column (Pharmacia Fine Chemicals). 
eDNA fragments over 1 kb were ligated overnight at 14°C to the Eco 
RI-digested and phosphatase-treated lambda gtl0 vector (Promega Biotec) 
and packaged into virus particles. Escherichia coli c600hfl host cells were 
transfected and plated. A chicken genomic library was constructed by using 
the DNA isolated from the brains of 14-d-old chicken embryos. The DNA 
was partially digested with Eco RI, ligated into lambda gtl0-vector, pack- 
aged, and transfected into E. coil c600hfl cells following the procedures de- 
scribed for eDNA library construction (see above). 

The cDNA library was spread on culture plates, replicated onto nitrocel- 
lulose filters which were then screened by hybridization with nick-translated 
18-3a clone (Wasenius et al., 1985). Screening of 'x,l.8 × 104 plaques un- 
der stringent conditions (final wash with 0.1x SSC, 0.1% SDS at 65°C for 
1 h) yielded 23 positive clones. The positive clones were localized, picked 
up, and plaque purified. The isolated lambda DNAs were digested with Eco 
RI to release the inserts. These fragments were isolated from agarose gels 
by trapping to strips of DEAE-nitrocellulose filters and subcloned into M13 
vectors for subsequent sequence analysis. A "sublibrary" was prepared 
using a specific oligonucleotide primer (5'CTCTTCCAGAAGATTCT3') 
(see Fig. 1) and screened as described in the text. The genomic library was 
screened using some clones from the 5' end of spectrin eDNA to obtain 
clones that cover further the 5' end of the coding sequence. Inserts were iso- 
lated and cloned for sequence analysis as above. 

DNA Sequence Analysis 
Sequencing of the DNAs subcloned into M13 mpl8 and mpl9 vectors was 
performed by Sanger's dideoxy chain termination method (Sanger et al., 
1980; Biggin et al., 1983) with both the Klenow fragment of DNA polymer- 
ase I (Bethesda Research Laboratories, Gaithersburg, MD) and modified T7 
DNA polymerase from United States Biochemical Corp. (Cleveland, OH). 
Exo IIl-nuclease technique was used to generate deleted inserts (Henikoff, 
1984). M13 universal primer and several specific primers were used. 

Computer Analysis 
Nucleotide sequencing was aided by the Staden programs (Staden, 1987). 
Amino acid sequence homologies were studied with a computer program, 
DIAGON (Staden, 1982); the parameters in dot matrix analyses are 

specified in the figure legends. Secondary structure was predicted using the 
algorithm of Gamier et al. (1978). Search for homologous sequences was 
carried out using the protein identification resource, PIR (database 12.0, 
March 1987), as a reference. 

Oligonucleotide Synthesis 
Deoxyoligonucleotides were synthesized with synthesizer (model 381A; 
Applied Biosystems, Inc., Foster City, CA). 

Results 

Isolation of cDNA and Genomic Clones for Brain 
a-Spectrin 
Brain was chosen for the construction of the cDNA library 
on the basis of its relatively high content of spectrin mRNA; 
this was found by Northern hybridization of mRNAs from 
various tissues with the o~-spectrin probe 18-3a (not shown). 
The library was screened by hybridization with the same 
probe. The longest eDNA insert detected was ~4.7 kb. The 
nucleotide sequence analysis revealed that its 3' end cor- 
responded to the poly(A)÷-tail of the mRNA. The clone 
contains an authentic Eco RI site that divides it into two 
halves which are designated CLONE IA and CLONE IB in 
Fig. 1. The 18-3a sequence is present in the middle of the 
CLONE I, confirming that the isolated clone represents 
a-spectrin; it is marked with a dashed overline in Fig. 2 
(nucleotides 5,041-6,459). Sequencing errors in the 5' end 
of the published 18-3a sequence (Wasenius et al., 1985) and 
in the 12 carboxy-terminal residues in our previously pub- 
lished partial sequence (Wasenius et al., 1987) are corrected 
in Fig. 2. 

We were unable to isolate from the original eDNA library 
clones that would extend the sequence further into the 5' di- 
rection. Thus a 17-mer primer (5'CTCT'I~CAGAAGATTCTY) 
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Figure 1. Restriction enzyme map and sequencmg strategy for the 
c~-spectrin eDNA and genomic clones. The mapped restriction sites 
are Bam HI (B),  Eco RI (E) ,  Hind III (H) ,  Pst I (P) ,  and Sph I 
(S). The  dideoxy chain  te rminat ion  method (Sanger, 1980) was ap- 
plied on C L O N E  I which  was divided in two halves (CLONE IA 
and IB) by an authentic Eco RI site. A 17-mer ol igonucleotide 
p r imer  A was used to p r ime  a subl ibrary which  was screened with 
the C L O N E  IB; thus, the C L O N E  II that spans most  of the f rame 
coding for the NH2-terminal  sequence was isolated. A genomic li- 
brary  was constructed f rom the D N A  isolated from embryonal  
bra in  tissue and screened with the 5' end fragments  of the C L O N E  
II. The  genomic  clone C L O N E  G/I,  that  contains the 5' end of the 
coding frame was partially sequenced by specific priming.  Arrows, 
the consensus  sequence obtained for both strands. 
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was designed complementary to the 5' end of the CLONE IB 
(Fig. 1) and used as a primer to produce a sublibrary using 
the RNase H method described in Materials and Methods. 
The sublibrary was screened with the CLONE IB as a probe. 
From it a new clone (CLONE II) that overlaps the original 
4.7-kb clone was obtained. 

To obtain clones covering the 5' end of the coding sequence 
further, the genomic library was screened with some 5' frag- 
ments of the CLONE II as probes. This yielded a '~7-kb 
genomic clone (CLONE G/I) that overlaps the CLONE II by 
'~650 bp. 

The restriction map and the sequencing strategy of the 
CLONES I, II, and G/I are summarized in Fig. 1. 

The Nucleotide and Deduced Amino Acid Sequence of 
the Brain a-Spectrin 

The nucleotide sequence of the entire coding region was ob- 
tained from the two overlapping eDNA clones and from a 
partial sequence of the genomic clone. Also, the entire un- 
translated 3' region was sequenced. Fig. 2 shows the con- 
sensus nucleotide and deduced amino acid sequences. The 
former comprises 7,774 bp and contains an open reading 
frame (7,431 nucleotides) that codes for 2,477 amino acid 
residues yielding a tool mass of 285,369 for the translation 
product. The putative initiation codon is 124 bases from the 
5' end of the shown sequence. It is flanked by a sequence that 
is in good agreement with the Kozak's rule for the functional 
initiation codon (Kozak, 1986). This ATG codon is preceded 
by a typical TATA box (between -45  and -40)  and a CAAT 
box (-111 to -108). After the stop codon, there is a 219-bp 
untranslated 3' sequence with a poly(A)-tail. The polyade- 
nylation signal AATAAA occurs 19 bp from the poly(A)-tail 
(nucleotides 7,606-7,611). These signals are underlined in 
Fig. 2. The Eco RI site in CLONE I was not overlapped by 
sequencing. However, a previously determined homologous 
sequence has already covered this site (McMahon et al., 
1987). 

Repetitive Structure of the a-Spectrin 

Internal repeats were systematically studied using a com- 
puter program, DIAGON (Staden, 1982). Fig. 3, depicting 
a diagonal plot, shows that the molecule is composed of ho- 
mologous NH2- and COOH-terminal halves indicated by a 
long contiguous diagonal line (Fig. 3, arrow), and of multi- 
ply repeated, homologous units indicated by the numerous 
parallel evenly spaced lines. These basic repeats are desig- 
nated al, ct2, or3, etc. following the nomenclature introduced 
by Speicher and Marchesi (1984). They encompass ,,o80% 
of the molecule excluding two regions (in a l0  and txll) in the 
middle and one (in c~21 and t~22) at the carboxy-terminal part 
of the protein (Fig. 4). The latter are revealed as "white 
strips" in the dot matrix, which indicates that they are differ- 
ent from the other segments. 

