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In ecosystems, species interact with other species directly and through abiotic factors in multiple
ways, often forming complex networks of various types of ecological interaction. Out of this suite of
interactions, predator–prey interactions have received most attention. The resulting food webs,
however, will always operate simultaneously with networks based on other types of ecological
interaction, such as through the activities of ecosystem engineers or mutualistic interactions. Little is
known about how to classify, organize and quantify these other ecological networks and their mutual
interplay. The aim of this paper is to provide new and testable ideas on how to understand and model
ecosystems in which many different types of ecological interaction operate simultaneously. We
approach this problem by first identifying six main types of interaction that operate within
ecosystems, of which food web interactions are one. Then, we propose that food webs are structured
among two main axes of organization: a vertical (classic) axis representing trophic position and a new
horizontal ‘ecological stoichiometry’ axis representing decreasing palatability of plant parts and
detritus for herbivores and detrivores and slower turnover times. The usefulness of these new ideas is
then explored with three very different ecosystems as test cases: temperate intertidal mudflats;
temperate short grass prairie; and tropical savannah.
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1. INTRODUCTION
Ecology was first defined in 1869 as the ‘study of the

interaction of organisms with their environment’

(Haeckel 1869, quoted in Begon et al. 1990) and later

as ‘the scientific study of the distribution and

abundance of organisms’ (Andrewartha 1961). Krebs

(2001) combined these definitions into the ‘scientific

study of the interactions that determine the distribution

and abundance of organisms’. He did not use the

word ‘environment’, because it is already inclusive in

the definition. The environment of an organism

consists of all those phenomena outside an organism

that influence it, whether those factors are physical

(abiotic) or are other organisms (biotic). Hence the

‘interactions’ in the definition of Krebs are the interplay

of organisms with these biotic and abiotic factors

(Begon et al. 1990).

For over a century now, ecologists have been

describing the patterns in the distribution (Lomolino
tribution of 15 to a Theme Issue ‘Food-web assembly and
: mathematical models and implications for conservation’.
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et al. 2005) and the abundance (McGill 2006; McGill

et al. 2007) of organisms. With respect to the study

of interactions (the explanatory part of ecology),

consumer–resource interactions have received by far

most empirical and theoretical study, both from a single

trophic (Tilman 1982) and from a multitrophic,

food web perspective (Cohen 1978; DeAngelis 1992;

Polis & Winemiller 1996). Studies that use food web

theory to better understand a particular ecosystem thus

implicitly assume that predation is the most important

process that regulates the abundance of organisms in

that ecosystem (Berlow et al. 2004).

However, it has long been recognized that species

interact in ecosystems with other species and with

abiotic factors in many ways, of which predator–prey

interactions are only one possibility (Hutchinson

1959). For example, organisms interact with other

species through producing resources such as detritus

and mineral nutrients and through non-trophic

interactions (e.g. pollination, production of toxicants).

Also, organisms can show strong interactions with

abiotic (non-resource) conditions. In addition, relevant

interactions that affect organisms include various
This journal is q 2009 The Royal Society
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spatial interactions (exchange of organisms, materials
and energy), external environmental forcing, as well as
various physical and chemical interactions that operate
within ecosystems.

These days, ecologists are increasingly challenged
to better understand and predict the impacts of
human activities on biodiversity and the functioning
of ecosystems, such as the consequences of harvesting
populations (forestry, fisheries), modification of
material cycles (e.g. eutrophication) and human-
induced climate change. Key general questions in this
conservation agenda are: (i) which (types of ) species
will be most vulnerable to extinction in the near future,
(ii) are ecosystems of high biodiversity (such as tropical
forests, coral reefs) under greater threat than those less
diverse, (iii) will the loss of some species (e.g. top
predators) lead to cascading losses of other species, and
impair the functioning of ecosystems, (iv) should some
species therefore be given special attention in con-
servation schemes, (v) how will the human disruption
of natural element cycles and the introduction of novel
chemical compounds and non-native species affect
the functioning of natural ecosystems and impair the
services they provide to us, and (vi) what will be the
consequences of emerging (zoonotic) diseases? All
these questions will affect the abundance and distri-
bution of species, with associated effects on the
functioning of ecosystems. Answers to these questions
are urgently needed to set conservation priorities and
take appropriate action to restrict biodiversity loss due
to human-driven environmental change.

Since the pioneering work of Elton (1927),
Lindeman (1942) and Hairston et al. (1960), the
field of food web theory has developed into a central
concept in ecology. It is therefore a logical field to turn
to first for answers to the above conservation-oriented
questions, as it aims to understand the abundance and
distribution of organisms from the perspective of
species interactions. Indeed, the central questions
addressed in food web ecology seem highly relevant
for conservation and management. For example, what
is the effect of increased nutrient supply on trophic web
structure (Carpenter & Kitchell 1993; Scheffer &
Carpenter 2003)? Or, how does the diversity and
complexity of food webs affect their stability, e.g. the
extent to which small perturbations in some species
lead to the loss of other species (May 1973; Dunne
et al. 2002; Ives & Carpenter 2007; Neutel et al. 2007)?
What determines whether the loss of top predators
leads to cascades of secondary extinctions (Scheffer
et al. 2005; Borrvall & Ebenman 2006; Otto et al.
2008)? However, in a recent list of 100 ecological
questions of high policy relevance in the UK
(Sutherland et al. 2006), the word ‘food web’ or
‘interaction web’ did not occur once, suggesting it is
not, or at least not perceived this way.

In our view, this ‘struggle for relevance’ of food web
ecology is due to two main problems. Firstly, food
webs consist of a ‘road map’ of predator–prey
interactions in ecosystems. However, species in eco-
systems interact with each other and with their
environment in many other ways than through
consumer–resource interactions. These ‘other
interactions’ have been insufficiently acknowledged
Phil. Trans. R. Soc. B (2009)
and studied from a network perspective, ‘pushing’
conservation-oriented research often towards a species-
centred approach (in which all such interactions are
included for a particular species). However, in such
species-centred research, the operation of the key
indirect effects among species that characterize eco-
logical networks are probably missed. Inclusion of non-
trophic interactions broadens food web studies to the
analysis of interaction webs.

Secondly, food web studies have often been too
system specific, and we need a more general ‘template’
of functional classification of species along main axes of
organization (not only trophic position) in food webs to
be able to make comparisons between different
ecosystems, and to study the interplay of networks
based on consumer–resource interactions with net-
works based on other types of interaction that operate
within the same ecosystem.

