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In this paper, a circular objects detection method for Autonomous Underwater Vehicle

(AUV) docking is proposed, based on the Dynamic Vision Sensor (DVS) and the

Spiking Neural Network (SNN) framework. In contrast to the related work, the proposed

method not only avoids motion blur caused by frame-based recognition during docking

procedure but also reduces data redundancy with limited on-chip resources. First,

four coplanar and rectangular constrained circular light sources are constructed as

the docking landmark. By combining asynchronous Hough circle transform with the

SNN model, the coordinates of landmarks in the image are detected. Second, a

Perspective-4-Point (P4P) algorithm is utilized to calculate the relative pose between

AUV and the landmark. In addition, a spatiotemporal filter is also used to eliminate noises

generated by the background. Finally, experimental results are demonstrated from both

software simulation and experimental pool, respectively, to verify the proposed method.

It is concluded that the proposed method achieves better performance in accuracy and

efficiency in underwater docking scenarios.

Keywords: DVS, SNN, AUV, Hough transform, P4P, docking

1. INTRODUCTION

Although the exploitation of ocean resources has attracted significant interests from both industrial
and societal, the development of marine science and technology still suffers limited activities
(Saeki, 1985). Exploring underwater environments presents many problems, such as water pressure
changing and oxygen supplying (Stachiw, 2004). Autonomous Underwater Vehicles (AUV)
(Figure 1), often referred to the Unmanned Underwater Vehicles (UUV), have been developed
along with the rapid exploitation of the ocean, and leading to a reduction in operational costs.

However, due to the volume and mass issues, AUV carries limited energy (Chiche et al.,
2018). It is challenging to perform better in large-scale environments, and the AUV is often
required to replenish energy and transmit information frequently. Therefore, the underwater
docking technique is developed to provide powerful energy supply, information processing and
communication support for AUVs (Benton et al., 2004). To the best knowledge of authors, almost
all underwater docking tasks rely on optical cameras for short-range pose estimation between
AUV and docking station (Wang et al., 2016). The docking system developed by Woods Hole
Oceanographic Institute for Remus series AUV (Stokey et al., 2001) and the docking system
designed by MBARI for bluefine AUV (McEwen et al., 2008) are two typical inclusive docking
systems. In docking process, the guidance system plays a vital role concerning the whole system,
while visual perception contributes a lot in short-range docking (Zhao et al., 2013).
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FIGURE 1 | Autonomous underwater vehicle.

In Zhong et al. (2019), a binocular localization method
for AUV docking is presented, and an adaptively weighted
OTSU method is developed for feature extraction, the operation
frequency of which is about 10 Hz. Jointly, in Wang et al. (2016),
gray-scale feature analysis, edge detection and morphology
methods are used to improve the algorithm of calculating the
centers of target lights. Furthermore, in Yan et al. (2019),
a visual positioning algorithm based on the L-shaped light
array is proposed. Previous studies generally used the frame-
based camera to carry out detection, which contains redundant
background data, lacks solutions to high exposure as well as
high-speed response capability such as more than 1kHz.

As frame-based camera also suffers the over-exposure issue
while close to the docking light, it is quite challenging to
determine the surrounding environment and its own pose.
Considering the instability of underwater motion, it is also
difficult to keep relatively stationary. As a result, motion
blur could not be directly eliminated. In contrast to frame-
based cameras, the event-based camera is sensitive to dynamic
information and suitable for moving target recognition. In
Piatkowska et al. (2012), an algorithm for spatiotemporal
tracking to detect moving persons that is suitable for DVS
was proposed. In Chen (2018), discriminative knowledge was
transferred from a frame-based convolutional neural network
(CNN) to the event-based modality via intermediate pseudo-
labels, and then supervised learning was combined to detect cars.
In Seifozzakerini et al. (2016), a method using Hough transform
and event-based clustering algorithm to track multiple lines was
proposed. So far, most research in underwater applications still
relies on frame-based cameras, whereas the event-based visual
perception method has not been well-explored.

