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Abstract 

Background and purpose: FoxM1 and Hsp70 proteins are highly expressed in many cancers. Thus, their 
inhibition serves as Bonafede targets in cancer treatment.  
Experimental approach: FDI-6, an inhibitor of FoxM1, was selected as a template, and based on its structure, 
a new library from the ZINC database was obtained. Virtual screening was then performed using the created 
pharmacophore model. The second virtual screening phase was conducted with molecular docking to get the 
best inhibitor for both FoxM1 and Hsp70 active sites. In silico, ADMET properties were also calculated. 
Finally, molecular dynamics simulation was performed on the best ligand, ZINC1152745, for both Hsp70 and 
FoxM1 proteins during 100 ns. 
Findings / Results: The results of this study indicated that ZINC1152745 was stable in the active site of both 
proteins, Hsp70 and FoxM1. The final scaffold identified by the presented computational approach could offer 
a hit compound for designing promising anticancer agents targeting both FoxM1 and Hsp70.  
Conclusion and implications: Molecular dynamics simulations were performed on ZINC1152745 targeting 
FoxM1 and Hsp70 active sites. The results of several hydrogen bonds, the radius of gyration, RMSF, RMSD, 
and free energy during the simulations showed good stability of ZINC1152745 with FoxM1 and Hsp70. 

Keywords: Cancer; Dual inhibitor; FoxM1 and Hsp70 inhibitors; Molecular dynamics simulation; 
Pharmacophore modeling; Virtual screening. 

INTRODUCTION 

The heat shock proteins (Hsp) 70 family, 68 to 
74 kDa, are found in all main cell components, 
such as cytosol, mitochondria, and endoplasmic 
reticulum. Hsp70 plays a significant role in the 
protein activation process; folding, transferring 
from the membrane, degradation of misfolded 
proteins, suppression of the apoptosis pathway, 

and aging (1-3). This protein is included in the 
two following major domains: the substrate-
binding domain (SBD), which is responsible for 
binding and refolding of the substrates, and the 
nucleotide-binding domain (NBD), which is the 
ATP binding region (4). 
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Structural variation and open and closed 
modes of the Hsp70 protein are regulated by 
ATP and several co-chaperones in the presence 
of client proteins. Co-chaperones associated 
with the human Hsp70 are separated into three 
categories: (i) J-domain proteins stimulate 
ATPase activity and include Hsp40; (ii) 
nucleotide exchange factors are employed in 
promoting the ADP-ATP exchange that 
releases protein client from Hsp70, (iii) TPR 
domain cochaperone Hsp70-Hsp90 organizing 
protein (HOP), chromatin immunoprecipitation 
(CHIP) binds to the tetra peptide of human 
Hsp70, EEVD chaperone motif (residues 638-
641) at the terminal carboxyl site (5).

In combination with CHIP and HOP
proteins, Hsp70 activates the denaturation of 
the protein through the proteasome. It regulates 
the Hsp90 protein folding pathway by binding 
to the HOP and CHIP co-chaperones. Another 
Hsp70 co-chaperone is the Bcl-2 associated 
athano gene 3 (BAG3) protein which regulates 
the FoxM1 transcription factor signaling 
pathway inside the cell through binding to the 
ATPase domain of the Hsp70 protein (6,7).  

Hsp70 plays an important role in cancer 
development. Instead, Hsp70 had multiple 
effects on signaling pathway components 
related to tumor initiation, growth, and 
metastasis, such as FoxM1, hypoxia-inducible 
factor 1, and nuclear factor kappa B (NF-κB). 
Hsp70 regulated signaling networks via 
association with the co-chaperone BAG3, a 
scaffold protein with the capacity to interact 
with multiple key regulators of cell signaling. 
BAG3 bounds to Hsp70 and this complex 

controlled signaling network that contains 
FoxM1 (8) (Fig. 1). Hsp70 inhibitors prevent 
the connection of BAG3 to Hsp70, thus 
disrupting the signaling pathway transcription 
of FoxM1 (9). 

FoxM1 is the Achilles heel of cancer and         
is more highly expressed in cancer cells. It    
plays a significant role in the induction of cell 
cycle progression, initiation and migration, 
differentiation, proliferation, DNA repair, 
angiogenesis, and suppression of apoptosis (10). 

FoxM1 is a member of the forkhead box 
(FOX) transcription factor family with 
100 amino acids and includes two wings 
directly contacting DNA. This protein consists 
of three domains: a DNA binding domain 
(DBD), a negative-regulatory domain (NRD), 
and a transactivation domain (TDA). The 
contact point of FoxM1 to DNA is the DBD 
domain (11,12). 

The classification of Hsp70 inhibitors has 
been performed based on the SBD and NBD 
inhibitors and the Hsp70 co-chaperone 
inhibitors. 2-Phenylethynesulfonamide (PES) 
is one of the inhibitors that bind to the 
C-terminal of Hsp70 and leads to the
accumulation of misfolded proteins, instability
of the lysosome membrane, and induction
of autophagy in cancer cells (13). In addition,
the 2-phenylethynesulfonamide derivatives,
2-(3-chlorophenyl) ethyne sulfonamide and
triphenyl(phenyl ethynyl)phosphonium bromide
(PET-16), have also been found to exhibit more
potent anticancer activities, including increased
cytotoxicity of cancer cells by binding to the
Hsp70 substrate-binding domain (14).

Fig. 1. BAG3 protein binds to Hsp70, and this complex controls multiple pathways in cancer cells by regulating FoxM1. 
BAG3, Bcl-2 associated athano gene 3; Hsp, heat shock protein. 
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The NBD inhibitors are separated into ATP 
competitive inhibitors, which bind to the                 
ATP binding pocket, and allosteric inhibitors 
(15). VER-155008 (ATP analog) and 
apoptozole bind to the Hsp70 NBD domain               
and compete with ATP to stay in the ATP 

binding pocket (16). MKT-077, JG-13,              
JG-98, YM-01, and YM-08 compounds 
are allosteric inhibitors of the Hsp70 NBD  
domain (17). In addition, the MAL2-11B 
compound could inhibit co-chaperone 
Hsp40 (Fig. 2) (18).  