The optimal alignment of the homologous repeats is shown 
in Fig. 4. The particular alignment (al begins with the amino 
acid residue 15) has been chosen to make it match with the 
published pattern of Speicher and Marchesi (1984) and of 
Wasenius et al. (1985). This leaves 14 NH2-terminal resi- 
dues as an overhang, designated ct'l. Most of the repeats 
(a2-5, ix7-9, cd2-14, and cd6-18) are 106 amino acids long, 
thus conforming to the common repetitive pattern of the 

spectrin structure (Speicher and Marchesi, 1984; Wasenius 
et al. 1985). One gap is required for the optimal alignment 
in ~1 and a6. ot15 is longer than the other repeats due to the 
unique insertion in position 70 (Fig. 4). 

The alignment shows a faithful occurrence of certain 
amino acids in the fixed positions in most of the repeats (Fig. 
4). These include isoleucine (in positions 1 and 46), trypto- 
phan (12 and 45), leucine (15 and 26), arginine (22), aspartic 
acid (38), glutamic acid (48), lysine (71), and histidine (72 
and 101). The amino-terminal ends of the repeats seem to be 
more strongly conserved than the carboxy-terminal ends. 

The segments o~20 and ~21 are longer and show a lower 
degree of homology to the other repeats. In addition, the seg- 
ments called cd0 and c~22 are qualitatively different from the 
rest of a-spectrin chain. Another "nonhomologous" region 
can be found as an extension of the call unit. 

In Table I all the pairwise comparisons of the units otl-c~22 
are shown. The highest degree of homology is seen between 
the repeats in the corresponding positions of the amino- and 
carboxy-terminal halves of the molecule; the ~2-cr8 stretch 
is closely related to a sequence covering cd l-otl7 (Fig. 3, ar- 
row). This may be a track left by the latest duplication event 
in the evolution of spectrin (see Discussion). This compari- 
son also shows that the divergent regions al0 and a22 are 
totally unrelated to the homologous repeat units and to each 
other. 

Secondary structure prediction was carried out using the 
algorithm of Garnier et al. (1978; and data not shown). It re- 
vealed predominantly c~-helical structure. Some of the ho- 
mologous repeats (c~2, a4, c~5, odl, ~14, ~16, ~18, c~20, and 
a21) show an c~-helical structure without any or with only a 
slight tendency to breaks. In ~1, c~3, o~i-~9, cd2, ~13, and 
od5, on the other hand, several helix-breaking turns and coil 
structures are predicted. In many repeats they tend to cluster 
around the positions 58-68 and 80-85. 

Comparison of Various a-Spectrins 

Alignment of the present sequence with the known partial se- 
quences of various ~-spectrins is shown in Fig. 5. The pub- 
lished Xenopus oocyte ~-speetrin sequence (Giebelhaus et 
al., 1987) corresponds to the residues 568-1,021, the human 
fibroblast ct-spectrin sequence (McMahon et al., 1987) to 
the residues 676-1,599, and the rat brain c~-spectrin sequence 
(Leto et al., 1988) to the residues 1,776-2,250. The frag- 
ments of the human erythroid t~-spectrin sequence (Speicher 
and Marchesi, 1984) cover scattered parts along the chicken 
sequence except the COOH terminus. 

Comparison between our sequence and the human fibro- 
blast c~-spectrin reveals that these sequences are practically 
identical. It also confirms that the 60-bp insert found in one 
of the clones of McMahon et al. (1987) represents the pre- 
dominant transcript and is not a cloning artifact since the 
same sequence is present here (amino acid residues 1,053- 
1,073). The observation of McMahon et al. (1987) that there 
is a 36 amino acid extension in call (residues 1,168-1,204 in 
our sequence) is also corroborated by our sequence. 

Xenopus sequence covers only ,',,17 % of the current se- 
quence in the middle part of the molecule. It also shows vir- 
tual identity with the chicken brain u-spectrin sequence. 

Human erythroid c~-spectrin has a significantly lower 
similarity to the chicken brain sequence than the human 
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AAC~CACAC~GACCAC~CAA~CCAGGTT~TTCTTTCATGGATCTCTTCcTACCTTTGTTTTATAATACAAACA~GTTAA~TG~TC~TTTTT~CT TT~ -5 

-124 

M D P S G V K V ~ E T A E D I Q E R R Q Q V ~ D R Y H R F K E L S S L R R Q K 39 
GAAAATGGATCCAAGTGGGGT .GCAGAAGATATCCAACIAACGGCGTCAGCAGGTT T TGGACCGTTACCACAGGTTCAAGGAGC TGTCTTCTCTGAGGCGCCAAKA +116 

+1 

L E D $ Y R F Q F F Q R D A D E L G K W I Q E K L Q I A S D E N Y K D P S N L Q 79 
ACTCGAAGATTCCTATCGGTTCCAGTTCTTCCAGCGTGATGCAGATC=AGC TC~TGGATCC.AAGAGAAACTCCAGATAGCATCTGATGAAAA~A~CC~TTTA~ 236 

G K L Q K H Q A F E A E V Q A N S G A I V K L D E T G N Q M I N E G H F A 3 E T 119 
GGC~TGCAGAAGCACCAGGCCTTTGAAGC TGAGGTGCAGGCCAATTCAC~TAT CGT TAAGCTGGATGAGACTGGAAATCAGATGAT~T~T TTT~TCT~C 356 

I R T R L Q E L H R L W E L L L E K M R E K G V K L L Q A Q K L V Q F L R E C E 159 
CATAAGAACTCGTCTACAGGAGCTGCACCGACTATC~TTACTGCTGGAA~TGAGAGAGAAGGGAGTGAAC-C T GT TGCA~CAGAAGCT~T~TTCTTAC~TGT~ 476 

D V M D W I N D K E A I V T S E E L G Q D L E H V E V L Q K K F E E F Q T D L A 199 
AGATGTCATC~GGATCAATGACAAC~TAGTGACCTCAC~TTGGACAC-GACTTAGAC-CATGTTGAGGTTTTGCAC~T T T ~ G  T T C ~ T C T ~  596 

A H E E R V N E V N Q F A G K L I Q E Q H P E E E L I K S K Q D E V N A S W Q R 239 
AGCTCATGAGGAGAGAGTGAATGAAGTGAACCAGTT~GCT~CTTATCCAGGAACAGCAcCCTGAGC1AGGA~TTATAAAGTCCAAACAGGATGAAGTAAATCCAA~T~G 716 

L K G L A Q Q R Q G K L F G A A E V Q R F N R D V D E T I $ W I K E K G Q L M A 279 
TCTTAAGGGGCTTGCCCAACAGAGG~CTCTTTGGGGCAGCTGAAGTTCAGCC-CTTCAACAGGGATGTC-GATGAAACTATCA~T~TT~~T~ 836 

S D D F G R D L A S V Q A L L R K H E G L E R D L A A F H H K V K A L C A E A D 319 
CTCAGATGACTTTGG~TTGGCCAGCGTGCAAGCTTTACTACGTAAGCATGAAGGCC TGGAAAGAGATCTTGCAGCTTTCCACCATAAC-GTTAAGGCCCTCTGTGCAGAAGCT ~ 956 

R L Q Q $ H P I N A S Q I Q V K R E E L I A N W E Q I R T L A A E R H A R L N D 359 
CCGTTTGCAC~TCTCACCCTATAAATGCTTCTCAAATTCAAGTC~CGGGAGGAACTGATTGCCAACTGG~GATCCGAA~TCTGGCAC~TGCTCGCCTT~T~ 1,076 

S Y R L Q R F L A D F R D L T S W V T E M K A L I N A D E L A N D V A G A E A D 399 
CTCCTACAC~TTGCAG~TTCT TCC~T TTCCGGGAECTCACTAGCTGGGTAAC TGAGATCIAAGGC TC TGATAAATC~T~ T T ~ T ~ T G T ~ T ~ C C T  i~96 

L D R H Q E H K G E I D A H E D S F R $ A D E S G Q A L L A A G H Y A $ D E V K 439 
TCTAGATAGACATCAC~CATAAC~TTGATGCTCATGAGGATAC-CTTCAGATCTGCTGAT GAGTC TGGGCAGGCTTTGC~T~CTAT~TTCT~T~GTT~ ~316 