In this paper, an event-based detection of multiple circles for
AUV Docking based on the spiking neural network method is
proposed. The main contributions of this work are concluded
as follows:

First, the proposed approach significantly eliminates the
redundant information during the docking task. The frame-
based camera produces information on the whole image.
However, in underwater scenarios, most of the image
backgrounds are adaptively filtered by the event-based
camera. Thus, the computation performance is guaranteed
with respect to the on-chip resource in the AUV.

Second, based on the Spiking Neural Network, the relative
position information is acquired between the AUV and
the docking ring. Furthermore, the PnP algorithm and a
spatiotemporal filter are simultaneously utilized to estimate
the relative depth and reduce the noise interference caused by
vibration and background activities, respectively.
Third, the proposed approach keeps robust in complex
underwater environments. The event-based camera could
effectively eliminate motion blur and over-exposure, which is
a natural advantage in underwater docking applications.
The structure of this paper is organized as follows: section
2 briefly introduces the backgrounds. Section 3 investigates
the preprocessing work with respect to spatiotemporal filter.
Section 4 presents the SNN detection framework and section
5 exhibits experimental results. Finally, this paper is concluded
in section 6.

2. BACKGROUND

In this paper, the overview of the proposed detection method
could be briefly expressed in Figure 2, which is based on
asynchronous Hough circle transform and the theory of Spiking
Neural Network.

2.1. Dynamic Vision Sensor
The Dynamic Vision Sensor (DVS, also called event-based
camera) is a neuromorphic camera that behaves similar to
the human visual system by modeling the human retina
(Lichtsteiner Patrick and Tobi, 2008). In contrast to the
frame-based camera, which captures and transmits frames
synchronously at a fixed frame rate, DVS keeps super
performances by asynchronously transmitting events as soon as
each occurs in a pixel. Once the logarithmic intensity change
of a pixel is larger than a predefined threshold, an event of the
corresponding polarity will asynchronously generate depending
on the direction of the change of brightness (Seifozzakerini
et al., 2016). Hence, it is sensitive to intensity logarithmic
change. However, the information of the magnitude change
is not transmitted. Every event consists of four parameters
(t, x, y, p) including the timestamp t in µs, position (x, y) in
pixels and polarity p which is binary (+/−), where parameters
t,x, and y are integer values. Each pixel sensor is independent
of the other pixel sensors so that its own intensity change
can be adapted, and a very high dynamic range of DVS
is formed. DVS outputs compressed digital data as a tuple,
avoiding redundancy and latency caused by conventional
cameras.

2.2. Spiking Neuron Model and Spiking
Neural Network
Spiking neural network (SNN) is the third generation of
neural network models, improving the realistic level of
neural simulation (Maass, 1997). Each Spiking Neuron
receives some spike inputs and generates one spike output
(Burkitt, 2006). The input is a sequence of spikes that happen
at different times, increasing or decreasing the neurons’
Membrane Potential (MP). Moreover, MP is constantly
decaying linearly till zero. Whenever the MP exceeds the
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FIGURE 2 | Overview of the detection method.

positive or negative threshold (only a positive threshold
considered to simplify the calculation), a spike is produced
as output. Later MP of the neuron and its local lateral
neighbors are inhibited to zero and then enter a short no
response period.

In this paper, the leaky integrate-and-fire (LIF) (Brunel and
Sergi, 1998) spiking neurons are considered to establish SNN. An
SNN representing the parameter space is also utilized to detect
circle objects based on the asynchronous Hough transform. The
neurons’ inputs are the pulses generated by Hough transform
mappings, and the output neurons’ coordinates are the pixel
coordinates of the object centers.Algorithm 1 shows this neuron
model, where ti is the current timestamp, ti−1 is the last time
the neuron is stimulated, td is the attenuation duration, ui is the
MP at time ti, sign(ui−1) is the positive or negative signal of the
potential at the previous time and si is the input spike at time ti.