Fig. 2. Structure of some Hsp70 inhibitors. (i) substrate-binding domain inhibitors; (ii) NBD, ATP competitive inhibitors; 
(iii) NBD, allosteric inhibitors; (iv) cochaperone Hsp40 inhibitor. Hsp, Heat shock protein; NBD, nucleotide-binding
domain; PES, 2-phenylethynesulfonamide; PET, triphenyl(phenylethynyl)phosphonium bromide.
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Fig. 3. Chemical structures of some direct FoxM1 inhibitors. 

Inhibition of FoxM1 is one of the most 
important pathways to treating cancers. FoxM1 
inhibitors are separated into direct and indirect 
inhibitors. Thiostrepton and honokiol are 
natural compounds that inhibit the FoxM1 
directly by binding to the FoxM1 DBD domain 
(19,20). Synthetic compounds such as an 
inhibitor of the forkhead box protein M1 
transcription factor (FDI-6), RCM-1, and              
TFI-10 directly inhibit FoxM1 activity (Fig. 3) 
(21-23). 

Indirect inhibition of FoxM1 is either 
through inhibition or activation of its upstream 
proteins. For example, inhibiting proteins such 
as Hsp70, Hsp90, proteasome, human 
epidermal growth factor receptor 2, protein 
kinase B, c-myelocytomatosis oncogene, 
estrogen receptor alpha, CDK4/6, and NF-κB 
decrease the expression and activity of FoxM1. 
On the other hand, FoxM1 could also be 
inhibited by increasing the activity of p53, 
retinoblastoma protein, and FoxO3 (10,24). 

As mentioned above, simultaneous 
inhibition of Hsp70 and FoxM1 proteins  offers 

a critical approach for curtailing cancer cell 
growth, which is why in recent years these two 
proteins have been targeted in drug design and 
development.  

Bioinformatic studies are essential in finding 
cost-effective compounds with enhanced 
activities in less time (25,26).  

There are several methods to hit prediction 
and lead optimization in drug design discovery, 
such as virtual screening, quantitative structure-
activity relationship (QSAR), pharmacophore 
modeling, and molecular dynamics (MD) 
simulations (27-29). Molecular docking virtual 
screening and pharmacophore virtual screening 
are the best methods to obtain hit compounds 
from an extensive database (30,31).  

In this study, we used molecular docking 
virtual screening, pharmacophore model virtual 
screening, and MD simulations to predict new 
compounds as dual inhibitors of Hsp70 and 
FoxM1. FDI-6 and VER-155008 were selected 
as lead inhibitors for FoxM1 and Hsp70, 
respectively. First, a similarity search was 
performed using the FDI-6 structure on the 
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ZINC database; this gave us 850 compounds 
with 80% similarity. Next, two pharmacophore 
models were created based on the binding of 
FDI-6 with the FoxM1 and the interaction of 
VER-155008 with the Hsp70 active sites. Then, 
virtual pharmacophore screening was performed 
on the completed library. Also, virtual screening 
was accomplished on the obtained compounds 
from virtual pharmacophore screening for both 
FoxM1 and Hsp70 proteins. These compounds 
were subjected to filters such as Lipinski's Rule 
of Five to determine drug-likeness properties. 
Finally, MD simulation studies were performed 
on the best-predicted compound to investigate 
further interactions between the ligands and 
proteins.  

MATERIALS AND METHODS 

Chemical library preparation 
The ZINC database contains more than                 

230 million chemical compounds and is one of 
the central databases used for virtual screening 
studies. In the first step, the FDI-6 compound as 
a FoxM1 protein inhibitor was chosen as a 
template for creating a data library from ZINC 
online database (https://zinc.docking.org). 
Then similarity search was performed using 
filtering based on 80% similarity with the         
FDI-6 compound and Lipinski's Rule of Five.  

Pharmacophore model creating and 
pharmacophore virtual screening  

The pharmacophore model describes the 
arrangement of essential chemical features of a 
ligand that must effectively bind to a receptor 
site. Structure-based pharmacophore modeling 
frequently uses the 3D structure of docked 
ligands. In this study, using the Pharmit online 
server (http://pharmit.csb.pitt.edu), two 
pharmacophore models were created based on 
main interactions between the known ligands, 
FDI-6 and VER-155008, with FoxM1 and 
Hsp70 proteins, respectively (32). Then, based 
on these models, which included features of 
hydrogen bond donors and acceptors, and 
hydrophobic and aromatic interactions, virtual 
pharmacophore screening was performed on 
the library obtained from the ZINC database. 
Compounds were further refined by root         
mean square deviation (RMSD) and energy 
minimization.  

Docking validation of FoxM1 and Hsp70 
proteins  

The crystallography structures of FoxM1 
and Hsp70 (FoxM1: PDB ID = 3G73; Hsp70 
PDB ID = 4IO8) were obtained from the RCSB 
protein data bank (PDB; https://www.rcsb.org/) 
(33). Then, additional molecules such as water, 
DNA, and ligands were deleted from the protein 
PDB files using the Accelrys Discovery Studio 
Visualizer 4.0.2 (34). The 3D structure of FDI-
6 and VER-155008 were drawn by Marvin 
Sketch v5.7, ChemAxon software (35). Other 
steps of the protein preparation were performed 
in the AutoDockTools package (36). First, all 
the hydrogens were added, then Kollman and 
Gasteiger charges were calculated for proteins 
and ligands, respectively. Polar hydrogens were 
merged, and the edited files were saved in the 
pdbqt format. The center of the grid box was set 
to the coordinates of His287 residue for FoxM1 
and Arg272 residue for Hsp70 proteins. A grid 
box with 70 × 70 × 70 points in x, y, and z 
directions and the grid point spacing of 0.345 Å 
was generated. For all docking procedures, 
100 runs of AutoDock search were performed. 
The results of the dockings were ranked based 
on the binding free energies. The visualization 
of the ligand-protein interactions based on the 
resulting dlg files was carried out by Autodock 
Tools (11, 37). 