E K L T I L S D E R S A L L E L W E L R R Q Q Y E Q C M D L Q L F Y R D T E Q V 479 
AGAAAAGCTGACTATCCTCTCAGATCIAAAGATCTGCCT TGCTGGAACTATGGGAGCTTCGCAGGCAACAGTATGAC.CAGTGCATGGATCTGCAC-CTTT TCTACAGAGATACTGAACAAGT ~436 

D N W M S K Q E A F L L N E D L G D S L D S V E A L L K K H E D F E K $ L 3 A Q 519 
TGACAACTGGATGAC-CAAACAAC~ TTTTC TGCTGAACGAAGACCTTGGTGATT C T C TGGATAGCGTGC.AGGCTCTTCTAAAG2~TGAAGATTTTGAGAAATCCCT~GT~T~ ~556 

E E K I T A L D E F A T K L I Q N N H Y A M D D V A T R R D A L L S R R N A L H 559 
AGAC~TCACAGC~TGGATGA~TTTGCTACTA~CTGATTCA~TAACCATTATC~CATGGATGACGTTGCTAC~T~TCTTCT~GT C ~ C~T~TCTT~ ~676 

E R A M K R R A Q L A D $ F H L Q Q F F R D $ D E L K S W V N E K M K T A T D E 599 
TGAAAGAGCCATGA~CGTGCCCAACTGGCAGACTCT T TCCAT C T CCAGCAGTTTTTCAG~TCTGATGAAC TGA~GTTGGGTTAATGAA~TGA~CTGCTACC~T~ 1;796 

A Y K D P S N L Q G K V Q K H Q A F E A E L S A N Q S R I D A L E K A G Q K L I 639 
GGCTTACAAGGATCCATCCAA~TTC~TAAAGTTCAGAAGCATCAGGCTTTTGAAGCAGAGCTTTCTGCTAATCAGAG~GTATT~T~T~T~GTT~T I~16 

D V N H Y A $ D E V A A R M N E V I S L W K K L L E A T E L K G I K L R E A N Q 679 
TGATGTCAATCAC TATGCATCTGATGAGGTGGCAGCTCGCATGAATGAAGTCATCAC-CTTGTGGAAC~C T TCTGGAAGCCACCGAGCTCAAAGGTAT~T~GT~T~ ~036 

Q Q Q F N R N V E D I E L W L Y E V E G H L A S D D Y G K D L T S V Q N L Q K K 719 
ACAC~TTTAATCGCAATGTAGAAGACATTGAGT TGTGGCTGTATGAAGTGGAGGGTCACTTGGCTTCTGATGATTATGGA~TC T TACCAC-CGTTCAGAATCTTCA~ ~156 

H A L L E A D V A A H Q D P I D G I T i Q A R Q F Q D A G H F D A D N I K K K Q 759 
ACATGCCCTGC TAGAC~TGTTGCTGCCCATCAGGATCCGATAGATGC~CATTACCATCC~GCCAGTTCCAAGATGCTGGGCACTTT~TAT~ ~276 

E A L V A R Y E A L K D P M V A R K Q K L A D $ L R L Q Q L F R D I E D E E T W 799 
AC~TTAGTAGCTCGTTATGA~CTGAAGGATCC TATGGTGGCTCGCAAGCAGAAACTTGCAGATTCTCTTCGCC TGCAGCAGCTTTTCCGTGACATC~T~CCTG ~396 

I R E K E P I A A S T N R G K D L I G V Q N L L K K H Q A L Q A E I A G H E P R 839 
GATCAGG~ATTGCAGCCTCAACAAACCGAGGCAAGGACTTAATTGGTGTCCAGAATCTGCTAAAGAAGCACCAGGCTTTGCA~TTGCAGC-CCATGAGCCTCG ~516 

I K A V T Q K G N A M V E E G H F A A E D V K I K L N E L N Q K W D S L K A K A 879 
C A T T A ~  TGCGATGGTGGAAGAGGGACATTTTGCTGCTGAAGATGTGAAGATCAAATTGAATGAA~TAAAcCA~TGGGACTCTC~ 24636 

S Q R R Q D L E D S L Q A Q Q Y F A D A N E A Q $ W M R E K E P I V G S T D Y G 919 
ATCTCAACGGCC~TCTAGAGGATTCTCTGCAAC-C TCAGCAGTAT T T TGC TGATGCTAATG~KC-GCACAATCATGGATGAGGGA~CCAT TGTAGGCAGCACGGATTAT~ ~756 

K D E D S A E A L L K K H E A L M S D L $ A Y G $ S I Q A L R E Q A Q S C R Q Q 959 
AAAGGATGAAGACTCTGCTGAGGCT~TCCTG~f.IAAC-CATC~TGATGTCTGATCT T TCTGC T TACG~TAGCATACAGGCATTAAGC~CA~C~TCC T ~  21876 

V A P T D D E T G ~ E L V L A L Y D ¥ Q E K S P R E V T M K K G D I L T L L N S 999 
AGTTGCTCCCACTGATGATGAAACTGG~GTGCTAC-CACTCTATGATTACCAAGAGA~TCCTCGGGAGGTGAcTAT~TATTCT~cCCT~T~ ~996 

T N K D W W K V E V N D R Q G F V P A A Y V K K L D P A Q S A S R E N L L E E Q ],039 
CACCAACAAGGACTGGTC-GAAGGTTGAAGTTAACGATCGTCA~TTTGTACCAGCTC-CCTATGTC~CTAGATCCTGCCCAGTCTGCATCCCGAC~TC T T C T ~  2#116 

G $ I A L R Q E Q I D N Q T L I T K E V G S V S L R M K Q V E E L Y H S L L E L i~79 
AC~C-CATAGCATTC~TTGACAACCAGACTCTCATTACTAAC~T CGGCAGTGTATCTCTC-CGTATGAAACAC.GTCGA~TGTATCA~CC~CTT~T 31236 

G E K R K G M L E K S C K K F M L F R E A N E L Q Q W I N E K E A A L T N E E V ~I19 
GGG~GTAAAC-GCATGCTAC~TGC~TTTATGCTTTTCCGTGAC-GCTAATGAGC TTCAACAGTC~TCAATGA~GCTCICACTCACT~ 2/356 

G A D L E Q V E V L Q K K F D D F Q K D L K A N E S R L K D I N K V A N D L E S ~159 
GGGTC-CTGATTTC~=GTGC~AGGTGCTACA~'TTTGATC, ATTTTCAC~TTTAAAAGCTAATGAGTCACGAC T C ~ C A T A ~ T  T~T~TC T~G~ 3~76 

E G L M A Z E V Q A V E ~ Q E V Y G M M P R D Z T D S K T V S F W K $ A R M M V 3.199 
TGAAGGGCTGATGG~GTGC~J3CAGTAGAGCACC~GAAGTCTATGGAATGATGCCCAGAGATGAAACTGATTCTAAGACAGTCTCTCCTTC~CGTA~T ~596 

H T V A T F N S I K E L N E R W R S L Q Q L A E E R S Q L L G S A D E V Q R F H 11239 
ACACACGGTGGC~TTTAACTCAATTAAGGA~TC~TC~AACGCTGGAGATCCCTC~TTGG~GCGAAC~GTTGGG~GCTC4~TC~AAG~TC~ ~716 

R D A D E T K E W I E E K N Q A L N T D N Y G H D L A S V Q A L Q R N D E G F E ~279 
CAGAGAT GC TGAT GAAAC~T GGATAC~TCAAGCAT TAAATAC CC~%.CAAC TAT GGACATGACTTC-~ T GT ~ ~ 2 ~ T C ~  ~36 

Figure 2. Complete nucleo- 
tide and amino acid sequences 
derived from the a-spectrin 
cDNA CLONES I and II and 
the genomic CLONE G/I. The 
amino acid sequence predict- 
ed for the long open reading 
frame is shown with the single 
letter code. Numbering of the 
amino acid sequence begins at 
the postulated initiator methi- 
onine. For the nucleotides, the 
positions upstream of the initi- 
ator codon have negative num- 
bers. Numbering is shown on 
the right. The nucleotide se- 
quence from -124  to +82 
was obtained from the genom- 
ic clone with a specific primer. 
The CAAT and TATAAT se- 
quences at the 5' end and the 
polyadenylation signal AAT- 
AAA at the 3' end are under- 
lined. The sequence that is 
identical with the partial chick- 
en gizzard c~-spectrin sequence 
(18-3a; Wasenius et al., 1985) 
is overlined. The authentic 
Eco RI site at position 3,867 is 
underlined. 
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R D L A A L G D K V N S L G E T A Q R L I Q S ~ P E L A E D L Q E K C T E L N Q ~319 
GAGAGACTTGGCAGCTCTTGGAGACAAGGT~d%ATT~TCTTGGTC~TC-CCCAGCGTCTGATCCAGTCACATCCAGAACTAGCTGAAGATCTTCAAGA~TGTACTGAG~ ~956 