Algorithm 1| Updating procedure of a spiking neuron
when receiving an input spike.
Initialize the spike value si = 1mv, rate of decay
λ = 0.0006mv/µs, and spike threshold uth = 150mv
for every input spike si at time ti do

td = ti − ti−1
ui ← sign(ui−1) ·max(|ui−1| − λ · td, 0)
ui ← ui + si
if |ui| ≥ uth then

Generate output spike δ = sign(ui) at ti
Inhibit all connected neurons in local area
ui ← 0

Update ti to new timestamp

3. SPATIOTEMPORAL FILTER FOR
REDUCING NOISE

In fact, small changes in the lower intensity of a pixel often lead
to an apparent change which may generate an event afterward.

Hence, in darker places, more and more noisy events will be
produced (Seifozzakerini et al., 2016). However, the frame-
based filtering algorithm is not suitable for DVS. As Hough
Transform (Illingworth and Kittler, 1987) is sensitive to noisy
measurements, a spatiotemporal filter is utilized to process raw
events before the detection phase.

Background Activity (BA) noise is expected in the event
stream, which is produced by thermal noise and junction leakage
currents (Lichtsteiner Patrick and Tobi, 2008). However, unlike
actual events, BA events lack time correlation with other events in
their spatial neighborhood. Besides, the BA events are proved to
correspond to Poisson distribution (Khodamoradi and Kastner,
2021), the probability of a known number n of events if all those
events are independent and happen at a given average rate λ:

P{n} =
λn · e−λ

n!
(1)

In order to recover interested events from raw data, the
spatiotemporal filter also records the early timestamps. Once an
event is processed, the filter searches the corresponding spatial
neighborhood. If the timestamp difference between two adjacent
events in the very near spatial coordinate is found less than a
threshold dt, it is regarded as an actual event. Otherwise, it is
discarded. The principle could be briefly expressed as follows:

e(ti, xi,yi, si) /∈ BA noise⇔

∃|t − tmn| ≤ dt,

s.t.|m− x| ≤ 1 ∩ |n− y| ≤ 1

(2)

Where e is the new event to be processed, tmn is the timestamp of
the last event at the position (m, n) not including the new event,
dt is the time threshold.

The Spatiotemporal filter proposed by Alireza Khodamoradi
(Khodamoradi and Kastner, 2021) is suitable for embedded
applications and moving cameras, which is applied in this paper.
It uses only two memory cells for recursively filtering the image,
which can significantly eliminate memory requirements. The
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computational performance is thus reduced fromO(N2) toO(N).
Meanwhile, this filter increases the data density of real events
by 180%.

4. EVENT-BASED MULTIPLE CIRCLE
DETECTION AND POSE ESTIMATION

As mentioned above, optical guidance plays an essential role in
close range, and the AUV is usually guided by lights mounted
around the docking station. It is observed that using single
lights makes the task challenging, as the 3D pose information is
always missing. Therefore, at least three light sources are required
for AUV docking. In this paper, four circle shape LED lights
are utilized to overcome the aforementioned issue. From an
underwater perspective, each circular light looks like a dot from
long distances and a circle from nearby places. Furthermore, the
halo often appears sparse compared to the dense light source,
and the corresponding position includes bias regarding the
light sources. In order to improve the localization accuracy, the
position of the light source should be considered instead of the
halo. Hence, the spatiotemporal noise filter is utilized to eliminate
the halo around.

In this paper, the detection of multiple lights is performed
using Hough transform (Hough, 1959). Note that the sparse
events data has already been acquired with redundancy, while
the temporal asynchrony process is implemented afterward.
According to the difference between frame-based cameras and
DVS that gradient information is challenging to obtain from
frame-free events, traditional Hough circle transform is adapted
to proceed asynchronous events. A simple way to solve this
problem is to accumulate all events in a period into a pseudo
frame, and then the conventional frame-based gradient Hough
transform (Chen et al., 2012) can be used. However, ignoring
the time information of every event like that will reduce the
sensitivity and dynamic characteristics of the algorithm. To
achieve this goal, an asynchronous Hough circle transform based
on Spiking Neural Network is thus proposed to accurately and
effectively detect underwater lights.