The goal of this paper is to contribute to the
solutions for both problems. First, we briefly discuss
the general principles behind the organizational forces
at work in ecological interaction webs. Then, we
propose six main types of ecological interaction
that operate (often simultaneously) in ecosystems,
each of which, or combinations of which, will form
separate networks of interactions. These parallel
ecological networks functionally link to each other
through the species as network nodes. Consumer–
resource interactions, leading to food webs, are one of
those possible networks, and an important, basic one,
but is not the only one. We continue by proposing that
food webs are organized along two main dimensions:
their ‘classic’ vertical dimension that reflects the
trophic position of species, and a newly proposed
horizontal ‘stoichiometric’ axis, representing decreas-
ing palatability of plant parts and detritus for herbivores
and detrivores (driven by evolutionary radiation
between autotrophs in competition for light). The
main goal of identifying both the six main interaction
types and the above two axes of food web organization
is to provide a framework and general notation that can
be used to describe interaction webs across very
different ecosystems. We qualitatively explore this
framework by unravelling the parallel interaction
webs that operate in three very different ecosystems:
European intertidal mudflats; North American short
grass prairie; and African savannah. For each ecosys-
tem, we draw the parallel interaction webs for two or
three main types of interaction, such as consumer–
resource interactions and interactions between species
and abiotic (non-resource) conditions. We finish by
discussing future directions in the analysis of the
interplay between parallel ecological networks in
ecosystems, and some conservation implications of
their joint operation.
2. ECOLOGICAL INTERACTION WEBS AS
COMPLEX ADAPTIVE SYSTEMS
In his excellent treatise on the philosophical foun-
dations of interaction web studies, Ulanowicz (1997)
makes important points on the nature of causality and
the importance of conditional probabilities. First, he
emphasizes that ecological interaction webs belong to
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the larger class of complex adaptive systems, which
means that causes and explanations arise not only from
lower levels of organization (e.g. from ecophysiology,
behavioural ecology, population ecology), but also at
the focal level of organization (see also Levin 1998;
Morowitz 2002). This makes system behaviour,
especially on longer time scales, to some degree,
autonomous with respect to lower level events (Allen &
Starr 1982). The study of complex adaptive (or
dynamic) systems has a long tradition in physics and
chemistry (Holland 1999). However, the main insights
from these fields may have relatively little relevance for
biological organisms and the way they grow and
function, and organize into interaction webs and
ecosystems, due to the unique regulatory role of DNA
and the operation of evolution by natural selection
(Werner 2007).

For those causes arising at the focal level of
ecological interaction webs, the challenge is to discover
the principles that govern their organization, or, ‘how
lots of things are put together in the same place’
(Ulanowicz 1997). This challenge is shared with other
fields in the life sciences, for example, with develop-
mental biology, where the main ‘grammar’ of the
genetic code still mostly awaits discovery, now that
the translation of ‘letters and words’ is available
(Lewin 1984; Barbieri 2002). The emerging field of
systems biology (Kitano 2002) now aims at unravelling
exactly how the network of interactions among genes,
proteins, organelles, cells and tissues within organisms
forms this grammar.

The general scientific problem here is that causes of
organization in ecological networks (and other complex
adaptive systems) arise through conditional probabilities,
which means that all probabilities (e.g. likelihood of
change in the abundance of a species) are always
contingent to a greater or lesser extent upon local
and historic circumstances and interfering events
(Ulanowicz & Wolff 1991). For example, the dynamics
of three species in a trophic chain can radically change
if species 3 evolves a trait that promotes species 1,
causing an indirect mutualism. In this case, species 2
will be promoted, even though it did not change its
behaviour or physiology at all (Ulanowicz 1995). Also,
a predator–prey interaction will have a different effect
on either population if the prey has to compete with
another prey (leading to apparent competition), or, if
the predator is a prey itself to another predator
(intraguild predation). And, some species of prey may
use phenotypic flexibility to directly adjust their
phenotype in the presence of specific predators
(Werner & Peacor 2003), while in other cases predators
adjust their phenotype in the presence of specific
prey (Piersma & Lindstrom 1997; Piersma & Drent
2003). In both cases, such phenotypic adjustments will
have consequences for other consumer–resource
interactions that the species is involved in. The reasons
for the absence or presence of such interfering species
may even lay outside the current spatial and temporal
domain of observation, due to historical or geographi-
cal factors (Ricklefs & Schluter 1993). Dealing with
such conditional probabilities requires a redefinition of
classic mechanisms (causes imposed by lower level of
organization and system components in a
Phil. Trans. R. Soc. B (2009)
deterministic, ‘Newtonian’ way). Evolutionary
biologists face similar problems in deducting how
organization arises through the operation of con-
ditional probabilities of change, e.g. when developing
theory for adaptive dynamics (Dieckmann & Metz
2001) and coevolutionary dynamics (Thompson
2005).

The now widely recognized general feature
of complex adaptive systems is that the prevalence of
strong conditional probabilities does not necessarily
lead to unpredictable, chaotic or erratic structures and
dynamics. Instead, emergent structural properties and
behaviour often arise at the system level (Levin 1998;
Holland 1999; Morowitz 2002), pointing at an
underlying ‘semantics’ of system organization (Barbieri
2002). For food webs, such regularities arise for
example in their topological organization (Pimm
1982; Williams & Martinez 2000; Montoya et al.
2006; Bascompte 2007), the organization of flows,
thus interaction weights (Ulanowicz 1997; Neutel et al.
2002; Rooney et al. 2006; Neutel et al. 2007) or their
spatial organization (McCann et al. 2005). However,
clear rules and principles about ‘how lots of things are
put together’ in food webs still await description
(Ulanowicz 1997).

Insights into specific ‘few-species-interaction-con-
figurations’, or modules (Menge 1995; Holt 1997;
Bascompte & Melian 2005) for consumer–resource
interactions have much increased over the last decades.
For example, we know much more now about resource
competition (Schoener 1974; Tilman 1982), mutual-
ism (Oksanen 1988), apparent competition (Holt
1977), indirect mutualism (Vandermeer1980; Ulanowicz
1997), intraguild predation (Polis et al. 1989), positive
interactions such as facilitation (Callaway 2007), positive
feedbacks (DeAngelis et al. 1986), regulatory feedbacks
(Bagdassarian et al. 2007), trophic cascades (Carpenter
et al. 2008) and multiple stable state dynamics (Scheffer &
Carpenter 2003). These may all be considered organi-
zational forces that structure networks, but all may not
be of equal importance. For example, Ulanowicz (1997)
makes a strong case for the special importance of
indirect mutualism as an organizational force in food
webs, as the resulting feedback loops ‘attract’ resources
towards them.