A W S S L G K R A D Q R K E K L G D S H D L Q R F L S D F R D L M S W I N G I R 11359 
AGCCTGGAGTAGTCTGG~CGTGCTGACCAA TTCTCAT~JCCTGCAGC~TCCTCAGTGATTTTAC~ATGTCTTGGATCAATGGAATCCG ~076 

G L V S S D E L A K D V T G A E A L L E R H Q E H R T E I D A R A G T F Q A F E 11399 
GGGTCTGGTCTCCTCAGATGAACTTGCAAAAGATGTGACTGGAC~CTGTTGGA~TCA~CGTACTGAAATAGATGCACGGGCTGGCACTTTTCAGGCATTTGA ~196 

........................................................................................................................ 

F V A N V E E E E A W I N E K M T L V A S E D Y G D T L A A I Q G L L K K H E A 21919 
GT T TGTAGCAAATGTTGAC-GAAGAG~TGGATCAACGAGAAAATGACATTGGTAGCCAGTGAGGATTATGGAGACACACTTGCTGCTATCCAGGGCTT~T~T~ 5,756 

........................................................................................................................ 

F E T D F T V H K D R V N D V C A N G E D L I K K N N H H V E N I T A K M K G L ~959 
ATTCGAGACTGACTTTACTGTCCACAAAGACAGAGTC4%ATC, ATGTTTGTC~TAATGGAC~TCTCAT TAAAAAGAATAATCACCATGTGGAGAA~TTA~T~CT 5~76 

........................................................................................................................ 

K G K V S D L E K A A A Q R K A K L D E N S A F L Q F N W K A D V V E S W I G E ~999 
CA~TATCAGATCTC~GCC~CAAACTGGATC~.C~AACTCTGCCTTCCTCCAGTTCa%ACTGGA~TGTC~~T~ %996 

........................................................................................................................ 

K E N $ L K T D D Y G R D L S S V Q T L L T K Q E T F D A G L Q A F Q Q E G I A 2;039 
GAAGG~CAGCCTGAAGACAC~TCIATTATGGCCGTGACC TC TCC TCTGTGC~C~'TACTCACCA~CCTTTGATGCTGGACTT~T T T C ~ T T ~  6;116 

........................................................................................................................ 

N I T A L K D Q L L A A K H I Q $ K A I E V R H A $ L M K R W N Q L L A N S A A 2~79 
AAACATCACTGCTCTC~ CAGC TACTGC-CAC~.ATATCCAATCAAA~TTGAGGTTCGTCACGCTTCCTTGATGAAACGCTGGAA~T~TTCT~ ~236 

--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--, ~ 
C A C ~ C T C T  T ~ T C T C  T TC TTGACTTTTGCCAAGAAGC-CCTCTGCCTTCAACAGTTGGTTTGACIAATGCTGAGGAGGACCT 6/356 

...................................................................................................... 

T D P V R C N S L E E I K A L R E A H D A F R S S L S S A Q A D F N Q L A E L D 2.;159 
GACGGATCCCGTGCGCTC~TTCCCTC~TCA~C TGCGAGAAGCCCACGATGCCTTCCGTTCCTCACTTAGCTCT~C~T~TT~T~ 6~76 

R Q I K S F R V A $ N P Y T W F T M E A L E E T W R N L Q K I I K E R E L E L Q ~199 
TCGGCAGATCAAGAGC TTCCGTGTAGCCTCCAACCOGTACACTTGGTTTACTATGGAGGCTCTTGAAGAAACT TGGAGGAATCTGCAGAAAATTATCAAGGAGCGTGAATTGGAGTTGCA 6.,596 

K E Q ~ R Q E E N D K L R Q E F A Q H A N A F H Q w I Q E T R T Y L L D G S C M 2~39 
GAA _ TGACAAGTTGCGCCAC~TTTGCTCAF=CATGCTAATGCCTTCCACCAGTGGA .CTTACCTC-CTAGATGC-GTCCTGTAT 6;716 

V E E S G T L E S Q L E A T K R K H Q E I R A M R S Q L K K I E D L G A A M E E 2~79 
GGTGGAGGAGTCGGGAACAC TC~T CCCAGCTGGAAGCTACTAAACGCAAC~TCCGGGCTATC~CAGCTC~TTGAC-GACCTTGGAGCAGCCATGGAAGA 6#836 

A L I L D N K Y T E H S T V G L A Q Q w D Q L D Q L G M R M Q H N L E Q Q I Q A ~319 
GGCACTTATCTTC-GACAACAAATACAC~CGTGGGGCTGGC~TGGGACCACTC TTGACCAC~T~%GAATC-CA~CAATC T G ~ ~  6;956 

R N T T G V T E E A L K E F S M M F K H F D K D K S G R L N H Q E F K S C L R S ~359 
TCGAAACACAACTGGAGTCACA~CCTGAA~TTCAGCATGATGTTCAAC-CACTTTC~TCTGGACGTCTTAATCACCAC~TTTAAGTCTTGC T TGCGCTC ~076 

Q F G Q Q L L A R G H Y A S P E I K E K L E I L D Q E ~ T D L E K A W V Q R R M ~439 
ACAGTTT GGACAGCAGC TTCTGGCTCGTGGACACTATC-CCAGCCCAGAGATTAAGGA~ TGGATAT TCTAGATCAAGAACGGA~C~A~CT~TC~T ~289 

M L D Q C L E L Q L F H R D C E Q A E N W M A A R E A F L N T E D K G D 5 L D S ];479 
GATGCTAGACCAGTGCTTAGAACTACAGCT GT TT CATCGGGATTGTGAACAACCTGAAAACTf~GATGGCTGCCCGAGAGGCGTTCCTAAATACAGAA~C T~TTA~ 4/409 

V E A L I K K H E D F D K A I N V Q E E K ~ A V L Q S F A D Q L I A A D H Y A K ~519 
CGTGGAGGCACTCAT CAAGAAGCATGAAGAT TTCGATAAAGCAATCAATGTCCAGGAAGAGA~TTGCTGTCTT GCAG TCTTTTGCTGACCAACT~TT~T~AT~ 4.529 

G V I A N R R N E V L D R W R R L K A Q M I E K R $ K L G E S Q T L Q Q F S R D ~559 
AGGAG TCATTGCTAACAGACGCAATGAGGTTCTGGA~GGTGGCGT C GTC TGAAGGC T CAC~ATGAT TGAGAAGAGATCTAAGCT~TCT~CCCTC~T T ~T CGT~ 4/649 

V D E I E A W I S E K L Q T A S D E S Y K D P T N I Q L S K L L S K H Q K H Q A ~599 
TGTTGATC*AAATAGAAGC TTGGATCAG T GAAAAGCTTCAAACTGCAAGTGATGAGTCATATAAGGATCCCACAAACATCCAC~TT T C C A A A C T ~ T ~ ~ C ~  4/796 

F E A E L H A N A D R I R G V I E M G N P L I E R G A C A G S E D A V K A R L A I;639 
CTTT GAAGC TGAGCTCCACC-CCAACGCAGATCGGATTCGTGGAGTCAT TGAAATGGGGAACCC TC TTATTGAAAGAGGAGCGTGTGCTC~GCGAGGA~~T~ 4,916 

A L A D Q w E F L V Q K S $ E K S Q K L K E A N K Q Q N F N T G I K D F D F W L ~679 
TGCCCTGGCTGACCAATGGGAGTTCCTGGT C CAGAAGTCATCAGAGAAGAG TCAGAAACTGAAAGAAGCAAATAAACA~TTTCAATACCGGCAT~ T TT~TTTCT~T 5~36 

................................................................................................................... 