4.1. The Proposed SNN for Asynchronous
Hough Circle Transform
Pixels are simultaneously generated on frame-based cameras.
However, the stream from the event-based camera is
asynchronous; that is, events are generated with time sequence.
In order to take advantage of event streams, every single event
must be processed asynchronously. In this paper, new events are
processed immediately without being accumulated as a frame.
Therefore, the asynchronous Hough transform algorithm in
SNN is proposed to effectively identify the sparse events in the
time scale of microseconds.

In this paper, we propose the SNN model with Hough
Transform to detect multiple circle objects. As shown in
Seifozzakerini et al. (2016), a straight line is detected based on a
2-dimensional SNN model, which only contains two parameters:
distance ρ and angle θ . However, for circular feature detection,
three parameters (x-coordinates, y-coordinates, and radius r)

should be taken into account. Once the radii are unknown, the
event-based Hough transform should be performed in 3D space
(xc, yc, r). Ni et al. (2012) extracted the microspheres with known
radius, but without utilizing the characteristics of SNN. To extend
both the number and radius of potential objects, Hough circle
transform and SNN are jointly utilized. Noting that constructing
a 3D SNN leads to huge computation resources, only two
parameters xc and yc are selected to avoid the computational cost.
Here, the range of parameter r is manually selected outside the
SNN. The process is as follows:

First, conduct a spatiotemporal filter (in section 3) with
raw events to eliminate the noises and halos around the
underwater lights.
Second, the Hough circle transform algorithm based on
asynchronous events is utilized to map events from Cartesian
coordinate space to 2D parameter space.

By continuously fetching the latest event ei = (ti, xi, yi, si) from
the flow queue, Ptn is defined as a collection of points generated
at timestamp tn:

Ptn = {(yi, xi)|∃ei(ti, xi, yi, si)} (3)

For each acquired event, the coordinates (yi, xi) are extracted,
and the mapping from the Cartesian coordinate space to the
Hough parameter space is performed. Note that the Hough
transformation for each event is asynchronously processed.
Especially every time an event produces mappings to the circle
centered on itself with radius r and central angle θi from 0 to
360 degrees. The radius range is set from rmin to rmax aiming to
detect different sizes. Therefore, 360 · (rmax − rmin) mappings are
generated for one event at its timestamp ti. Mappings from every
event which occurs at a circle’s edge would include one mapping
at its center (yc, xc). Thus the calculation formulas of the Hough
circle transform are calculated as follows:

xc = xi + r · cosθi

yc = yi + r · sinθi

s.t. r ∈[rmin, rmax], θi ∈ [0, 360)

(4)

Where xc and yc are the horizontal and vertical coordinates of the
center, respectively. r is radius,θi is the central angle from (yi, xi)
to (yc, xc), and (yi, xi) ∈ Ptn . Mappings outside the range scope
are not considered.

Third, improve Hough transformation with SNN for
circular detection.

It is observed from event streams that neurons at the
object location output spikes. Hence laterally suppressing
adjacent neurons make the detection task possible. Considering
that the original Hough parameter space does not contain
time information, a time-sensitive SNN is constructed as an
intermediate layer for asynchronous processing. The input
spikes of SNN are all mappings generated by asynchronous
Hough transform, and the output spike is the pixel coordinates
of targets.

A M×N SNN is established by using the LIF spiking neuron
model (section 2.2), where M and N represent the parameter
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range of Y-coordinate and X-coordinate of the circle’s center,
respectively. The height and width of SNN can be selected
according to the resolution of the camera. The membrane
potentials of all neurons are initialized as 0 at the beginning.
Meanwhile, a matrix is utilized to update the timestamp ti of each
event, which is initialized by the first incoming event’s timestamp.
Noticed that each event in the receptor layer inputs spikes si to
360 · (rmax − rmin) neurons (yc, xc) in the intermediate layer, and
each spike input increases the absolute value of MP regards to

the neuron, whereas the MP always decreases with a fixed linear
rate λ. The residual MP is calculated by MP at the last time ti−1
minus the decay value and adds the current spike value. td is the
time duration between the current spike input time ti and the last
spike input time ti−1. MP will not attenuate after decay to 0. The
events can therefore be mapped to SNN by using Equation (4)
and defined as follow:

Hough(Ptn ) : Ptn → SNNtn (5)

FIGURE 3 | The running process of SNN based asynchronous hough circle transform. (A) Receptor layer (target in Cartesian space). (B) Output layer (results of

detection). (C) Intermediate layer. (D) Change of membrane potential (with time and spike order).