But how such modules together organize into
complex interaction webs remains as yet largely
unresolved, especially for types of interaction other
than between consumers and resources. Some progress
has been made in the field of food webs, trying to
capture organization in concepts such as ascendancy,
which quantifies the growth and development in a
network due to indirect mutualism (Baird & Ulanowicz
1989; Ulanowicz 1997; Baird et al. 2007), as well as in
the study of evolutionary networks using graph theory
(Lieberman et al. 2005). Owing to their predominance
of conditional probabilities, the study of ecological
networks is more complex than ‘adding up’ the
ecophysiology, population biology and behavioural
ecology of the component species as promoted for a
long time (Schoener 1986). We also need to identify
much better the processes that arise at the level of
interaction webs. Although some of the emergent
properties of complex communities and ecosystems
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Figure 1. A proposed general framework of ecological networks, indicating the dual detrital versus primary producer pathways of
energy and nutrient flow that sustains higher trophic levels. Boxes represent basic compartment types or factors, and different
types of arrow represent six main types of interaction that structure ecological networks. Some compartments may contain an
unresolved web of interactions, based on consumer–resource interactions and non-trophic direct interactions.
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have now been established as macroecological rules
and patterns in the distribution and abundance of
organisms (Brown & Maurer 1989; McGill et al.
2007), we feel we have yet not been able yet to identify
most of the underlying organizational principles
that govern these rules and patterns. We suggest
that this is caused by too little study of non-trophic
ecological networks that operate in parallel to consumer–
resource networks, and also by the lack of a good
organizational framework to compare interaction webs
across ecosystems.
3. SIX MAIN TYPES OF INTERACTION
IN ECOSYSTEMS
Current food web theory is not well equipped to deal
with the changes in environmental factors (such as
temperature or pH) towards which the species in the
web may be differentially adapted (Raffaelli 2006), or
to make predictions for ecosystems where interactions
of organisms with their abiotic environment play a
major role in addition to trophic interactions. Although
further work on networks of just predator–prey inter-
actions (food webs) is needed, we agree with Berlow
Phil. Trans. R. Soc. B (2009)
et al. (2004) that we now need a rigorous framework
to determine how and which processes should be
included in food web theory out of the growing set of
possible ecological interactions that is considered to be
important. This can be seen as a generalization of food
web theory to a theory that covers ecological networks
in general. This fits with recent studies trying to
combine nutrient flows between ecosystems with
trophic interactions in meta-ecosystem theory (Polis
et al. 1997; Loreau et al. 2003), trophic and non-
trophic interactions in interaction web theory
(Arditi et al. 2005; Bascompte 2007; Dambacher &
Ramos-Jiliberto 2007; Goudard & Loreau 2008),
dispersal limitation and competition in metacommu-
nity theory (Leibold et al. 2004), trophic interactions
with species–environment feedback (Bagdassarian et al.
2007) and dispersal, sampling processes and speciation
in neutral biodiversity theory (Hubbell 2001).

Repeating that ecology is both about jointly under-
standing interactions among organisms, and between
organisms and their abiotic environment, we propose
six main types of ecological interaction that operate in
ecosystems, with a general framework for their
topological connection among six basic ecosystem
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compartments (figure 1). These six types of interaction

are: (i) consumer–resource interactions, (ii) interactions
between organisms and abiotic (non-resource) con-

ditions, (iii) spatial interactions (inputs and outputs of

energy, nutrients, organisms), (iv) non-trophic direct
interactions among organisms, (v) physical and

chemical interactions among factors/compartments,
and (vi) external forcing of abiotic conditions. These

six types of interaction potentially operate among three
biotic and three abiotic basic compartments (figure 1).

The abiotic compartments are (i) abiotic resources

(such as light, nitrate, ammonium, phosphate) that are
consumed and depleted by autotrophs, (ii) abiotic

conditions, that affect both autotrophs and hetero-
trophs but are not consumed or depleted by them (such

as salinity, soil texture, sediment aeration, soil and

water pH, temperature) but that can be modified
(e.g. by ecosystem engineers (Jones et al. 1994; Lawton

1994)) and (iii) detritus (non-living organic material).
The main three biotic compartments are (i) autotrophs

that can harvest their own energy, either from light or
chemical sources, (ii) microbial detrivores that break

down detritus into its mineral components, thus

producing resources for autotrophs and (iii) higher
trophic levels that consume autotrophs, microbial

detrivores and/or each other, and mineralize nutrients
for autotrophs. This interaction-web framework builds

on earlier ideas for marine systems by Azam et al.
(1983) and for terrestrial systems by Wardle (2002),
Moore et al. (2004), Bardgett (2005) and others, who

all emphasized the importance of the ‘dual foundation’
of food webs on both autotrophs (plants, photosyn-

thetic or chemoautotrophic microbes) and microbial
detrivores, but adding the effect of environmental

(non-resource) conditions. The autotroph- versus

detritus-based side of figure 1 can be viewed as two
alternative channels that provide energy to higher

trophic levels, while being strongly functionally con-
nected at the bottom through the process of energy

fixation (a ‘service’ of the autotrophs facilitating the

development of the detritus-based side) and element
recycling (a ‘service’ that especially the microbes on the

detritus-based side provided to the autotrophs).
Depending on the ecosystem type, these two main

energy channels are usually still separate at low trophic
levels (e.g. plant- versus microbial detrivore-based

grazers), while becoming more connected at higher

trophic levels, where omnivorous predators often
receive energy through both channels. In very open

ecosystems that receive their energy through detritus
imports, such as tree holes (Kitching 1971), deep

oceans systems (Andersson et al. 2004), streams or

shaded lakes, the food web can be almost entirely
detritus based. In more closed ecosystems on the other

hand, autotrophs generally require microbial detrivores
to recycle mineral nutrients (called the microbial loop

in pelagic systems) and the food web will receive energy

through both channels. It should be noted that the
three ‘biotic boxes’ in figure 1 aggregate complex trophic

interactions through unresolved ecological networks.
Each of these boxes can also be expanded to networks of

higher detail (e.g. in functional groups such as herbivores
consuming plants, predators of herbivores, predators of
Phil. Trans. R. Soc. B (2009)
predators of herbivores, pathogens, pollinators, etc., or
down to the species level).

As listed in figure 1, we suggest that up to six main
types of direct interaction can operate simultaneously
in any ecosystem, where it is not a priori clear which
ones will dominate in determining community
structure and ecosystem functioning. Consumer–
resource interactions are of course a basic one (each
species generally has to eat), but such food web
interactions will be affected by other types of
interaction that operate in the ecosystem at the same
time. When these other interactions involve only one or
two species, this may still be ‘fixed’ by modifying food
web models to include such effects (Arditi et al. 2005;
Goudard & Loreau 2008). However, when the other
types of interaction result in ecological networks as well
(of which we will show examples later), this requires a
different approach, the here-proposed analyses of
‘parallel ecological networks’. Before we continue
with this discussion, we first identify and discuss each
of the six main interaction types that we suggest are
structuring ecosystems.