Structure-based virtual screening 
Structure-based virtual screening is an 

efficient way to determine the best compounds 
from a chemical library. The obtained 
compounds from the previous step, 520 for 
FoxM1 and 120 for Hsp70, were docked into 
the active sites of FoxM1 and Hsp70 using 
AutoDock 4.2. The docking results were then 
ranked based on the lowest binding free 
energies and the highest interaction between 
FoxM1 or Hsp70 proteins and their ligands. 

ADMET properties prediction 
The five important pharmacokinetic 

parameters, absorption, distribution, 
metabolism, excretion, and toxicity (ADMET), 
are essential for a compound designed as a 
suitable drug candidate (38,39).  There is a 
relationship between chemical structures and 
physicochemical properties, so chemical 
descriptors can be used to calculate 

https://zinc.docking.org/
https://www.rcsb.org/
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pharmacokinetic properties. For example, the 
polar surface area has been used to predict the 
absorption of drugs. Polar surface area is a part 
of the surface area of oxygen and nitrogen 
atoms bound to hydrogen atoms (40,41). log 
BB for brain/blood values (() indicate the rate 
of molecular crossing to the blood-brain barrier. 
If a compound can cross this barrier, it will be 
able to act in the central nervous system (42). 

Additionally, when a drug crosses the 
dermal or gastrointestinal barrier, it is 
transferred by the blood to the target tissue and 
distributed throughout the body; it can make 
bonds with the plasma proteins, primarily 
albumin. Therefore, the LogKhsa parameter 
indicates a compound's ability to bind to the 
plasma proteins and their distribution throughout 
the body. Also, the percentage of oral absorption 
of compounds in the gastrointestinal tract, Madin-
Darby canine kidney (MDCK) permeability, or 
LogKp 2-Caco dermal permeability coefficient 
was examined (43). The octanol-water partition 
coefficient (logP) is a physicochemical 
parameter that indicates the hydrophobicity of 
compounds. Compounds with higher lipophilic 
properties have higher absorption rates and 
metabolism in the liver.  

ADME descriptors were calculated using the 
QikProp v.3.0 program. Also, all compounds 
were subjected to the toxicity risk assessments 
such as mutagenicity, tumorigenicity, irritant, 
and reproductive effects using the Data warrior 
program (http://www.openmolecules.org/ 
datawarrior/). Finally, drug-relevant values, 
such as drug-likeness values, were determined 
using the Osiris program (http://www.organic-
chemistry.org/prog/peo/). 

Molecular dynamics simulation 
Molecular dynamics simulation is a helpful 

in-silico method that simulates the interactions 
between ligand and protein in the body's 
physiological environment. Since in-vitro studies 
of macromolecule structures are challenging and 
time-consuming, MD simulation studies could be 
a beneficial alternative. In this study, MD 
simulation was performed using the GROMACS-
2019.3 software package  (44). AnteChamber 
Python Parcer InterfacE (ACPYPE) was used to 
generate the necessary topology files and force 
field parameters for ligands  (45). The PROPKA 
3.1 webserver (http://propka.org) determined 
the amino acids pKa for each protein (46). 
Amber force field and TIP3P water model were 

employed in the next step to assess protein 
topology (47,48). The ligand and protein 
complexes were dunked in water in a 
dodecahedral box with a minimum spacing of 
1 nm between the protein's surface and the box. 
The total protein charge was calculated, and for 
its neutralization and balancing, the number of 
sodium or chloride ions was replaced with water 
molecules. At first, the energy minimization of 
the system was carried out using the steepest 
descent method. After energy minimization, the 
primary simulation was carried out in two stages 
to equilibrate the system at a constant temperature 
of 300 K during 100 ps; NVT (constant number 
of particles, volume, and temperature) and NPT 
(constant number of particles, pressure of 1.0 bar, 
and temperature). The linear constraint 
(LINCS) algorithm was applied for covalent 
bond constraints. Long-range electrostatic 
interactions were calculated with the Particle 
Mesh Ewald method (49). 

MM-PBSA free binding energy calculation
Molecular mechanics Poisson-Boltzmann

surface area (MM/PBSA) is one of the best 
simulation methods for calculating binding 
energy. In this method, the binding energy 
contributions of the protein-ligand complex 
were calculated such as van der Waals 
contribution (ΔEvdW), electrostatic contribution 
(ΔEele), a polar desolvation term (ΔGGB), and a 
nonpolar termination desolvation term (ΔGSA). 
These were summarized as follows (50,51): 
∆𝐺𝐺Ligand-protein=  𝛥𝛥𝛥𝛥𝑣𝑣𝑣𝑣𝑣𝑣 + 𝛥𝛥𝛥𝛥𝑒𝑒𝑒𝑒𝑒𝑒  + 𝛥𝛥𝐺𝐺𝐺𝐺𝐺𝐺 + 𝛥𝛥𝐺𝐺𝑆𝑆𝑆𝑆 

RESULTS 

Library preparation 
FDI-6 was selected as the template for 

similarity search in this virtual screening 
experiment. The online ZINC database was 
searched for compounds with 80% similarity to 
FDI-6, resulting in 850 similar compounds, stored 
in SDF format. These compounds were subjected 
to the following classified filtering steps. 