FIGURE 4 | (A) AUV and targets in V-REP. (B) Events of targets in V-REP.
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where SNNtn is a matrix that changes over time:

SNNtn (yc, xc) =











SNNtn−1 (yc, xc)+ |si| if ∃Hough(Ptn )

SNNtn−1 (yc, xc)− λ · td whenever

SNNtn−1 (yc, xc) > 0

for ∀yc ∈ [0, rows),∀xc ∈ [0, columns), si = ±1.

(6)

The intermediate layer mapped by all incoming events can be
expressed asHough(Ptn−k+1,tn+1 ), where tn+1 is the current time, si

is the input spike, λ is the rate of decay, and td is decay time. The
following recursive formula for continuous conversion with time
is utilized, which is also called continuous SNN based Hough
mapping:

Hough(Ptn−k+1 ,tn+1 ) = Hough(Ptn−k ,tn )

+Hough(Ptn+1 )−Hough(Ptn−k )

Hough(Ptn−k ,tn ) =

tn
∑

i=tn−k

Hough(Pti )

(7)

FIGURE 5 | Estimation of the AUV’s position in V-REP. (A) X-axis position of AUV in V-REP. (B) Y-axis position of AUV in V-REP. (C) Z-axis position of AUV in V-REP.

FIGURE 6 | The experimental equipments. (A) DVS with waterproof shell. (B) Targets with lights and steel plate.

Frontiers in Neurorobotics | www.frontiersin.org 6 January 2022 | Volume 15 | Article 815144

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang et al. Circle Detection Docking in SNN

The continuous Hough mapping is performed in the
intermediate layer of SNN. Once the value of MP exceeds
the positive threshold, the neuron is activated and outputs a
positive pulse at (xc, yc) at timestamp ti to the output layer. Then
MP is reset to zero. Afterward, the neuron enters a short period
of no response, during which the input pulse is ignored to avoid
multiple outputs originating from the same target. Meanwhile,
the activated neurons inhibit the MP of other neurons within the
local lateral margin of m × m to reduce duplicate detections of
one object. The MP of non-activated neurons and neurons not
near activated neurons are not inhibited and still decay naturally.
Once a neuron receives a pulse, it updates the timestamp of the
corresponding coordinates within the timestamp matrix. The
updating procedure of a neuron when receiving an input spike is
shown in Algorithm 1 (section 2.2).

As the original polarity si of the event is divided into
positive and negative, the two symmetrical edges of the target
generate spiking inputs with opposite polarities, which leads to
false alarms. Therefore, the absolute value of spikes is used in
calculation, while all inputs are considered positive spikes.

Once a neuron (yc, xc) outputs a spike to the output layer at ti,
the position of the center is detected. All spikes output in a period
tn−ktn are counted, that is, all targets detected during that time.
The process of SNN could be briefly shown in Figure 3. Firstly,
the receptor layer’s yellow, blue, and green events generated input
spikes with time sequence. Secondly, the MP of corresponding
neurons in the intermediate layer changed in turn. Finally, a red
spike outputs afterward.

Fourth, matching feature to the rectangular target with the
following rules:

- The number of different spikes after ignoring duplicate is 4.
- The included angle between the two diagonal circles’

connecting lines is within a specific pixel range. k is the slope
of a line and α is the angle.

tan(α) = |(k2 − k1)/(1+ k1 · k2)|

s.t. tan(α1) < tan(α) < tan(α2)
(8)

- The length difference between two diagonal circles’ connecting
lines is within a specific pixel range, where lmeans the length.

l1 < |

√

(x1 − x4)2 + (y1 − y4)2

−

√

(x2 − x3)2 + (y2 − y3)2| < l2

(9)

Thus, the whole procedure of the proposed SNN for
asynchronous Hough circle transform is presented as
Algorithm 2.