(a) Consumer–resource interactions

Resources are all things consumed by an organism
(Tilman 1982). Not only are such resources incorpor-
ated in the body, they also represent quantities that are
reduced by the activities of the organism without actual
ingestion (Begon et al. 1990). Where nitrate, phosphate
and light are resources for a plant, so are nectar, pollen
and a hole in a log resources for a bee, and acorns,
walnuts, other seeds and a larger hole in a log resources
for a squirrel (Tilman 1982). Basic approaches for
modelling and measuring classic consumer–resource
interactions are extensively reviewed elsewhere
(Lotka 1932; May 1973; Schoener 1974; Pimm
1982; Tilman 1982; de Ruiter et al. 1995; Berlow
et al. 2004; Wootton & Emmerson 2005); we will not
repeat them here. As outlined by Holt (1997), many
indirect trophic interactions such as resource compe-
tition, mutualism and trophic cascades can be viewed
as manifestations of a particular topological arrange-
ment of multiple consumer–resource interactions,
which he termed community modules. For example,
pollination can be viewed as a bidirectional consumer–
resource interaction but with a reward in a different
currency for each partner (energy versus information),
similar to a plant–mycorrhizae association (nutrient,
water versus energy).

Consumer–resource interactions form the backbone
of food webs in which consumers interact with their
resources through ingestion (predator–prey inter-
actions). However, the definition of resources above
implies one very important (often missed) point: most
food webs cover only a subset of all consumer–resource
interactions that operate in an ecosystem. Consumer–
resource interactions can arise among a species pair
when the first species produces a resource, and
the second species consumes that resource (figure 2).
This does not necessarily mean that whole organisms of
the first species need to be consumed (as in typical
predator–prey interactions), the resource produced
by the first species may be just a part of the organism
(as in herbivory), or may be a substance that an
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consume. These resources can be assessed implicitly and explicitly. Multiple species can contribute to the same resource
compartment or class, and multiple consumers can exploit resources, irrespective of the species that contributed to or forms the
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organism excretes (such as nectar excreted by plants

that is used by nectarivores, sugar excreted by aphids

that is used by ants or mucus produced in the digestive

tract of a herbivore that is consumed by parasitic

worms; figure 2).

Also, and importantly, the regular metabolic

excretion products of species in ecosystems are

generally resources to other species. Heterotrophic

bacteria and fungi produce resources (mineral

nutrients) for plants through metabolic excretion.

Plants produce resources (coarse detritus) for earth-

worms, which produce resources (fine detritus)

for bacteria, which produce again resources for

plants. Plants produce resources for herbivores,

which produce resources (dung) for dung beetles, which

produce resources for bacteria, which produce

resources for plants. Such recycling loops can lead to
Phil. Trans. R. Soc. B (2009)
indirect mutualisms on the ecosystem level, which

‘draw’ additional resources towards them, increasing

the productivity of all participants (Ulanowicz 1997).

Even the external body surface of an organism can be

an important limiting resource class (space) that it

provides to other species (and will be competed for), as

is the case for periphyton growing on aquatic

macroalgae and macrophytes (in this case often with

a negative net return through light interception by the

periphyton) or epiphytes on the bark of a tree. In soft-

bottom intertidal habitats with unstable sediments, the

stable shells of bivalves form an important resource for

macroalgae and other sedentary organisms that need

solid ground. Similarly, the provision of nesting space

for birds, and water and substrate for lichens by trees

can be ranked under resource provision of the trees to

other species. When studying interaction webs, it is
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important to separate such resources from the organ-
isms that produce them, because multiple species will
often contribute to the same resource (figure 2), while
guilds of species compete for them. Such separation of
resources and the species that produce them promote
an integration between approaches from systems
ecology (with focus on the dynamics of the resource
compartments) and community ecology (with focus
on the diversity of the organisms that produce
them; figure 2).

We realize that species that are important in
providing resources to several other species have
been previously labelled as ‘ecosystem engineers’ by
Jones et al. (1994), a concept that is becoming widely
adopted (Wright & Jones 2006). However, strict
application of this definition would classify virtually
all species in most food webs as ecosystem engineers
(including, e.g. all soil bacteria)—which is not what
these authors intended. We think instead that the term
‘ecosystem engineer’ can much better be reserved
for those species that strongly modify non-resource
abiotic conditions (figure 1), resulting in all kinds of
direct and indirect consequences for other species that
are affected by these conditions. Such indirect effects
may also include effects through changed resource
availability, something that we will discuss later. Here
we conclude that the full network of consumer–resource
interactions in ecosystems generally will encompass
more species than food webs, as the latter only deals
with the subset of predator–prey interactions. And
also, most food web studies and models ignore the
indirect interactions among species that result from
their differential production of resources through
detritus production and excretion (e.g. Cohen et al.
1993a; Moore et al. 1993; de Ruiter et al. 1995; Neutel
et al. 2002, 2007; Montoya et al. 2006).

The mortality and excretion of detritus and mineral
nutrients by organisms yield a critical ‘downward’
producer–resource interaction (figure 1) between
higher trophic levels and lower trophic levels (auto-
trophs, detrivores), which is required to close nutrient
cycles and provide energy towards the detritus-based
channel of food webs (figure 1). Organisms can show
large difference in the amount and type of detritus they
produce. For example, plants show large differences in
the C/N ratio and lignin content of their litter, affecting
the food basis of microbial detrivores, and thus the
decomposition rate of detritus and hence nutrient
recycling (Berendse et al. 1987). The consequences of
this indirect interaction for community structure and
ecosystem functioning are wide ranging, e.g. with
respect to understanding the effects of climate change
(Aerts 2006; Cornelissen et al. 2007). Further on in this
paper we will discuss the consequences of these
differences for the organization of consumer–resource
interaction webs.

(b) Non-trophic direct interactions

In addition to eating one another, species can show
direct interactions in different ways (figure 1). Such
non-trophic direct interactions become increasingly
recognized. For example, the changes in physiological
stress, behaviour (Bakker et al. 2005) or morphology
(Werner & Peacor 2003) in prey caused by predation
Phil. Trans. R. Soc. B (2009)
risk can substantially influence the net energy intake
rate of the prey, and hence the attenuation of energy
flow to higher trophic levels in ecosystems (Odum
1985; Trussell et al. 2006). Such changes may become
‘hard wired’ during the course of evolution, which
means that predator-avoiding behaviour will be dis-
played even in predation-free situations (Brown 1999).
Also, the ability of prey to defend themselves against
predation can be induced by the presence of predators,
as seen in some plant species that make more secondary
compounds when subject to herbivory (Karban &
Baldwin 1997). And, predators may adjust their
phenotype in order to be able to handle different
types of prey (Piersma & Lindstrom 1997; Piersma &
Drent 2003; van Gils et al. 2006). In some plant
species, herbivory induces the plant to produce
chemical volatiles that attract the enemies of its
enemies (Stowe et al. 1995). Also, the direct beha-
vioural interference between organisms of a single or of
different species (e.g. among large terrestrial predators)
belongs in this category of non-trophic direct
interactions (Menge 1995; Vahl et al. 2007), which
can be uni- or bidirectional.