Pharmacophore model virtual screening 
Pharmacophore is capable of including more 

detailed information about regions available 
to the ligand for efficiently binding to its receptor. 
For example, the FoxM1 pharmacophore 
model possesses six features: one hydrogen     
bond donor, one hydrogen bond acceptor, 
and four hydrophobic and aromatic features, 

http://www.openmolecules.org/datawarrior/
http://www.openmolecules.org/datawarrior/
http://www.organic-chemistry.org/prog/peo/
http://www.organic-chemistry.org/prog/peo/
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as shown in Fig. 4A. Also, Fig. 4B displays that 
the pharmacophore model of Hsp70 that consists 
of seven components, three hydrogen bond 
donors, one hydrogen bond acceptor, and two 
hydrophobic and aromatic features. The virtual 
pharmacophore screening was performed using 
two created models on the obtained ZINC 
database library. The results were refined with 
RMSD less than 2 Å and energy minimization 
better than -7 kcal/mol for FoxM1 and -6 kcal/mol 
for Hsp70, respectively. Finally, 520 molecules 
from FoxM1 and 120 molecules from                       
Hsp70 were saved.  

Docking validation of FoxM1 and Hsp70 
Essential interactions of FDI-6 with 

FoxM1 protein are shown in Fig. 5A. The binding 
energy of FDI-6 was obtained -2.7 kcal/mol. 
Pi-sulfur electrostatic and Pi-Pi interactions 
were observed between ring A and His287. 
The ring D formed Pi-Pi interaction with 
Trp308 and Pi-Alkyl interaction with 
Leu259 and Arg286. Finally, a Pi-sulfur 
interaction between ring A and His287 is a 
significant interaction between FDI-6 and 
FoxM1’s active site (52).  

Fig. 4. The structure-based pharmacophore model of (A) FDI-6 inside the active site of FoxM1 and (B) VER-155008 inside the 
active site of heat shock protein 70, generated with the Pharmit server. These chemical features are color-coded with green as 
hydrophobic, purple as aromatic, white as hydrogen bond donor, and orange as hydrogen bond acceptor.  

Fig. 5. (A) Main interactions between FDI-6 and FoxM1; (B) main interactions between VER-155008 with heat shock 
protein 70. Water hydrogen bond (blue), conventional hydrogen bond (green), carbon-hydrogen bond (gray), Pi-alkyl 
(pink), and Pi-cation (yellow). 
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Figure 5B depicted the main interactions of 
VER-155008 with the Hsp70 protein. The 
binding energy of VER-155008 was calculated 
as -1.77 kcal/mol and RMSD less than 2 Å. A 
Pi-Alkyl interaction was observed between ring 
A and Arg272. Ring B created a Pi-alkyl 
interaction with Arg272, Pi-cation, Pi-Alkyl 
interactions with Arg342, and also a Pi-stacked 
interaction with Gly339. A Pi-cation 
electrostatic interaction was seen between ring 
C and Arg272 (16).  

Virtual screening analysis of FoxM1 and 
Hsp70 protein 

The docking simulation study investigated the 
binding modes of all selected compounds in 
FoxM1 and Hsp70 active sites. The docking 
scores and primary interaction into the active site 
of proteins were analyzed to find the best 
compounds. Five compounds were extracted with 
the lowest energy and the highest interaction with 
the Hsp70 and FoxM1 active sites. These were 
ZINC8448537, ZINC1152745, ZINC199847048, 
ZINC199676474 and ZINC6110690 (Fig. 6). 

Binding mode of the potential dual inhibitors 
in FoxM1 active site 

The main interactions of ZINC8448537 with 
the FoxM1 active site are shown in Fig. 7A. The 
binding energy of this compound was -4.07 

binding energy of this compound was -4.07 
kcal/mol. Ring A created a Pi-cation 
electrostatic bond with His287. Ring D formed 
a Pi-alkyl interaction with Arg286 and Leu259 
and a Pi-Pi interaction with Trp308. The N6, 
ring B, F23, (C=O)24, and (NH2)29 made five 
hydrogen bonds of the conventional type and 
Pi-donor with His287 (2.180 Å), Asn283 (3.499 
Å), Trp308 (2.692 Å), Ser290 (1.961 Å), and 
Arg286 (2.695 Å), respectively.  

Figure 7B shows the main interactions of 
ZINC1152745 in the FoxM1 active site. 
The binding energy of this compound was     
-4.27 kcal/mol. Pi-cation, Pi-sulfur electrostatic,
and Pi-Pi interactions were formed between ring
A and His287. In addition, ring C showed a Pi-
sulfur electrostatic bond with His287 and a Pi-
Alkyl interaction with Arg286. Also, Arg286
made a Pi-alkyl interaction with ring D.

The binding energy of ZINC199847048 in 
the active site of FoxM1 was -3.83 kcal/mol. As 
shown in Fig. 7C, seven hydrogen bonds, 
Pi-sulfur, Pi-cation, Pi-alkyl, and Pi-Pi 
interactions were formed between compound 
ZINC199847048 and FoxM1 active site. 

The interactions of ZINC199676474 are 
shown in Fig. 7D. The binding energy of this 
compound with the active site FoxM1 was 
-4.43 kcal/mol.

Fig. 6. Chemical structure of ZINC8448537, ZINC1152745, ZINC199847048, ZINC199676474 and ZINC6110690. 
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Fig. 7. Main interactions between compounds and FoxM1. (A) ZINC8448537, (B) ZINC1152745, (C) ZINC199847048, 
(D) ZINC199676474, and (E) ZINC6110690. Conventional hydrogen bond (green), carbon-hydrogen bond and Pi-donor
hydrogen bond (gray), Pi-sulfur (yellow), Pi-Pi (purple), and Pi-alkyl (pink).

Ring A made Pi-sulfur electrostatic and Pi-
Pi interaction with His287, while C and D rings 
formed Pi-alkyl interactions with Arg286. Also, 
ring D created Pi-alkyl interaction with Leu256 
and Pi-Pi interaction with Trp308. Six 
hydrogen bonds were made between 
ZINC199676474 and the active site amino 
acids of FoxM1 at a distance lower than 2.5 Å.  