4.2. Perspective-4-Point Algorithm for
Pose Estimation
PnP algorithm is a method to estimate the pose of the camera
relative to the world coordinate system by knowing the 3D
coordinates of n points in space, the corresponding 2D point
coordinates, and the internal parameter matrix of the camera.
Considering the feasibility, four LED light sources are used to

Algorithm 2| Event-based multi-circle detecting
asynchronously in the SNN.
Utilize the spatiotemporal filter in section 3 after raw events
Initialize the timestamps ti and parameters of SNN
for every event ei = (ti, xi, yi, si) in the events queue do

for every radius r in the range of object size (from rmin

to rmax) do

for every degree θi in the range of 360 do

Calculate X-coordinate of the center
xc = argmin|xc − (xi + r · cosθi)|

Calculate Y-coordinate of the center
yc = argmin|yc − (yi + r · sinθi)|

if |xc| < columns and |yc| < rows then

Input the spike si to the neuron (yc, xc) at
ti and upgrade it with Algorithm 1

if ti − tn−k+1 ≥ k then
Generate all the output spikes (yc, xc) between the

short period tn−k+1tn+1
if spikes meet the rule of features above then

Output the 4 points
(yc1, xc1), (yc2, xc2), (yc3, xc3), (yc4, xc4) to an array

Calculate the pose of DVS in world with the
following P4P algorithm

Reset SNN to 0 and renew the matrix of timestamps
tn−k+1 ← ti

constitute the perspective-4-point (P4P) problem (Horaud et al.,
1989). The problem is cast into solving an unknown biquadratic
polynomial equation. It was developed as part of a monocular
object recognition system (Horaud, 1987).

In the condition that 3D coordinates of 4 points
(P1, P2, P3, P4) in the world coordinate system were known, the
2D coordinates of 4 points(p1, p2, p3, p4) in pixel coordinate
system were calculated by Algorithm 2 and the internal
parameter matrix K of the camera was calibrated, the camera
pose relative to the world coordinate system can be calculated
as follow.





Xc

Yc

Zc



 =
[

R t
]





Xw

Yw

Zw



 (10)

In the formula, (Xc,Yc,Zc) and (Xw,Yw,Zw) represent both
the camera and world coordinate system. Besides, R is the
rotation matrix and t is the translation vector, which describe the
transformation relationship between the two coordinate systems.

In order to solve the P4P problem faster on-chip, the
algorithm of Gao et al. (2003) combined with the projection
method was used. Firstly, four groups of solutions are calculated
with three points to obtain four rotation matrices and translation
matrices. Then the result [R t] can be calculated according to
the formula:





u
v
1



 ∼





fx 0 cx
0 fy cy
0 0 1



 ·





r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



 ·









X
Y
Z
1









(11)
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Where fx, fy, cx, cy are parameters of the DVS, u, v are coordinates
in image, R is the rotation matrix, t is the translation vector and
(X,Y ,Z) is the world coordinates of the 4th points.

After substituting (X,Y ,Z) into the formula, four projections
(u, v) in the image are obtained. The matrix [R t]with the
slightest projection error is the right solution. Therefore, the
pose is obtained as well as the relative depth between AUV and
docking ring, which guides the AUV during docking task.

5. EXPERIMENTS AND RESULTS

The proposed multiple circle detection method was evaluated in
both the simulator and real scenario, while the effectiveness of
estimating the position of AUV was evaluated.

In the simulation, the docking of AUV is carried out in
V-REP to verify the practicability of the proposed positioning
algorithm in SNN. The scene and the events are displayed
respectively as Figures 4A,B. In general, the visual guidance
system consists of four parts: 4 circular LED lights constrained
by rectangle, a dynamic vision sensor, a computer and AUV.
To achieve docking, AUV’s three degrees-of-freedom (DOF)
in transverse X, longitudinal Y , and vertical Z direction could
be artificially controlled. Besides, the DVS was fixed on the
head of the AUV, with the visual field being limited to 65
degrees. In addition, the targets remained stationary in the
scene while AUV approached them vertically according to the
relative position deviation. Moreover, the computer detected
targets and estimated AUV’s position by using SNN and P4P
algorithms. In this case, X-axis and Y-axis were parallel to the
target plane, while Z-axis was perpendicular. Note that Z-axis
is less than 0 according to the right-handed coordinate system.