(c) Interaction of organisms with environmental

conditions

(i) Response to environmental conditions by organisms
Conditions are all things outside an organism that
affect it but, in contrast to resources, are not consumed
by it (Begon et al. 1990). Species at all trophic levels
generally respond much more similarly to variations in
environmental conditions (or stress) such as tempera-
ture than to resources. Over the last decades, the field
of ecophysiology has gained strong insights into the
physiological and morphological adaptations that
allow species to cope with unfavourable environmental
conditions, in both plants (Fitter & Hay 2001) and
animals (Karasov & Martinez del Rio 2007). In
addition, the field of behavioural ecology (Krebs &
Davies 1997) has provided key insights into the origin
and function of behavioural adaptations in response to
unfavourable conditions. As a simple principle, all
species that persist in an ecosystem can be assumed to
have the appropriate physiological, morphological and
behavioural adaptations to cope with the prevailing
environmental conditions. However, not only the
average conditions are important. Where short periods
of resource shortage can be overcome by internal
storage by organisms, short events of extreme
conditions (very cold, hot, saline or anoxic conditions)
can be fatal for organisms that lack the appropriate
adaptations to cope with, or escape from those,
and are therefore important for understanding com-
munity structure.

As the key physiological challenges posed by
unfavourable conditions are generally the same for all
organisms from microbes to plants to animals, this
allows generalization of effects across widely different
species. For example, lower temperature slows down
the biochemical reactions of energy metabolism,
reducing the available energy for resource uptake,
growth and reproduction. As a result, the slope of the
response to temperature of the rate of metabolism,
development and growth of species of widely different
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taxonomic and trophic status (microbes, plants and
animals) seems similar, which may be explained by the
biochemical similarity of their basic metabolic
pathways reflecting a common evolutionary origin
(Gillooly et al. 2001, 2002; Brown et al. 2004; Savage
et al. 2004). Such general knowledge on the tempera-
ture response of growth rate can be used to incorporate
temperature effects on food web structure, e.g. to infer
the balance between endotherms and ectotherms
(Vasseur & McCann 2005).

(ii) Modification of environmental conditions by organisms
If species would respond only to the average environ-
mental conditions, one may argue that such conditions
are again not very relevant for understanding
interaction webs. All species that occur in an ecosystem
may simply be expected to have evolved adaptations to
the prevailing conditions, which are external forcing
factors to the local system. However, evidence is
accumulating that many species can also strongly
modify environmental conditions ( Jones et al. 1994,
1997; Gutierrez & Jones 2006; Wright & Jones 2006),
which introduces the potential of indirect species
interactions through conditions, making them relevant
to understanding the structure of interaction webs.
Owing to physical and biochemical interactions,
modification of conditions can change resource avail-
abilities and have effects on autotrophs through two
separate pathways (figure 1). For example, some
European heathland plant species strongly lower the
soil pH through their litter, which lowers the availability
of phosphate in the soil for other plants, but also
releases Al3C cations in the soil solution, which are
toxic for many other plant species and soil biota (Pegtel
1986). Also, Sphagnum mosses make the environment
unsuitable for other (especially higher) plants through
the same mechanism. These are exceptions; however,
the general pattern seems that plants change abiotic
soil conditions as pH and texture to their own benefit
(van Breemen 1993).

The study of feedback effects of organisms on
abiotic conditions has really taken off with the
introduction of the concept of ecosystems engineers
(Jones et al. 1994; Lawton 1994). More than a decade
of research on this subject has now resulted in many
examples of strong species–environment feedbacks in
almost every habitat and ecosystem (Wright & Jones
2006), and has explored its evolutionary implications
for niche construction (Odling-Smee et al. 2003)
making it now time to start expanding food web theory
with species–environment feedbacks. This is not an
easy subject: species–environment feedback in a multi-
species context, in which several species simultaneously
respond to resources and conditions as well as affecting
them, has been suggested to introduce strong non-
linearities in community and ecosystem dynamics, such
as the emergence of multiple stable states, sudden
regime shifts and chaos (Huisman & Weissing 1999;
van de Koppel et al. 2001; 2005b; Scheffer & Carpenter
2003; Rietkerk et al. 2004; Carpenter et al. 2008).
However, recent progress has been made with
both implicit and explicit approaches for bringing
non-resource environmental factors into interaction
web theory.
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(d) Spatial interactions

(i) Colonization and immigration
Inspired by the theory of island biogeography
(MacArthur & Wilson 1967), it is increasingly
recognized that the dynamics and diversity of natural
communities can only be understood well if immigra-
tion of new individuals or species from outside the
system is taken into account (Caswell 1976; Hanski &
Gilpin 1997; Hubbell 2001; Leibold et al. 2004). Even
if a species does not meet the conditions locally
required for long-term persistence, it may still persist
due to immigration from a sink population. Also, when
ecological drift or catastrophic events drive species
locally to extinction, recolonization is required for
continued persistence. Differences in dispersal strategy
among species are therefore a key component in
understanding community and food web structure
(Levin et al. 2003). For example, limits to new species
immigration are increasingly recognized as a limiting
factor in the restoration of plant communities from
which species have been lost (Bakker & Berendse
1999). The inability of particular species to reach a
local community from the regional pool can be seen as
a ‘filter’ that restricts the possible local species set
(Ricklefs & Schluter 1993). The interplay of dispersal
limitation with resource competition in determining
community structure is increasingly explored within
trophic levels (Leibold et al. 2004), but the con-
sequences of dispersal limitation in a multitrophic food
web context is still poorly explored.

(ii) Dispersal and harvesting
The human harvesting or exploitation of a particular
population can be viewed as a spatial interaction that is
equivalent to dispersal, as it removes individuals from
the local ecosystem without direct population effects
on the consumer (at least not on the same spatial
scale). Therefore, harvesting strategies that remove
individuals that would otherwise disperse to sink
habitats have been proposed to be sustainable in the
long-term for terrestrial ecosystems dominated by
large herbivores (Owen-Smith 1988). Despite the
development of elaborate harvesting models for
population management (Ludwig et al. 1993; Hilborn
et al. 1995), marine fisheries are increasingly leading to
collapses of populations, especially at higher trophic
levels in food webs (Pauly et al. 1998; Myers & Worm
2003; Berkes et al. 2006). In our final conclusions on
conservation implications, we will discuss what we
think is wrong here: we think that other-than-trophic
interactions interfere.