Figure 7E shows interactions of 
ZINC6110690. The binding energy of this 
compound with the active site of FoxM1 was 
equal to -3.97 kcal/mol. Ring A formed Pi-
sulfur and Pi-Pi interactions with His287. Ring 
B created a Pi-donor hydrogen bond with 
Asn283 and an electrostatic bond of Pi-sulfur 
with His287. Ring D participated in Pi-alkyl 
interaction with Arg286. Also, several 
hydrogen bonds were made between compound 
ZINC6110690 and FoxM1 active site.  

Binding mode of the potential dual inhibitors 
in Hsp70 active site 

The interactions of ZINC8448537 binding 
energy of -2.87 kcal/mol are shown in Fig. 8A. 
Rings A, C, D, and E formed Pi-lone pair bond 
with Gly339, Pi-alkyl with Arg342 and 
Arg272, Pi-anion electrostatic bond with 
Glu268, Pi-cation electrostatic bond, and a 
Pi-alkyl reaction with Lys56 and Pro39,    
and Pi-anion with electrostatic bond with 
Asp366, respectively. S25 made a conventional 
hydrogen bond with crystallographic water at a 
distance of 2.254 Å. N6 created a carbon-
hydrogen bond with Arg272 at a distance of 
2.958 Å, and NH11 formed a conventional 
hydrogen bond with Tyr15 at a distance of 
2.864 Å. Also, four conventional hydrogen 
bonds were shown between ZINC8448537 and 
Hsp70 active site.  
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Fig. 8. Main interactions between compounds and Hsp70: (A) ZINC8448537; (B) ZINC1152745; (C) ZINC199847048; 
(D) ZINC199676474; and (E) ZINC6110690. Hydrogen bond (red), water hydrogen bond (blue), conventional hydrogen
bond (green), carbon-hydrogen bond and Pi-donor hydrogen bond (gray), Pi-cation and Pi-anion (yellow), and Pi-alkyl
(pink).

Figure 8B shows the interactions of 
ZINC1152745 with a -3.291 kcal/mol binding 
energy. Hydrophobic interactions included ring 
A: Pi-alkyl with Arg342, Ile343, Lys271, 
Arg272; ring D: Pi-Alkyl with Lys56, and Cl20 
and Cl21, alkyl-halogen with Lys56 and Pro39. 
In addition, electrostatic interactions are shown 
in ring B, Pi-cation, ring C, Pi-anion, and ring 
D, Pi-cation with Lys56. Also, (NH2)19 and S25 
formed two conventional hydrogen bonds with 
Tyr15 and crystallographic water at a distance 
of 2.301 and 2.109 Å, respectively.  

The interactions of ZINC199847048 with a 
binding energy of -2.91 kcal/mol are shown in 
Fig. 8C. Ring A made Pi-alkyl interaction with 
Ile343, Arg342, Arg272, and Lys271. Rings B 
and D formed Pi-cation electrostatic bond with 

Lys271 and Lys56; ring D also made a Pi- Pi-
alkyl interaction with Lys56. Ring C made Pi-
anion electrostatic bond with Glu268. Also, 
nine hydrogen bonds were shown with Hsp70 
active site.  

The interactions of ZINC199676474 with a 
binding energy of -2.88 kcal/mol are shown in 
Fig. 8D. Pi-cation and Pi-anion electrostatic 
bonds were formed between ring B and 
Lys271 and Glu268. Rings C and D made 
Pi-anion and Pi-cation interactions with 
Glu268 and Lys56, respectively. Ring   
A and D participated in Pi-alkyl interactions 
with Lys271, Ile343, Arg342, Arg272, and 
Lys56. Also, six hydrogen bonds were    
shown with Hsp70 active site at a distance 
lower than 3 Å. 



New small molecules as dual FoxM1 and Hsp70 inhibitors 

647 

Figure 8E shows interactions of 
ZINC006110690 with a binding energy of -
3.251 kcal/mol. Rings A and D made a Pi-alkyl 
interaction with Arg342, Ile343, Lys271, 
Arg272, and Lys56. Rings B and D formed Pi-
cation electrostatic bonds with Lys271 and 
Lys56 residues. Ring C showed a Pi-anion 
electrostatic bond with Glu268. Also, five 
hydrogen bonds were displayed in Hsp70 active 
site, at a distance lower than 3 Å with 
compound ZINC006110690.  
 
ADMET prediction analysis 

QikProp and data warrior programs were 
used for ADMET prediction of the extracted 
compounds. Pharmacokinetic parameters 
which were considered for ligand selection are 
as follows: logBB, skin permeability 
coefficient (log Kp), apparent Caco-2, and 
MDCK permeability (the higher the value of 
MDCK cell, the higher the cell permeability), 
aqueous solubility (log S), number of metabolic 
reactions, logKhsa for serum protein binding, 
human oral absorption in the gastrointestinal 
tract, logP for octanol/water controlling 
hydrophilicity or lipophilicity properties of 
compounds. The obtained results are shown in 
Table 1. Five predicted compounds with 
appropriate pharmacokinetic properties passed 
the screening of ADME prediction. In addition, 
drug toxicity risk assessment parameters were 
obtained within acceptable intervals. Also, 
these compounds did not show parameters related 
to the risk of mutagenicity, tumorigenicity, and 
stimulant or reproductive toxicity. 
 
MD studies  

MD simulation is one of the primary 
methods that simulate ligand-receptor 
interactions in biological environments. MD 
simulation study was performed in two steps. In 
the first step, MD was carried out for the five 
selected ligands and FDI-6 and VER-155008, 
as references, on FoxM1 and Hsp70 during                
10 ns. The obtained MMPBSA energy values of 
these five compounds were compared with the 
MMPBSA energy values of the reference 
compounds, and finally, ZINC1152745 was 
chosen as the best compound in both proteins. 
Then, MD simulation in FoxM1 and Hsp70 
proteins was performed for 100 ns on 

ZINC1152745. The resulting trajectories were 
analyzed to evaluate the system's stability and 
structural properties after 100 ns MD 
simulation. The number of hydrogen bonds, the 
radius of gyration (Rg), root mean square 
fluctuation (RMSF), RMSD, and free energy 
were calculated for ZINC1152745 and 
compared with the reference compounds for 
FoxM1 and Hsp70 (FDI-6 and VER-155008).  
 