S E V E A L L A $ E D Y G K D L A $ V N N L L K K H Q L L E A D I S A H E D R L ~719 
TTCAGAGGT GGAAGC TTTG TTGGCATCTGAAGACTATGGGAAC-GACTTGGCATCAGTGAACAACCTTCTC~CCAATTAC T GGAAGCTGATATATCTGC~~T 52156 

........................................................................................................................ 

K D L N S Q A D $ L M T S S A F D T S Q V K D K R E T I N G R F Q R I K S M A A ~759 
GAAGGACCTGAACAGCCAGGCTGACAGTTTGATGACCAGCAGTGCTT T CGATACCT CCCAAGTAAAC~TA~CGTGAAACTATAAATGGGCGCTTCCAC~T~ 5;276 

........................................................................................................................ 

A R R A K L N E S H R L H Q F F R D M D D E E S W I K E K K L L V S S E D Y G R ~799 
TGCCCCCCGTGCGAAGC T CAACGAGTCGCACCGCTTC-CATCAGTTCT TCCGTGACATGGATGATGAGGAGTCCTGGATCAA~GAAA~T~T~T~CTAT~ 5;396 

........................................................................................................................ 

D L T G V Q N L R K K H K R L E A E L A A H E P A I Q G V L D T G K K L 5 D D N 11839 
AGACC TC1ACTGGTGTGCAGAACCTGAGC~%AGAAACATAAGCGCTTGGAAGCAC~TTAGCTC~CCCATC~-CCTGCTATCCAC~C-GTGTTCTAC~C T ~ T T T ~ T ~ T ~  52516 

........................................................................................................................ 

T I G K E E I Q Q R L A Q F V D H w K E L K Q L A A A R G Q R L E E S L E Y Q Q 11879 
C~.AATTGGGAAGGAGGAGATACAGCaAAAGAC TGGCTCAGTTTGTGGACCAC TGGA~GT TAAAACAGCTGC-CAGCTGCTCC~CG~TCCCT~TAC~ 5;636 

L G Y D L P M V E E G E P D P E F E S I L D T V D P N R D G H V S L Q E Y M A F ~399 
CCTTGGC TATGACCTGCCCAT GGTTGAGGAAGGAGAGCCTGACCCCGAATTTGAGTCTATTCTT GACAC TGTTGATCCCAACAGGGATGGCCACGT C T C ~ G T A ~ T ~ G  T T 7/196 

M I S R E T E N V K S S E E I E S A F R A L S 5 E R K P Y V T K E E L Y Q N L T ~439 
CATGATCAGCAGGGA~GAGAAC GT GAAATCCAGCGAGGAGATTGAGAGTGC T TTCCGTGCCCT CAGC TCGC~AGAGGAA~CTTACGT~C~C TAC~CCT~C 7~316 

E Q A D Y C I S H M K P Y M D G K G R E L P 5 A Y D Y ~ E F T R S L F v N * ~479 
CCGGGAGCAGGCCGACTACTGCATT TCTCACATGAAGCCCTACATGGATGGCAAC~GAGAACTTCCTT CT GCCTACGACTACATAGAAT TTACACGTTCACTCTTTGT ~T T~TA ~436 

CAAAACACTAGTACCAAAAGATACAAAGAACATGC TCACGT TTGCTGACTATAAC-CTCTGCATGTGTCTCTCTTTGT GC T C TACAATAATCAATGTTACTTTATCIATGT~CCT T~C T 7;556 

GC TTAGCTTAAAACT C T TAGGGAAGACAAACATATTGCAGTGTGCCT T C ~ G T T A C T G G T C U A A C ~  ~650 
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Figure 3. Dot plot of the c~-spectrin amino acid sequence. The 
predicted amino acid sequence was compared with itself using the 
computer program DIAGON (Staden, 1982). The odd span length 
was 21 and the scoring level 250, corresponding to the double 
matching probability of <5 x 10 -5. The lines parallel to the di- 
agonal represent repetitive sequences. The residue numbers are in- 
dicated on the axes. Bars at ~10-~11 and at c~21-c~22 indicate the 
longest continuous stretches that fall outside the repetitive pattern• 
Arrow, the "duplication" line. (see also Table I). 

fibroblast and the frog oocyte spectrins. An unambiguous 
alignment between its sequenced fragments and the complete 
brain protein could, however, be made. On that basis a new 

positioning of the ot-V domain was found. ~-V domain 
represents the tryptic 41-kD COOH-terminal peptide of 
erythroid o~-spectrin (T41), and its amino-terminal end had 
been tentatively placed in the ~18 segment (Speicher and 
Marchesi, 1984). The present comparison, however, unequiv- 
ocally places the terminal sequence of this peptide in the 
od9 segment as already suggested by Speicher (1986) (the 
H-RBC peptide placed in cd9; Fig. 5, black arrows). The 
erythroid spectrin peptide, which was found to be unrelated 
to the typical repeat by Speicher and Marchesi (1984), finds 
a match to the boundary ofod0 and a l l .  However, a gap has 
to be introduced in it to allow optimal alignment (cd0-cdl ,  
Fig. 5, asterisks). This gap corresponds to the 60-bp insert 
of McMahon et al. (1987) (see above). 

The partial rat brain a-spectrin sequence and the present 
one are again for the most part virtually identical. The rat 
sequence seems to stop, however, '°227 residues short of the 
end of the chicken brain spectrin. There appears to be a stop 
codon which corresponds to the nucleotides 6,750-6,752 in 
our sequence and which causes a termination of the reading 
frame 681 nucleotides before the stop codon in the chicken 
sequence• There is a difference in the sequences that brings 
about this termination: the rat sequence has a T-insert corre- 
sponding to the position 6,717 of our sequence. It causes a 
shift to a frame which contains a TGA stop codon. We think 
that this may represent a sequencing error, since further 
downstream in the rat sequence there is an open reading 
frame coding for protein that would extend the homology to 
the COOH-terminal part of the chicken brain spectrin (see 
Discussion). 

Dist inct  Domains  in ~-Spectr in  

Systematic search in protein databases for sequences that are 
homologous to spectrin indicated four functionally interest- 
ing sites in c~-spectrin. Firstly, the COOH terminus of the 

Table L Quantitation o f  the Conserved Residues Between the Repeats in Brain oe-Spectrin 

1 2 3 4 5 6 7 8 9 10 I1 12 13 14 15 16 17 18 19 20 21 22 

1 X 19 23 18 18 50 17 26 22 5 28 26 17 14 54 16 23 26 16 18 13 5 

2 X 28 24 36 19 34 35 27 3 42 31 28 31 27 35 29 34 22 20 12 8 
3 X 26 30 16 35 33 37 4 24 54 28 29 28 37 38 37 34 18 10 5 
4 X 26 17 20 32 28 4 14 26 56 24 25 24 32 24 19 18 16 3 
5 X 20 28 28 37 6 29 31 27 61 24 33 27 27 23 21 9 7 
6 X 18 23 21 6 22 21 16 18 48 13 24 21 22 19 12 4 
7 X 35 30 4 27 29 21 25 30 50 34 31 30 21 10 7 
8 X 36 12 26 24 31 29 33 36 46 35 25 17 15 3 
9 X 5 27 33 33 31 26 36 33 31 27 20 7 3 

10 X 5 4 6 5 7 7 3 7 6 5 8 1 
11 X 28 15 22 23 27 22 24 23 18 17 4 
12 X 23 27 29 30 27 32 28 22 20 7 
13 X 26 25 20 30 22 23 19 12 1 
14 X 21 28 24 26 29 17 9 4 
15 X 19 26 26 22 18 19 4 
16 X 30 35 35 21 13 2 
17 X 37 32 15 10 4 
18 X 26 21 10 4 
19 X 24 15 5 
20 X 17 4 
21 X 3 
22 X 

The numbers are identical residues between each repeat. The "duplication" line shown in Fig. 3 (arrow) is underlined. The segments al-u22 are shown by t h e  

numbers on the top and on the left. 
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i0 20 30 40 50 60 70 80 90 i00 ii0 120 130 140 

1 1 I 1 I 1 rl I If 1 
~' 1 MDPSGVKVLETAED 

cO- I QERRQQVI~RYHRFI~LS S ~ SYRFQFFQR~ADE ~Qy.,KLQI -ASDENYEDP SNL~QAFEAEVQANSGAIVKLDETGNQMINY.~ ET 
* ** * * ** * * * * * * * * • * * * 

u2 I RTRLQE LHRL~EILLLEI~41REKG~V~'LRE~WIh~EY.dU'VTSEELGQD L E R ' ~ ' V L Q ~  ~ ~ I  ~ E L  

~3 ~KSKQD~Q.RLF~LAQQI~G~r~GAAEVQ~FI~tRI~VDETI ~ I ~ D D F G R D L A ~ L E R D  LAAFHHIK'VKALCAEADRLQ~S HP I~Q 
* * * *** ** * * *** * ** * * . * * *** * . * 

~t4 I ~  L I A ~ Q T R T ~ S Y R L ~ , F  LA~?RDLT 5"~I'5~%DE~R~QEI~[g~-'E ~DAHED SFRSADE ~LAAS~ASDE 
* * . * ** * * * , * **** * . * ** . *** . 