(iii) Imports and exports of abiotic resources and energy
Energy and nutrients can enter ecosystems both in the
detritus compartment (e.g. on the ocean floor or
seashore) or in the abiotic resources compartment
(e.g. eutrophication of mineral nutrients added by
rivers to coastal marine systems). Especially in lake
ecosystems, the consequences of added nutrients
for trophic dynamics have been explored, with
regard to trophic cascades and multiple stable states
(Carpenter & Kitchell 1993; Scheffer & Carpenter
2003; Carpenter et al. 2008). The consequences of
eutrophication for the food web structure of terrestrial
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Figure 3. A proposed general functional group classification for food webs, intended for comparing food web structure between
ecosystems. The compartments are linked by trophic interactions and detritus production (figure 1), the basic interactions that
structure food webs. The compartments are arranged along two main axes of organization. The vertical axes reflects the
approximate trophic position of species, arranged from low (bottom) to high (top), generally leading to an increase in body size.
The horizontal axis reflects a stoichiometric axis, reflecting a larger size, coarser structure, higher carbon:nutrient ratios and
slower turnover of the primary produces along the axis from left to right (increasing structural support). Associated with
increasing body size is a greater ability of detrivores and herbivores to ingest and digest poorer and coarser quality food, and
lower per mass energy and nutrient requirements of these organisms. As a result of the processes that change along both axes, the
body size of organisms increases from bottom left to top right in the scheme. See figure 1 for the interpretation of the different
types of arrow.
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ecosystems, e.g. through atmospheric nitrogen deposi-

tion, are much less documented. In a way, the effects of

imports of abiotic resources and energy on food web

structure may be easier to understand than the effects of

modified environmental conditions, as the former affect

food web structure only from the bottom-up, while the

latter affect all trophic levels (figure 1).

While exports of energy and nutrients from ecosys-

tems were not considered to be very interesting for a

long time in community ecology (they were just ‘lost’),

this has changed recently. Starting with the pioneering

work of Gary Polis (Polis & Hurd 1996; Polis et al.
1997), food web ecologists increasingly realize that

resource dynamics is not only governed by internal

recycling of resources, but also in many ecosystems

through spatial subsidies, leading to functional

couplings between food webs in adjacent ecosystems

(Huxel & McCann 1998; McCann et al. 2005). So

the exports from one ecosystem may be required

to understand the imports of other ecosystems,

and hence their dynamics. This has led to the

formulation of the concept of meta-ecosystems, which
Phil. Trans. R. Soc. B (2009)
emphasizes the importance of spatial interactions
among adjacent ecosystems through movement of
propagules, organisms, energy and materials across
system boundaries (Leibold et al. 2004).
(e) Ecological relevance of physical and chemical

interactions in ecosystems

Abiotic conditions such as soil or water salinity, soil or
aquatic sediment texture, and soil, sediment or water
pH and redox highly affect the availability of resources
to organisms (Schlesinger 1991). Such geochemical
interactions can therefore play a key role in the
structure and functioning of ecosystems, both on
short (ecological) and long (geological) time scales.
For example, the texture (relative contribution of sand,
silt and clay) of marine sediments strongly affects its
aeration, and oxygen is an important resource for
many species of benthic infauna. Also, soil and
sediment aeration affects many geochemical reactions
through its impact on redox potential. Both are
also subject to organismal feedbacks, through
bioturbation (affecting aeration and texture) and
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filter-feeding (affecting texture) (Herman et al. 1999;
Widdows et al. 2004). For terrestrial ecosystems, fire
should be mentioned here as special kind of physical
interaction that is important as it can lead to rapid loss
of energy and some nutrients (such as nitrogen) from
the detritus compartment through volatilization, sud-
denly moving nutrients from coarse detritus to the
abiotic resources compartment (such as phosphorus),
short-cutting the decomposition chain from detritus to
mineral nutrients (McNaughton et al. 1998). Also, fire
leads of course to temperature conditions lethal for
many plants and animals (unless they have adaptations
to cope or escape those extreme conditions).

(f ) Environmental forcing

In addition to the biotic influences it receives, local
abiotic conditions are also often subject to strong external
forcing (figure 1), for example when regional climatic
conditions affect local air, water or soil temperature,
without receiving much feedback from it. This external
forcing is the key ‘point of entry’ in studying not only the
effect of climate change on food webs, but also how toxic
pollutants will affect trophic structure and ecosystem
functioning. Surprisingly, despite the existence of good
indicators for its operation, e.g. in the level of synchrony
between species in long-term ecological monitoring
(Bakker et al. 1996), environmental forcing has hardly
received any attention in the study of consumer–resource
interactions, food webs or other interaction webs
(Vasseur & McCann 2005; Vasseur & Fox 2007;
Loreau & de Mazancourt 2008).
4. TWO MAIN AXES OF FOOD WEB
ORGANIZATION
The six main types of ecological interaction outlined in
§3 can be used to map (parallel) ecological networks in
different ecosystems in a similar, standardized way.
Before exploring this idea further, however, we first
return to the first interaction type (consumer–resource
interactions) to expand upon the classic axis of food
web organization (vertical trophic position) with a
second, horizontal axis. This second axis will facilitate
the development of a testable template on the basis of
which food webs can be compared, to apply both to a
number of different ecosystems as ‘proof of concept’, in
combination with the previously listed six main
interaction types.

A strong point of food web ecology is its promise for
generality: it holds the potential to be useful in
comparing very different ecosystems, and hence
produce general conclusions on the organizational
forces and principles at work. However, this ability to
compare is currently hampered by our inability to
assign species generic functional roles. Yet, such
system-independent roles of species are of great
fundamental and applied interest. This role should
characterize the general topological position and
functional importance of a species in ecological net-
works, independent from the particular web under
study. Current functional classifications mainly use the
trophic position, as top predators (Finke & Denno
2005; Scheffer et al. 2005; Borrvall & Ebenman
2006), mesopredators (Elmhagen & Rushton 2007),
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herbivores and primary producers. For interaction
webs including species–environment interactions,
the importance of ecosystem engineers has been
recognized for species that strongly modify abiotic
conditions, and hence resources to other species (Jones
et al. 1994; Lawton 1994; Wright & Jones 2006). But
can other main axes of organization be identified?
We suggest that a more structured approach is required
for each of the six types of interaction that define
generic species groups by their topological position,
and hence their functional roles in ecosystems. The
result would be an ‘interaction web template’ that
should fit to describe any ecosystem.