MM-PBSA free energy calculations  

MM-PBSA is a method for free energy 
calculation between protein and ligand by 
calculating van der Waals, electrostatic, polar 
solvent, solvent-accessible surface area 
(SASA), and binding energy. Firstly, for the 
five ligands obtained from the previous 
screening, the free binding energy was 
calculated. Since the increased free energy of a 
system indicated decreased stability, the results 
showed that ZINC1152745 had suitable 
stability with FoxM1 and Hsp70 (Tables 2 and 
3). This ligand was simulated for 100 ns with 
Hsp70 and FoxM1 proteins, as mentioned 
before. Its free binding energy was calculated, 
which is shown in Table 4. The free binding 
energy values of ZINC1152745 were lower 
than of FDI-6 and VER-155008, the known 
inhibitors of FoxM1 and Hsp70, respectively.  
 
RMSD  

RMSD was evaluated to assess the stability 
and fluctuations of the protein backbone and 
ligand in complexes. As shown in Figs. 9 and 
10, ZINC1152745 showed the least fluctuations 
in RMSD means the most stability during the 
MD simulations compared to FDI-6 and                 
VER-155008. The minor standard deviation 
commonly indicated the better stability of the 
simulated system (fluctuation lower than 0.3 
nm is suitable for proteins).  

According to Fig. 9A, which was related to 
the RMSD backbone of FoxM1 protein, it can 
be observed that this protein reached 
equilibrium and stability after 25 ns. The 
RMSD for ZINC1152745 ranged from 0.12 to 
0.3 nm and for FDI-6 from 0.1 to 0.38 nm. 
Figure 9 B shows the RMSD of FDI-6 and 
ZINC1152745 compounds with the FoxM1 
protein. RMSD was between 0.1 to 0.2 nm for 
FDI-6 and 0.00 to 0.16 nm for ZINC1152745, 
respectively.   
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Table 1. Absorption, distribution, metabolism, excretion, and toxicity properties of five proposed compounds for inhibition of FoxM1 and Hsp70. 
Descriptors ZINC8448537 ZINC199676474 ZINC199847048 ZINC6110690 ZINC1152745 Standard range* 
Molecular weight 489.724 485.622 484.637 520.686 440.488 (130.0/725.0) 
Apparent Caco-2 permeability (nm/s) 44.426 5.777 5.246 1.641 29.517 < 25 poor, > 500 great 
Apparent Madin-Darby canine kidney permeability (nm/s) 180.838 22.454 19.955 5.755 189.627 < 25 poor, >5 00 great 
logS (aqueous solubility) -2.488 -0.458 0.924 -0.675 -1.045 (-6.5/0.5) 
% Human oral absorption in the gastrointestinal tract  73.499 28.51 24.673 7.315 63.246 < 25% is poor 
log BB for brain/blood 0.912 -0.109 -0.122 -0.778 0.890 (-3.0/1.2) 
logKhsa (serum protein binding) 0.52 -0.382 -0.376 -0.281 0.06 (-2.5/1.5) 
logP for octanol/water 2.914 0.152 -0.375 0.416 1.706 (-2.0/ 6.5) 
Skin-permeability coefficient (log Kp) -6.212 -7.646 -7.727 -8.612 -6.557 -8.0 to -1.0, Kp in cm/h
Oral absorption 3 2 2 1 2 1, 2, or 3 for low, medium, or high
Predicted central nervous system activity 2 0 0 -1 2 -2 (inactive) to +2 (active)
Donor hydrogen bonds 5 7 8 9 5 (0.0/6.0)
Acceptor hydrogen bonds 6.7 10.1 9.4 7.7 6.7 (2.0 /20.0)
Topological polar surface area) 54.7 96.783 99.664 129.294 59.715 ≤ 140 is great
Mutagenicity No risk No risk No risk No risk No risk
Tumorigenicity No risk No risk No risk No risk No risk
Irritating effects No risk No risk No risk No risk No risk
Reproductive effects; No risk No risk No risk No risk No risk
Drug-likeness 2.79 -4.37 -2.84 -4.37 2.51

*For 95% of known drugs, based on -Qikprop v.3.2 (Schrodinger, USA, 2009), software result.

Table 2. The calculated free binding energy for five ligands and FDI-6 with FoxM1 during 10 ns. 

Ligands Van der Waals Energy (∆EvdW) Electrostatic Energy (∆Eelec) Polar solvation energy (∆Gpolar) SASA energy (∆Gnonpolar) Binding energy (∆Gbind) 

FDI-6 -99.244 -64.732 145.342 -11.588 -30.222
ZINC8448537 -108.921 -60.390 115.534 -11.839 -65.616
ZINC199676474 -103.311 -56.382 91.295 -11.642 -80.040
ZINC199847048 -108.024 -31.424 85.769 -12.328 -66.007
ZINC6110690 -103.076 -72.691 127.979 -11.693 -59.480
ZINC1152745 -122.660 -76.014 105.460 -13.019 -106.232
SASA, Solvent-accessible surface area. 

http://zinc.docking.org/substances/ZINC000008448537/
http://zinc.docking.org/substances/ZINC000199676474/
http://zinc.docking.org/substances/ZINC000199847048/
http://zinc.docking.org/substances/ZINC000006110690/
http://zinc.docking.org/substances/ZINC000001152745/
http://zinc.docking.org/substances/ZINC000008448537/
http://zinc.docking.org/substances/ZINC000199676474/
http://zinc.docking.org/substances/ZINC000199847048/
http://zinc.docking.org/substances/ZINC000006110690/
http://zinc.docking.org/substances/ZINC000001152745/
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Table 3. The calculated free binding energy for five ligands and VER-155008 with Hsp70 during 10 ns. 