~t5 V ' I ~  TI L S D E R . , ~ , ~ E I M E ~ Y E ~  I ~ I 2 ~ I ~ ' ~ Q V D I ~ I S I ~ E A F L L N E D ~  S I ~  ~ D ~  L ~  ~ T ~ A ~  I ~ D  

a6 V A T R R D A L L S ~ ~ Q L A D  SF~RI~ S DE ~ A T D E A Y E D p  SNLQGKVQ-KHQAFEAEL SANQSRIDALEKAGQKLIDVNHYASDE 

a7 ~ S L~LEATELKGI ~ I EI4~ILYEVEGHIdkSDD YGED L T S V ~ V A A H Q D P  IDGI TI QARQFQDAGI~DADN 

~8 I/(XI',QEALVAPX'EALEDPMV~ S LRLQQLFR~IEDEET~IBy.,a~p IAAS TIkIRGEDL I G V ~ Q A L Q A E  I.AG~P~ ~ % ~  G ~ D  

~9 VKI ~ SI/~%KKS~RQD ~.D S ~ A D A N E A Q  S]~%MI~,~p I'V~S TDY GEDED SAFJkLLK]~.2dd4S D L SA~ ~ S S I QALRE ~ S  ~ D E  
............................ * ............................................................... * 

all VS LRb~QVEE L Y H S L L E L G E ~  ~ L Q ~  TI~.~EVGAD LEQVEV~DFQKDLKANE SRLED INKVANDLE SEGLMAEEVQAVEHQEVYGI~I-~E~ S ~ S p ~  

~'~3 LQEE~ TELNQ~S SLGI(RADQ~ SHD LQRFLSDFRD ~ N G I  BGLVS SDELAEDVTCaAEALLER~QEHRTE I DARAGTFQAFEQFGQQL~pE 

~14 ;.I~KLD I LD ~ R T D ~ L E L Q r 2 H I ~ C ~ ~ L I q T E D K G ~  S LD S'CEA~IIq~EDFDKAIICVQEEKIA~SF~5 ~ 
* * * , .* * * * * * * S ** * * ** * 

* . * * ** ** . * * * ** * * . *** .* . ** . * * 

a16 ~ LVQKS S EKSQI~IKDFDF~LSEVEALLASEDYGKD L A S ~ Q L L E A D  I SAHED RLED LNS QAD S 12fl'S Sa%I'DT SQ 

u17 V I ~ T I I ~ R . F ~  ~ SHR.I~QyFI~DEE S ~ I ~ I ~ t ~ V S  SEDY~,D L ~  I ~ . t F ~ ' V ' x ~  ~ S D D ~ I  G ~ E  

ttl8 I Q Q R L A Q F V D H ~ I ~ E ~ E  S LEyQQ.mVANVEEE ~ V A S E D Y G D T L A A I  ~ G L L I ~ T D F ~ ~ L I I ( ~ I N H H V E N  
* * ** * * * ** * ** ** *** * ** * * * * * 

a.19 IT~LKGKVSDI/.KAAAQ~KAK~DENSAFLQ~NWEADVVE S'~IG~/~-'NSLKTDDYGRDLS ~LLT~TFDAGLQAFQQEG IANI ~ Q ~ Q S ~  
* * * * ** ** * ** * * * 

c~20 I EVRHAS ~ S A ~ I ~ L F L T F ~ S W F E N A E E D  LTDPVI%CNS LEE I KALREAHDAFRS S L S SAQADFNQLAELDRQIKSFRVASNPy 
* . * * * * * ** * ** * . * ......... * ........ . .......... 

~21 TWFTMEALEET'BRNLQKX ZI~EELELQKEQRROEEI~AQIIANAFHQWI ~ TRTYLLDGS CMVEE SGTLE S Q ~ L G A A t , ~ E A L  
.......... . .... * ..................................................................................... 

u22 .~LDNKYTEHS T V G ~ ~ !  ~ SMt~g~HI~'DEDKSGRLN~OEFKSFC IRSLGYD/2Mg"-n~GEPDP ~ 
......... * ...................... * ................. * ............................... * .... * ................. 

Figure 4. The alignment of the chicken brain ~-spectrin segments ~'1-~22. The optimal alignment of the repeats and the intervening non- 
homologous regions located by the dot plot in Fig. 3 is shown. The beginning of the first repeat cd is chosen to fit to the corresponding 
cd unit of the human erythroid ~-spectrin (Speicher and Marchesi, 1984)./tsterisks, identical residues between neighboring repeats. The 
four-residue insert (SKHQ) of ~15 is excluded from it and placed between the ~14 and od5 lines. Vertical lines, the positions of some 
residues which tend to be conserved in most repeats. These residues are underlined. Nonhomologous regions are overlined. Src-like se- 
quence (residues 967-1,021), the putative calmedulin-binding site (residues 2,253-2,371), and the EF-hand sequences (residues 2,332- 
2,404) are underlined. The domain designation is given to the left. Dashes, gaps created to optimize the alignment. 

chain is clearly related to o~-actinin. The latter contains three 
spectrin repeats as a part of its structure (Wasenius et al., 
1987) and shows in its COOH terminus further homology to 
the carboxy terminus of a-spectrin (Fig. 6). Secondly, within 
that domain there are two so-called EF-hands (i.e., Ca 2÷- 
binding loops) both in ot-actinin and a-spectrin (Fig. 7). Be- 
fore this sequence, there is, thirdly, a segment that could be 
a calmodulin-binding site. Fourthly, in the middle of the se- 
quence, the distinct unit ~10 shows a clear homology to the 
src-family of protein kinases and to phospholipase C (PLC).' 

Fig. 6 A shows a DIAGON plot that compares the carboxy- 
termini of the chicken brain spectrin and the chicken u-acti- 
nin. In Fig. 6 B these sequences are aligned to further dem- 
onstrate their match; in the alignment 38% of the residues 
are identical. This clear match strengthens our interpretation 
of the DNA sequence: it is very likely that the stop codon 
for the reading frame of ot-spectrin has been positioned cor- 
rectly. 

In Fig. 7 the putative calcium-binding sequences found in 
the COOH terminus of spectrin chain are aligned with sev- 
eral canonical EF-hand structures. There appears to be two 
calcium-binding loops in u-spectrin, as there are in ct-acti- 

nin. The sequences shown in Fig. 7 correspond to a long loop 
that connects two helical segments in the binding sites found 
in the reference proteins such as parvalbumin and calmodu- 
lin (see Vyas et al., 1987). 

By visual inspection we located in the end of the o~21 do- 
main a unique site (residues 2,253-2,371) that contains 
clusters of basic and hydrophobic residues. By these criteria 
it might represent a calmodulin-binding site (Kemp et al., 
1987). Helical wheel analysis (Fig. 8) reveals its amphi- 
pathic nature and net positive charge, which is the consensus 
drawn for the calmodulin-binding sites in proteins (Erick- 
son-Viitanen and De Grado, 1987). 