For consumer–resource interactions, we propose
such a template in figure 3 to explore the usefulness of
this idea. Each numbered box is a functional group,
generally consisting of a group of species that is
competing for resources that they obtain from one or
more other functional groups in the web (figure 2). This
general web is ‘anchored’ at the bottom left, where algae
and other autotrophs produce biomass, and hetero-
trophic bacteria decompose the detritus produced by
plants and higher trophic levels, both at a high rate of
turnover. We suggest that, starting from here, con-
sumer–resource interaction webs are organized along
two main axes. The vertical axis is the classic trophic
position axes, forming food chains of species towards
increasingly higher trophic levels. Generally, the size of
species increases along the vertical axis, as predators
generally need to be bigger than their prey to hunt
and handle them efficiently (with the exception of
pathogens, which we discuss later) (Cohen et al. 1993b;
Brose et al. 2006). We suggest a new second major axis of
food web organization: a stoichiometric axis. At the
lowest trophic levels, this axis is driven by two main
evolutionary radiations: (i) the competitive struggle for
light between plants (as is still observable during
primary succession, changing the dominance by algae,
to herbaceous plants, to trees), leading to the formation
of plants with more and more structural support
(cellulose, lignin, etc.) in an effort to overtop each
other, and (ii) a radiation of detrivores other
than bacteria, which could physically fragment (macro-
detrivores) and biochemically decompose (fungi) the
coarser, poor-quality plant material that these taller,
mechanically better supported plants increasingly
produced. Therefore, the horizontal axis is a stoi-
chiometric axis (Sterner & Elser 2002), representing a
decreasing C/N ratio of the plant material produced and
a lower turnover rate of its compartments. Within the
next herbivore trophic level, this horizontal axis has also
resulted in size radiation of consumers, not driven,
however, by the need to be bigger than their prey, but by
the need to be able to digest it. Bigger herbivores can
handle poorer quality food due to the longer residence
time of food in their stomach, and lower per mass energy
requirement, leading to a more favourable ratio of
digestive capacity to metabolic requirement (Demment &
van Soest 1985). The resulting increase in herbivore size
from the need to handle poorer quality (niche-based
species radiation) may then have triggered an evolutionary
arms race between herbivores and predators, causing a
size increase in predators as well (Owen-Smith & Mills
2008a) and also resulting in some herbivores eventually
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‘escaping’ their predators by growing too big, so-called
megaherbivores (Owen-Smith 1988). The two indepen-
dent axes of food web organization suggested in figure 3
therefore cause strong body size variation to exist both
within and across trophic levels, with the smallest species
found at the bottom left, and the largest species at top
right. The organization of food webs are a testable
hypothesis, which requires the compilation of data on
both quantitative trophic position (e.g. through stable N
isotopes) and stoichiometric position (e.g. through
measuring C/N or C/P ratios of diets and excretion
products, turnover rates), facilitating a quantitative
comparison of the resulting patterns across ecosystems.

In the remaining of this paper, we will qualitatively
explore this ‘food web template’ (figure 3), together
with the six main interaction types we identified
(figure 1), for a number of very different food webs
for a first proof of concept. For each of three
ecosystems, we will explore the interaction web based
on both consumer–resource interactions, as well as on
the other types of interaction shown in figure 1. In the
latter case we focus especially on the interaction
between species and biotic (non-resource) factors.
5. PARALLEL INTERACTION WEBS:
CASE STUDIES
(a) European intertidal mudflats

The first web consists of the food web formed by
marine plankton, benthic invertebrates and their
predators on the Sylt-Rømø soft-bottom intertidal
flats in Denmark (figure 4), based on the data in
Baird et al. (2007). We observe that the food web
already at the herbivore level is firmly based on both the
detritus and herbivore channels (figure 1), as most
benthic organisms feed on both. Primary production in
the system arises from two groups of autotrophs: the
pelagic microalgae with fast turnover and the micro-
phytobenthos (diatom mats) growing on top of the
sediment with slower turnover. The web is dominated
by a layer of mixed microbivores (the benthos) that feed
on both detritus and microalgae, and are fed upon in
turn by mostly a single layer of mixed mesopredators
(the birds). The mixed microbivores (mostly worms
and bivalves in this case) are especially important in
producing detritus that enters the pool of sediment
particulate organic matter (figure 4b), hence producing
resources for other microbivores, and mineralizing
nutrients for the microalgae. The horizontal, stoi-
chiometric axis of organization can also be clearly
recognized. A strong size differentiation among the
mixed microbivores exists, in which bigger species such
as the sediment-feeding worm Arenicola probably deal
with particle sizes that cannot be handled by the much
smaller meiobenthos (such as nematodes), but produce
detritus than that can be used by smaller mixed
microbivores. Also, a megaherbivore is found in the
system, as the bivalve Mya arenaria becomes so big
(and lives so deep) that halfway through life it becomes
effectively predation free (Zwarts & Wanink 1984;
Zaklan & Ydenberg 1997)—thus representing an
‘elephant of the mudflats’. On the left side of the
web, where species become smaller and smaller, and
where the web is based on more finer sized detritus
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particles, the number of trophic levels increases,
facilitating mixed top predators, and higher trophic
levels that can persist on the ‘high-quality’ end of the
stoichiometric axis. We suggest that this triangular
structure is a general pattern across both marine and
terrestrial ecosystems.

Figure 4c shows the interaction web for the same
ecosystem, but now drawn not for classic consumer–
resource interactions, but for a set of other relevant
interactions out of our list of six. This interaction web is
drawn from information on a variety of sources (Reise
1985; Herman et al. 1999, 2001; Piersma et al. 2001;
Widdows et al. 2004; van Gils et al. 2006; van Oevelen
et al. 2006). Important abiotic (non-resource) con-
ditions in this system are the texture and stability of the
sediment, the aeration or redox of the sediment and
the turbidity of the water. These abiotic conditions are
mutually dependent on each other through physical
and chemical interactions (figure 4c). A central abiotic
process is the balance between sedimentation of fine
sediment and its resuspension due to the turbulence of
the upcoming and outgoing tide (the mudflats are
flooded twice a day by sea water from the tidal gulleys).
If more fine sediment (a mixture of organic matter, silt
and clay) goes into suspension than on average settles,
then the mudflat becomes more sandy, as the fine
sediment is exported from the system by tidal currents.
Also, high resuspension rates increase the turbidity of
the water. If more fine sediment settles than goes into
resuspension, the mudflat becomes more muddy. This
balance between settlement and resuspension is
affected by a mixture of biotic and abiotic processes,
some internal to the system, some externally imposed.
Settlement of fine sediment is promoted by filter-
feeding bivalves, which filter it out of the water and
deposit it in their neighbourhood as pseudofaeces.
Resuspension of the sediment is promoted by
the digging (bioturbation) activities of lugworms
(Arenicola) and the foraging of shrimp (Crangon).
Also, human dredging for edible cockles (Cerastoderma)
not only has depleted their stocks, but also has
promoted the resuspension of fine sediment, hence
promoting sediment loss and sediment instability. On
the other hand, microphytobenthos and sand mason
worms (Lanice) ‘glue’ the sediment together, hence
reducing resuspension.