Ligands Van der Waals energy 
(∆EvdW) 

Electrostatic 
energy (∆Eelec) 

Polar solvation 
energy (∆Gpolar) 

SASA energy 
(∆Gnonpolar) 

Binding energy 
(∆Gbind) 

VER-155008 -112.044 -77.532 132.542 -24.388 -43.022
ZINC8448537 -115.876 -85.491 115.179 -24.493 -72.28
ZINC199676474 -106.111 -59.182 88.495 -14.442 -82.84
ZINC199847048 -121.721 -73.19 102.734 -24.639 -78.416
ZINC6110690 -120.824 -44.224 72.969 -25.128 -78.807
ZINC1152745 -135.46 -88.814 92.66 -25.819 -119.032
SASA, Solvent-accessible surface area. 

Table 4. The calculated free binding energy for ZINC1152745, FDI-6 and VER-155008 with FoxM1and Hsp70 during 
100 ns. 

Ligands Van der Waals 
energy (∆EvdW) 

Electrostatic 
energy (∆Eelec) 

Polar solvation 
energy (∆Gpolar) 

SASA energy 
(∆Gnonpolar) 

Binding energy 
(∆Gbind) 

Foxm1-FDI-6 -96.637 -70.060 112.071 -11.180 -65.805
Hsp70-VER-155008 -91.283 -42.275 118.729 -13.502 -28.331
ZINC1152745-FoxM1 -107.615 -82.900 123.222 -12.113 -79.406
ZINC1152745-Hsp70 -209.801 -45.397 196.498 -20.403 -79.103
SASA, Solvent-accessible surface area; Hsp, heat shock protein. 

Fig. 9. The RMSD profile of (A) FoxM1 backbone in complex with FDI-6 and ZINC1152745; (B) FDI-6 and 
ZINC1152745 as a function of simulation time. RMSD, Root mean square deviation. 

http://zinc.docking.org/substances/ZINC000008448537/
http://zinc.docking.org/substances/ZINC000199676474/
http://zinc.docking.org/substances/ZINC000199847048/
http://zinc.docking.org/substances/ZINC000006110690/
http://zinc.docking.org/substances/ZINC000001152745/
http://zinc.docking.org/substances/ZINC000001152745/
http://zinc.docking.org/substances/ZINC000001152745/
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The RMSD backbone of the Hsp70 protein in 
complex with ZINC1152745 and VER-155008 is 
shown in Fig. 10A. A higher stability and 
equilibrium in the presence of ZINC1152745 
relative to VER-155008 was observed from the 
first nanoseconds. On the other hand, the 
equilibrium was achieved after 65 ns for VER-
155008. The backbone RMSD of Hsp70 was 
between 0.1 to 0.15 nm in the complex with 
ZINC1152745 and 0.1 to 0.2 in the complex with 
VER-155008, respectively.  

As shown in Fig. 10B, the VER-155008 in the 
complex reached equilibrium after 95 ns, while 
the ZINC1152745 reached equilibrium in the 
initial nanoseconds. The fluctuation of ligand 
RMSD was between 0.02 and 0.4 nm for VER-
155008 and between 0.04 to 0.16 nm for 
ZINC1152745. 

RMSF 
RMSF measurement is the suitable method to 

characterize the residue stability during MD 
simulation. This method measures the flexibility 
of protein in the simulation and could determine 

the flexibility of residues in the protein. The 
higher value of RMSF shows the higher amount 
of mobility of the alpha carbon atoms of the 
protein in the MD simulations. In the RMSF 
diagram, averaging of the position is performed 
per residue.  

As shown in Fig. 11, RMSF diagrams of 
ZINC1152745 and FDI-6 in complex with 
FoxM1 indicated that the active site residues of 
Foxm1, including His287, Arg286, Leu259, 
Asn283, Ser290, and Trp308 had the lowest 
RMSF indicating the appropriate accommodation 
of these compounds in the active site.  

Figure 12 is shown that ZINC1152745 was 
more stable than VER-155008 in Hsp70 active 
site. The RMSF values were obtained at 
0.04-0.35nm for ZINC1152745 and 0.05-0.34    
for VER-155008 in a complex with Hsp70. 
Also, the residues of the active site of Hsp70, 
which include Try15, Gly202, Gly23, Lys271, 
Glu268, Ser275, Arg272, Arg343, and Gly339 
had the lowest RMSF indicating the 
appropriate accommodation of these compounds 
in the active site.  

Fig. 10. The RMSD profile of (A) Hsp70 backbone in complex with VER-155008 and ZINC1152745; (B) VER-155008 
and ZINC1152745 as a function of simulation time. RMSD, Root mean square deviation. 
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Fig. 11. The RMSF plot of FoxM1-FDI-6 and FoxM1- ZINC1152745. RMSF, Root mean square fluctuation. 

Fig. 12. The RMSF plot of Hsp70-VER-1555008 and Hsp70- ZINC1152745. RMSF, Root mean square fluctuation. 

Fig. 13. The radius of gyration plot of the backbone. FoxM1-FDI-6 and FoxM1- ZINC1152745 complexes. 

Rg 
The Rg in MD simulation is an indicator of 

the compactness of the protein. An absolute 
radius could not be considered for a non-
spherical compound. However, some of them 
are shaped such that they are collectively 
known as globular or spherical proteins. For 
such proteins, an approximate radius, called the 
Rg, could be calculated. During the simulation, 
if any factor causes the protein to squeeze, the 
Rg decreases, resulting in protein folding. If a 

factor causes the protein to outstretch, such as 
changing solvent, intramolecular interactions of 
the protein, or denaturation of the protein, the 
Rg increases and the stability of the protein 
decreases, causing the protein to unfold.  