The o~10 domain is homologous to proteins belonging to 
the family of nonreceptor cytoplasmic tyrosine kinases (src, 
syn, fgr, lyn, crk, yes, hck, and lsk) as well as to PLC. Fig. 
9 shows the optimal alignment of a l0  with these sequences. 
The homology resides in a stretch of,~60 residues which oc- 
curs in the amino-terminal half of the src-proteins and in the 
middle portion of PLC. The degree of similarity ranges from 

1. Abbreviations used in this paper: PLC, phospholipase C. 
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Figure 5. Comparison of the chicken brain ~-spectrin (CH-BRAIN; current sequence), Xenopus ~ T t e  ~-spectrin (XE-OOCI~; Giebelhaus 
et al., 198"/), human fibroblast a-spectrin (H-FIB; McM~on et al., 1987), rat brain o~-spectrin (RAT-BRAIN; Leto et al., 1988), and human 
red bkxxt cell o~-spectrin (H-RBC; Speicher and Marchesi, 1984) sequences. Numbers on the left refer m the repeats of Fig. 4. Asterisks 
in the boundary of ~10-all in H-RBC indicate the specific 20-residue insert in the nonerythmid proteins. Black arrows, the H-RBC peptide 
placed in ~19. 

24 to 32% (identical amino acids) and from 30 to 50% if con- 
servative substitutions are counted. The residues with the 
consensus sequence ALYDY, KG, and WW in the positions 
corresponding to 89-92, 104 and 105, and 118 and 119 in 
src, respectively, are especially well conserved. 

Discussion 

We present here the nucleotide sequence covering the entire 
coding frame and the 3' untranslated region plus a part of the 
5' flanking sequence of the mRNA for the spectrin ~-subunit. 
The mRNA which was used as a template in the cDNA syn- 

thesis was isolated from the embryonic chicken brain. That 
the derived sequence represents the a-chain of brain spectrin 
can be deduced from the following: (a) the longest cDNA 
clone (4.7 kb) isolated from the primary library hybridizes 
to a probe which in our previous study has been shown to 
encode a protein that is immunoprecipitated by antibodies 
specific to c~-spectrin, and the sequence of this probe is em- 
bedded in the present cDNA sequence; (b) the obtained se- 
quence is more similar to the known ~-spectrin than to the 
fl-spectrin sequences (not shown); and (c) it shows a higher 
degree of homology to the nonerythroid a-spectrin than to 
the erythroid spectrin sequences. 
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Figure 6. (A) Dot matrix comparison of the chicken ~-actinin and c~-spectrin. The COOH-terminal end of c~-spectrin (residues 2,230-2,477, 
horizontal axis) and the c~-actinin COOH-terminal end (residues 748-887) were compared for the sequence similarities using the computer 
program DIAGON (Staden, 1982). The odd span length was 21 and the scoring level 250 corresponding to the double matching probability 
of <5 × 10 -5. The axes are labeled with residue numbers. (B) Alignment of the COOH termini of c~-spectrin and c~-actinin. The align- 
ment follows the diagonal lines in A. Gaps were introduced to optimize the alignment. Asterisks, identical residues; vertical lines, conserva- 
tive substitutions. The first residues taken to the alignment are numbered. 

Comparison of Various Spectrins 
The analysis of the current sequence establishes some of the 
structural principles that have been proposed for the spec- 
trins on the basis of partial and fragmentary sequence infor- 
mation. First of all, the characteristic 106 amino acid repeat 
forms the basic structural motif of the brain ~-spectrin. The 

remarkably precise conservation of its length in 14 out of 20 
homologous units indicates that this preservation is of criti- 
cal importance for the structure of spectrin. We surmise that 
the repeats account for the rod-like shape of the molecule and 
that the evolutionary constraint to preserve the 106 amino 
acid length is imposed by the formation of multiple contacts 
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Figure 7. Potential calcium-binding sites in c~-spectrin. EF-hand se- 
quences of ~-spectrin (residues 2,341-2,352 and 2,383-2,394) are 
separately aligned and compared with the EF-hand sequences of 
known calcium-binding proteins parvalbumin (PALB), troponin C 
(TROPO), intestinal calcium-binding protein (ICaBP), and cal- 
modulin (CALMO) (Vyas et al., 1987), and of the putative calcium- 
binding sites of the Dictyostelium (Noegel et ai., 1987) and chicken 
~-actinins (Baron et al., 1987). Only two loops (III, IV) of troponin 
C (TROPO) and calmodulin (CALMO) showing the best matches 
are shown. Asterisks above each sequence indicate its identities 
with the c~-spectrin sequence. The EF-hand consensus sequence 
(Tufty and Kretsinger, 1975) is shown in the first line. Calcium- 
chelating side chains are marked with x, y, z, - x ,  and - z .  The 
numbers on the left and right refer to the sequence positions. 
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Figure 8. Helical wheel presentation of the putative binding site for 
calmodulin in c¢-spectrin. The numbering corresponds to the inter- 
nal residues of a wheel. Hydrophobic residues are circled with con- 
tinuous lines and basic residues with dashed lines. 
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Figure 9. Homology of the od0 domain to the src-proteins and src-like proteins and to PLC. On the top, the chicken src tvrosine kinase 
and c~-spectrin are schematically aligned to illustrate the location of this homologous region ([3) in their linear maps. Modulatory and 
kinase refer to the two domains in the src-proteins. The homologous sequences are shown on the bottom. The numbers on the left refer 
to the first residues taken to the alignment. Asterisks and vertical lines indicate the identical and conservative substitutions, respectively, 
between ~xl0 and each of the sequences. The two numbers on the right are taken from these pairwise comparisons and, again, refer to 
the number of identical (asterisks) and total conserved (asterisks and vertical lines) residues. The sequences are taken from the following 
references: c-src, Takeya and Hanafusa, 1982; fyn, Kawakami et al., 1986 and Semba et al., 1986; v-src, Takeya and Hanafusa, 1982 and 
Taylor and Hanafusa, 1983; fgr, Katamine et al., 1988; lyn, Yamanashi et al., 1987; c-yes, Sukegawa et al., 1987; hck, Quintreli et al., 
1987; Isk, Marth et al., 1985; tkl, Strebhardt et al., 1985; v-crk, Mayer et al., 1988; PLC, Stahl et al., 1988. 
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Figure 10. A schematic map for the c~-spectrin do- 
main structure. 

with B-spectrin, which possesses the basically similar struc- 
tural principle (Speicher and Marchesi, 1984). 

In the chicken brain t~-spectrin we can discern 18 repeats 
(cd-et9, ctl 1-cd9) with a relatively high degree of homology, 
two repeats (o~20, a21) with a lower degree of homology, and 
the ~10 and u22 segments as well as the 36 residue extension 
of the al 1 that are unrelated to the homologous repeats. This 
divides the chain into 22 segments (Fig. 10). 

Comparison of the present sequence with the published 
spectrin sequences corroborated the early observation (see 
McMahon et al., 1987 for detailed analysis) that the 
nonerythroid c~-spectrins from different species, ranging in 
this study from Xenopus to man, show a high degree of 
mutual homology while the mammalian erythroid a-spectrin 
is a more distant protein. This indicates a rapid divergent 
evolution of the latter. 

In accordance with McMahon et al. (1987) we found that 
the cd0 and call units contain sequences unrelated to the ho- 
mologous repeats. Interestingly, the homology of these seg- 
ments between chicken and man is not different from that of 
the other domains of spectrin. This suggests that the distinct 
characteristics of these domains were established before the 
divergence of the human and avian species. Comparison of 
these with the corresponding regions of the erythroid spec- 
trin is hampered by the paucity of sequence data. Interest- 
ingly, however, it seems that the amino acids encoded by the 
60 nucleotide insert in the nonerythroid spectrins are lacking 
in the erythroid spectrin (McMahon et al., 1987) indicating 
a specific function for the od0-od 1 domain in nonerythroid 
cells. 