TABLE 1 | The parameters of pseudo-frame gradient Hough circle transform.

Parameter Value Unit

Rows 240 pixels

Columns 320 pixels

Time of one frame 50,000 µs

Minimum distance between objects 60 pixels

High threshold of edge detection 40

Accumulator threshold 12

Range of radius 5–26 pixels

FIGURE 7 | Results of frame-based GHT. (A) Raw event frame. (B) Effect of

detection.

The initial position (X,Y ,Z) in millimeters of the four targets are
(1000, 2000, 0), (1000, 4000, 0), (3000, 2000, 0), (3000, 4000, 0),
and AUV’s initial placement point is (2000, 3000,−3000).
In order to compare the estimation difference among
3 DOF, AUV’s position in the X direction is limited to
2000.

During the docking process, the motion command was sent
to AUV to approach the targets gradually. When AUV was
approaching, the position deviation of its Z-direction would
gradually increase up to 0, which means the relative depth is
getting closer. In Figure 5, the blue lines represent the actual
spatial trajectory of the AUV relative to targets in 3 DOF,
which is recorded by a graph fixed on AUV. The yellow lines
represent the estimated position of AUV by using the SNN and
P4P algorithm. Meanwhile, red lines represent the deviation
of estimation during the AUV’s movement, which is obtained
by comparing the difference between the ground truth and
estimation. As a result, Figure 5 verifies the feasibility of the
visual positioning method.

TABLE 2 | The parameters of SNN based asynchronous Hough transform.

Parameter Value Unit

Rows 240 pixels

Columns 320 pixels

Spike threshold vth 150 mVolts

Rate of decay λ 0.0006 mVolts/µ s

Margin of lateral inhibition m 60 pixels

Refractory period ti − ti−1 1 µs

Range of radius r 5–26 pixels

Time interval for counting spikes k 50,000 µs

Spike value si 1 mVolts

FIGURE 8 | The detection effect of SNN. (A) Raw events of far targets. (B)

Detection of far targets. (C) Raw events of near targets. (D) Detection of near

targets.

Frontiers in Neurorobotics | www.frontiersin.org 8 January 2022 | Volume 15 | Article 815144

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang et al. Circle Detection Docking in SNN

In the pool experiments, the detection effects of the frame-
based Gradient Hough Transform (GHT) (Chen et al., 2012) and
the proposed SNN based method were compared.

The visual guidance system in the experimental pool consists
of three parts: 4 LED light sources, a dynamic vision sensor
and a computer. In the pool, X-axis and Y-axis were parallel
to the target plane, while Z-axis was perpendicular. Four
underwater circular lights were bound vertically to the corners of
a rectangular plate and kept stationary underwater. In addition,
the DVS used in experiment is produced by IniVation, which
has a 320 × 240 spatial resolution, 1µs temporal accuracy
and the internal parameters matrix (257.3, 164.1, 255.4, 130.4).

Meanwhile, a waterproof shell coated with a metal oxide
layer is processed. The experimental equipment is displayed
as Figure 6. And to simulate the docking motion of AUV,
the DVS was made close to or away from the stationary
targets. During the process, the computer parsed DVS’s data,
detected targets and estimated DVS’s position by using SNN and
P4P algorithms.

In order to verify the detection effect of the SNN algorithm,
it was compared with a baseline method. The frame-based
Gradient Hough Transform(GHT) is a classical method for
detecting circles and utilized as baseline. During the experiment
for GHT, raw event stream in a period was first accumulated

TABLE 3 | Quantitative analysis of multiple circle detection by SNN.