Figure 13 shows the diagram of the radius of 
gyration for the FoxM1 protein complex with 
FDI-6 and ZINC1152745. The Rg was between 
1.1 and 1.3 nm for the FDI-6 ligand and 
between 0.9 and 1.2 for ZINC1152745, 
indicating the stability of both complexes.  
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Figure 14 displays the diagram of the Rg for 
the Hsp70 protein complex with VER-155008 
and ZINC1152745. The variation of the Rg was 
between 1.65 and 1.95 nm for the VER-155008 
ligand and between 1.6 to 2 nm for 
ZINC1152745. 

Number of hydrogen bonds 
The number of hydrogen bonds is important 

interaction for the stability of FoxM1 and 
Hsp70-ligand complex. The formation of the 
hydrogen bond is one of the signs of 
strengthening the binding and stability of any 

chemical structure in an active site. Figure 15 
displays the number of hydrogen bonds during 
the simulation process in the complex of Foxm1 
protein with FDI-6 and ZINC1152745. 
The average hydrogen bonds in FDI-6 
and ZINC1152745 with FoxM1 were 2.15 and 
1.99, respectively. Figure 16 also shows the 
number of hydrogen bonds in the complex of 
Hsp70 protein with VER-155008 and 
ZINC1152745. The average hydrogen bonds 
for VER-155008 and ZINC1152745 complex 
with Hsp70 protein were 5.54 and 1.74, 
respectively. 

Fig. 14. The radius of gyration plot of the backbone of Hsp70-VER-1555008 and Hsp70- ZINC1152745 complexes. 

Fig. 15. Numbers of hydrogen bonds formed between (A) FDI-6 and (B) ZINC1152745 with FoxM1 during molecular 
dynamic simulation. 

Fig. 16. Number of hydrogen bonds formed between (A) VER-155008 and (B) ZINC1152745 with Hsp70 during 
molecular dynamic simulation. 
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DISCUSSION 

The critical residues of the active site of 
FoxM1 involved Asn283, Arg286, and His287, 
which create a hydrogen bond to the DNA. The 
essential interactions with the main residues of 
the FoxM1 protein have been shown in Fig. 17. 
The best interaction with the active site of the 
FoxM1 protein needs sulfur-containing groups 
in the R1 position for electrostatic interaction 
with His287. Also, replacing the electron-
withdrawing groups in position R2 gave better 
electrostatic interaction in position R1. 
Replacing the phenyl ring with electron-
withdrawing groups such as halogen, carboxyl, 
amide, or sulfonamide in the R3 position caused 
hydrogen bond and hydrophobic interactions 
with Trp308 and Arg297.  

On the other hand, the essential residues in 
the ATP pocket of Hsp70 are Glu268, Lys271, 
Arg272, Ser275, Arg342, Thr13, The14, and 
Tyr15. Figure 18 shows that replacing the 
thiophene ring in position R1 caused significant 
electrostatic and hydrophobic interactions and 
hydrogen bonds with Arg342, Ile343, Lys271, 
Arg272, and Glu268 residues. Also, electron-
withdrawing groups such as CF3 in the R2 

position formed hydrogen bonds with Gly201, 
Gly202, Gly230, and crystallographic water. 
Replacement of groups such as Cl, COOH, 
CONH2, and SO2NH2 caused stability of the 
compound in the active site of Hsp70 protein by 
creating hydrogen and hydrophobic bonds with 
Lys56 and Asp53 residues. The NH2 attached to 
the thiophene ring also made a hydrogen bond 
with Try15. 

ZINC1152745 compound (Fig. 6) was 
selected as the best FoxM1/ Hsp70 dual 
inhibitor. The binding energy of this compound 
was calculated as -4.27 and -3.29 kcal/mol in 
the FoxM1 and Hsp70 active sites, respectively. 
This compound has suitable substitutions for 
interaction with FoxM1 and Hsp70 active sites. 
ZINC1152745 created electrostatic interaction 
with His287 and hydrogen binding with 
Asn283 and Arg286, and hydrophobic 
interactions with Trp308, Leu259 and    
Leu289 in FoxM1’s active site. Also, this 
compound formed hydrophobic interactions 
with Arg342, Ile343, Lys271, Arg272, 
Lys56, and Pro39, electrostatic interactions 
with Lys271, Glu286, and Lys56, and 
hydrogen bonds with Tyr15 and 
crystallographic water. 

Fig. 17. Essential interactions for virtual screening of compounds with FoxM1. 

Fig. 18. Essential interactions for virtual screening of compounds with Hsp70. 
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CONCLUSION 

Based on bioinformatic screening methods, 
this study proposed five new small molecules 
as potential dual inhibitors of FoxM1 and 
Hsp70. A structure similarity search was 
performed based on 80% similarity using FDI-
6, a potent FoxM1 inhibitor, as the template 
compound and 850 compounds were obtained. 

The best docking pose related to FoxM1 
with FDI-6 and Hsp70 with VER155008 ligand 
were selected for designing the pharmacophore 
model. Then, virtual pharmacophore screening 
was performed on the created library 
compounds for FoxM1 and Hsp70 using a 
Pharmit web server. The second screening was 
performed by virtual molecular docking using 
the Autodock program. According to this 
screening, 120 compounds for FoxM1 and 25 
for Hsp70 were obtained with the best 
interactions and the lowest energy levels. 
ZINC8448537, ZINC1152745, ZINC199847048, 
ZINC199676474, and ZINC6110690 were 
selected for FoxM1 and Hsp70 proteins from two 
screening (pharmacophore and docking 
screening). Some ADMET parameters were 
calculated for these compounds, and all fell in 
the acceptable ranges for 95% of known drugs. 
Also, toxicity studies showed that most selected 
compounds had a low toxicity risk. 

MD simulations were performed for 
ZINC1152745, the compound in FoxM1 and 
Hsp70 active sites. The results of several 
hydrogen bonds, the Rg, RMSF, RMSD, and 
free energy during the simulations showed 
better stability of ZINC1152745 with FoxM1 
and Hsp70. Future experimental investigations 
on this compound will confirm the predicted 
computational achievements of this study. 
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