The mol mass calculated for our sequence is 285,369. This 
is "~10% higher than the highest estimates based on SDS- 
PAGE (Bennett et al., 1982). The 22 segments of the brain 
ot-spectrin are two more than predicted for the erythroid 
ot-spectrin by Speicher and Marchesi (1984). This discor- 
dance may be due to a mispositioning of the NH2 terminus 
of tryptic fragment T41, belonging to the domain otV, in cd8 
instead of a l9  (see above; Speicher, 1986). If this is taken 
into account in the modeling of the molecule, the number of 
the repeats in the human erythroid spectrin amounts to 21. 
We suggest that there is another (nonhomologous) segment 
in the COOH terminus of erythroid a-spectrin which corre- 
sponds to our ot22. This is based on the following calcula- 
tion: positioning of the amino terminus of the T41 in the be- 
ginning of the od9 would give erythroid ot-spectrin a 
molecular mass of ~ 260 kD (the calculated molecular mass 

of the first 18 segments is 215 kD and that of T41 is 41 kD). 
The tryptic peptide, on the other hand, could accommodate 
four 106-residue units (4x ~11 kD =44 kD) raising the total 
number of segments to 22. 

Secondary Structure 
The model for the secondary structure of spectrin by 
Speicher and Marchesi (1984) predicts that each repeat may 
contain three helices; reverse turns would connect these long 
helices, and random coils the adjacent repeats. In our analy- 
sis only some of the repeats conform with such a model. Al- 
though we can conclude that the present primary structure 
is consistent with the predictions of the Speicher-Marchesi 
model, it is difficult to predict just three helices within the 
repeats. Overall, the sequence data supports the conclusion 
from spectroscopic studies (Burns et al., 1983) of the high 
c~-helicity of spectrin. 

The Nonhomologous Segments as the "Carriers'of the 
Distinct Functions of Spectrin 
In previous studies (Wasenius et al., 1987; N~irv/inen et al., 
1987) we have shown that there is an extensive homology be- 
tween ~-actinin and nonerythroid spectrin (see also Baron et 
al., 1987). In the present study, and with more sequence data 
available, we can extend this further to the COOH terminus 
in both molecules. The comparison shows that the COOH 
terminus of a-actinin is colinear with the COOH-terminal 
part of ~-spectrin comprising the entire a22 domain. This 
lends further credence to our proposition that c~-actinin can 
be viewed as a hybrid molecule composed of an actin- 
binding NH2-terminal half and a spectrin-like COOH ter- 
minus (Wasenius et al., 1987). 

Another specific feature of the c~22 is the presence of two 
EF-hand structures which are also found in the c~-actinin do- 
main (Baron et al., 1987; Noegel et al., 1987). In ce-actinin 
these sites have been thought to exert a calcium-dependent 
control on the actin cross-linking. In the antiparallel orienta- 
tion of the subunits in ct-actinin dimer, the actin-binding 
NH2 terminus comes near the COOH terminus of the adja- 
cent subunit which may then affect the binding (Noegel et 
al., 1987). In spectrin, actin binding occurs at the ends of 
the tetramers and involves the COOH terminus of the o~-sub- 
unit and NH2 terminus of the /~-subunit (Morrow et al., 
1980; Tsukita et al., 1983). Analogously to c~-actinin, it can 
be surmised that the principal actin binding would occur at 
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the NH2 terminus of the B-chain with the COOH terminus 
of the or-chain exerting control on the interaction. That spec- 
trin can, indeed, bind actin in a calcium-dependent manner, 
is demonstrated by the recent finding of Fishkind et al. 
(1987) showing modulation of the spectrin-actin interaction 
by calcium in sea urchin egg. 

Spectrin is also involved in other calcium-regulated events 
such as the complex formation with calpactin (Gerke and 
Weber, 1984) and the degradation by a Ca2+-regulated pro- 
tease (Siman et al., 1984). Furthermore, brain spectrin can 
also modulate the Mg2÷-ATPase activity of the smooth mus- 
cle actomyosin in a calcium-dependent manner (Wagner, 
1984; Wang et al., 1987). This calcium sensitivity may at 
least partially be conferred by Ca 2÷ binding to the EF-hand 
structures in ct22. 

Nonerythroid spectrins are marked by their capacity to 
bind calmodulin to their c~-subunit (Glenney et al., 1982a, 
b; Kakiuchi et al., 1982; Palfrey et al., 1982). The exact lo- 
cation of the binding site is, however, not resolved. In the 
present sequence there is a domain in a21 that fulfills the 
structural criteria proposed for calmodulin-binding sites. 
Such a positioning is supported by Carlin et al. (1983) who 
found that the major proteolytic breakdown product of fodrin 
(spectrin), which represents the COOH-terminal part of the 
chain is able to bind calmodulin. Tsukita et al. (1983) have, 
however, suggested that the calmodulin-binding site is close 
to the amino terminus of the c~-chain. Subcloning and ex- 
pression of the cDNA containing the putative calmodulin- 
binding site will enable us to test our proposal. 

An intriguing finding from the homology search was the 
similarity between a defined region in cd0, in PLC, and in 
the amino-terminal half of the src-proteins. The members of 
the "src-subfamily" are oncoproteins and all, except for crk, 
have kinase activity (Hanks et al., 1988; Mayer et al., 1988), 
a feature that has not been associated with spectrin. On the 
other hand, many of these proteins (Hunter and Cooper, 
1985) are closely associated with the cytoplasmic side of the 
plasma membrane. In this regard these proteins are similar 
to spectrin. 

The function of the cd0 domain in spectrin is currently un- 
known. Similarly, the specific functions of the homologous 
domains in the src-proteins and PLC have not been eluci- 
dated. It is clear, however, from the studies with deletion mu- 
tants, that the NH2-terminal portion of the src-proteins is 
not needed for the tyrosine kinase activity. On the other 
hand, the NH2-terminal half has a modifying effect on the 
intrinsic kinase activity that resides in the COOH-terminal 
half (Jove and Hanafusa, 1987). The NH2-terminal half has 
been suggested to recognize or bind the substrates which are 
then phosphorylated by the COOH-terminal catalytic do- 
main. Hence, the term modulatory (Calothy et al., 1987) or 
recognition (Parsons et al., 1984) domain has been coined 
to the NH2 terminus of the src. 

Using this analogy, we may suggest that the cd0 domain 
in spectrin could serve as a recognition site for some sub- 
strates of src tyrosine kinases. One candidate could be cal- 
pactin I, also known as p36, which interacts with u-spectrin 
(Lehto et al., 1983; Gerke and Weber, 1984) and which is 
also a major substrate of src tyrosine kinases (Hunter and 
Cooper, 1985). Alternatively, the homologous regions in 
spectrin, PLC, and src-proteins could anchor these proteins 
to some common cytoskeletal component. This would ex- 

plain the reduced association of src-protein with cytoskele- 
ton when they are deleted for the NH2-terminal modulatory 
domain (Hamaguchi and Hanafusa, 1987). 

Evolution of  Spectrin 

It is evident that spectrin has evolved from an ancestral gene 
coding for the basic 106-residue repeat by several contiguous 
duplications (Speicher and Marchesi, 1984). In our view, the 
ancestral repeat unit has first undergone three duplication 
steps to reach an 8-repeat stage. Possibly at this stage there 
has also been insertion of one more repeat to make a 9-repeat 
structure which has then undergone another, final duplica- 
tion. Concurrently, the gene has also acquired the non- 
homologous domains possibly by exon shuffling. The eluci- 
dation at what stage during evolution these divergent regions 
have been assimilated by spectrin-whether spectrin has ac- 
quired new functions during its recent evolutionary history- 
has to await primary structures of spectrins from lower or- 
ganisms. The spectrin repeat has also been found in two 
other proteins, ~actinin (Wasenius et al., 1987) and dystro- 
phin (Koenig et al., 1988). Hence, these proteins may have 
evolved from a common ancestor and possess a similar ar- 
chitectural design. 

The present cDNA sequence of ct-spectrin establishes that 
the same basic structural principle is found in various types 
of spectrin. It also clearly indicates regions which may carry 
some important functions of spectrin. Further studies to test 
the functional properties of these domains are now greatly 
facilitated by the availability of cDNA clones; fragments of 
the structure can now be expressed separately, and the pro- 
duced polypeptides studied experimentally for the postulated 
functions. 
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Note added in proof'. Recently Harris et al. (Harris, A. S., D. E. Croall 
and J. S. Morrow. 1988. J. Biol. Chem. 263:15754-15761) have shown 
that one calmodulin-binding site in human fodrin resides in the terminal 
portion of the l l th  repeat. 
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