Time Input Output Spike time X position Y position

(ms) events spikes (event order) of 4 targets of 4 targets

Start/end numbers numbers Start/end (pixel) (pixel)

0 50 11024 2992 81024 85480 150 203 204 273 116 184 46 123

50 100 11432 2008 92240 97896 139 202 207 274 117 178 55 121

100 150 11792 2480 103440 108784 146 210 216 296 110 187 46 159

150 200 11760 2640 115192 121144 152 216 217 283 121 188 46 118

200 250 11520 2144 126952 132696 154 218 221 285 130 181 50 118

FIGURE 9 | Multi-target tracking effect in image.
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as a pseudo-frame. Then it was changed to a grayscale
image, filtered by the median, operated by morphological
open, and extracted the edges. Later the OpenCV library was

utilized to realize the GHT method, and the parameters of
GHT were set as Table 1. Detection effects of GHT were
as Figure 7.

FIGURE 10 | Multi-target tracking effects in X and Y direction. (A) X-axis of left and top objects. (B) X-axis of right and bottom objects. (C) Y-axis of left and top

objects. (D) Y-axis of right and bottom objects.

FIGURE 11 | Position estimation in real world. (A) X-axis position of DVS in real world. (B) Y-axis position of DVS in real world. (C) Z-axis position of DVS in real world.
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In the proposed method, the event stream was first put into
the spatiotemporal filter compared to GHT. The time interval
(dt) regarding the spatiotemporal neighbors and the number
(n) of supporting pixels were configured as 1 ms and 76,800,
respectively. A 240 × 320 SNN was established according to
the DVS’s resolution. Then the proposed Asynchronous Hough
Circle Transform in SNN (section 4.1) was implemented in
Python. The parameters in Table 2 were set to SNN, and the
detected objects were exhibited in Figure 8 with the camera
approaching targets. In Figure 8, the green points represent
positive events which generate positive spikes to SNN, while the
red points represent negative events.

Table 3 reports the statistics of detection results by using SNN.
With time increasing, massive input events from the receptor
layer generated fewer output spikes to the output layer, which
indicated the changes of targets in the image. Therefore, the
generated time, end time and the number of spikes were recorded
for quantitative analysis. As we can see, the positions (X,Y) of all
targets can be accurately detected and tracked.

Figure 9 demonstrates the detection performance between
two methods when the pixel position of multiple targets changes
with event sequence, where red and blue points respectively
present the results of GHT and SNN. As illustrated in the
figure, the accuracy of multi-target tracking of the two algorithms
is close.

As presented in Figure 10A, the X-coordinate trajectories of
the upper and the lower circle are basically the same, and so on in
Y-coordinate of the left and right circle, which shows the accuracy
of target detection. Besides, Figure 10B shows the detected X-axis
trajectories of right and bottom objects by two different methods,
Figure 10C shows the Y-axis trajectories of left and top objects,
and Figure 10D shows the Y-axis trajectories of right and bottom
objects. In addition, the detection results of the GHT and SNN
methods are almost equal. However, the jitter of the curve of
SNNmethod is smaller thanGHTmethod. After obtaining image
coordinates at the detection stage, relative position in the real
scenario was estimated by the P4P algorithm. The estimation
performance from two methods is displayed in Figure 11, where
X and Y axes are positions parallel to the target plane, and Z-
axis represents relative depth. Note that Z-axis position is always

less than 0 because the camera only appears on one side of the
target plane. It can be seen from the figure that two methods have
similar results for position estimation.

6. CONCLUSION

In this paper, a multiple circles detection and relative pose
estimation method was proposed, which combined monocular
DVS and SNN for AUV docking. The proposed method not
only avoids motion blur caused by frame-based recognition
but also adapts to high exposure at close range and reduces
data redundancy effectively, which utilizes the biological
characteristics of SNN and hardware features of DVS. We focus
on calculating asynchronous Hough mappings and constructing
an SNN model. The accuracy of our method is compared with
a frame-based method. Pool experiments and simulations are
carried out to verify the effectiveness of the method. In future
work, stereo event-based cameras are considered to combine with
SNN to improve the recognition accuracy and speed.
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