The aeration (associated with redox) of the sediment
highly depends on the texture (better aeration in
coarser sediments) and hence on the balance of
settlement–resuspension of fine material. Organisms
not only highly affect the abiotic condition of sediment
texture, aeration and water turbidity, but they also
strongly respond to it. Better aeration promotes
decomposition by aerobic heterotrophic bacteria, and
promotes most species of smaller benthos. High
sediment stability seems required for the establish-
ment after spatfall (recruitment) of the bivalves.
Higher water turbidity reduces the foraging success
of fishes and birds that hunt by sight, hence relaxing
top-down forces in the system (figure 4c). Several
potential feedback loops exist in the network of
figure 4c. For example, microphytobenthos promote
their own growing conditions by stabilizing the
sediment, while filter-feeders make conditions less
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Figure 4. (Opposite.)The general framework for studying ecological networks (figures 1 and 2), as applied to the soft-bottom
intertidal mudflat ecosystem of the Wadden Sea (Sylt-Rømø part, Denmark). This ecosystem consists of several subwebs. The
interactions for the ‘Arenicola flats’ subweb are presented here. (a) The interaction web based on consumer–resource interactions
(food web), where the topology of the web and the weight of the interactions (presented here as carbon flow, in mgC m2 dK1) is
based on measured fluxes as presented by Baird et al. (2007). (b) The interaction web for the same ecosystem drawn for the
detritus production part of consumer–resource interactions, based on measured fluxes as presented by Baird et al. (2007). (c)
The inferred interaction web for the same ecosystem for other than consumer–resource interactions, drawn for important effects
of species on abiotic conditions (ecosystem engineering), response of species to abiotic conditions, external forcing, material
inputs and losses, and various physical and chemical interactions, based on information from various sources (Whitlatch 1981;
Flach 1992; Herman et al. 1999; Widdows et al. 2004; Coco et al. 2006; Huxham et al. 2006; Lumborg et al. 2006). The key
interaction in this web is the effect of organisms on physical conditions. Specifically, the web outlines the influence of organisms
on the sedimentation rate of fine sediment versus its resuspension, where some biota promote the sedimentation, while others
promote or inhibits its resuspension. Interaction weights were not available for the interaction web shown in (c). Numbers
inside each box indicate the trophic functional group (figure 2). See figure 1 for the interpretation of the different types of arrow.
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suitable for their own recruitment, by decreasing
sediment stability, which may lead to population
cycles. The overall picture that arises from figure 4 is
that the network of consumer–resource interactions
will be highly affected by the network of other
interactions that operate in parallel, and vice versa.
Trophic interactions can ramificate into the abiotic
network, and non-trophic interactions will ramificate
into the consumer–resource network. Neither network
seems to have clear priority over the other in
determining the abundances of species and the
functioning of the ecosystem.
(b) North American short grass prairie

The second web that we analysed is the soil food web of
the short grass prairie, Colorado, North America. Hunt
et al. (1987) measured and estimated the flows of
nitrogen between different functional groups of soil
biota in this system (figure 5a). This web is a subweb
from the larger consumer–resource network of this
ecosystem, as it deals only with below-ground trophic
interactions. Although composed of very different
species, we see that the general structure resembles
the intertidal food web, with a more complex, reticulate
structure on the left (‘small—high resource quality–fast
turnover’) side of the web, while being ‘flatter’ for the
right side (‘large—lower resource quality–slower turn-
over’) of the web. The basis of the web is formed by two
energy channels: one detritus based and the other plant
based, the latter which splits into a bacterial and fungal
channel. Rooney et al. (2006, 2008) have suggested
that the coexistence of such channels with a different
flux and turnover rate contribute to the stability of food
webs to external perturbations. Towards higher trophic
levels, all channels merge again due to the presence of
omnivorous top predators, but stay longer separate
than in the intertidal mudflat example. On the
bacterial-based side of the web, weak intraguild
predation is found by omnivorous nematodes on
amoeba, and by amoeba on flagellates, while all groups
also feed on bacteria. This creates consumer–resource
feedback loops that have been suggested to contribute
to the stability of the entire web (Neutel et al. 2002).
Similar loops of intraguild predation may arise in the
macrofauna of the litter layer (beetles, spiders, etc.);
however, these groups were not samples in the study of
Hunt et al. An important difference to the marine food
web of figure 4 is the central role played in this web by
fungi and fungivores, pointing at the poorer C/N
Phil. Trans. R. Soc. B (2009)
ratio of the organic matter produced by the plants in
this ecosystem. Similar to the marine web, all lower
trophic levels make important contributions to the
detritus and mineral nutrient compartment (figure 5b),
introducing important producer–resource interactions
between species at lower trophic levels. It should be
noted that the researchers in this case aggregated
species in functional groups, each incorporating up to
tens to hundreds of species that compete for resources.
So where the soil food web seems to be more strongly
structured by predator–prey interactions, while the
intertidal food web seems structured more by
competition, this may be an artefact of the differential
level of aggregation chosen.

Figure 5c shows a parallel network of non-trophic
interactions that operates in this system simul-
taneously, based mainly on information provided by
Hook & Burke (2000). The central abiotic process here
is the dynamics of soil texture (similar to the intertidal
ecosystem, but with slower dynamics), where the soil
silt and clay content (fine fraction) are determined by
inputs through weathering (promoted by plants and
mycorrhizae) and by the run-on/run-off balance of silt
and clay, which depend on the catena position in the
landscape and on the vegetation cover. Soil texture has a
direct effect on most soil biota through affecting their
ability to move, especially in combination with the soil
water content (not shown), which depends on texture,
run-on/run-off balance (determined by catena position)
and evapotranspiration (determined by rainfall,
vegetation cover and radiation). Soil water availability
especially has a strong impact on bacterial and fungal
decomposition, and hence the rest of the food web that is
based on these groups (figure 5a). The non-trophic
network contains various feedbacks, e.g. where plants
promote texture to their own benefit (van Breemen
1993). Again, both the consumer–resource network
(figure 5a,b) and the non-trophic ecological
network (figure 5c) highly intertwine, where change in
one network can ramificate or can be amplified or
inhibited through the other network, and vice versa.
(c) African savannah

Our last interaction web analysed in this way is that
among plants, large herbivores and their predators as
found in the Kruger National Park savannah ecosystem
in South Africa (figure 6). The energy flow in the
trophic part for the herbivore–predator web part was
calculated from the data recently published by
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Figure 5. (Opposite.)The general framework for studying ecological networks (figures 1 and 2), as applied to the soil subweb of
the short-grass plains ecosystem of Colorado, USA (Central Plains Experimental Range). (a) The interaction web based on
consumer–resource interactions (food web), where the interaction topology and weights (presented here as nitrogen flow, in
mgN m2 yrK1) is based on measured and calculated fluxes as presented by Hunt et al. (1987). (b) The detritus-production part
of the consumer–resource interaction web (in mgN m2 yrK1), based on measured and calculated fluxes as presented by Hunt
et al. (1987). Only returns greater than 100 mg N m2 yrK1 are shown. (c) The interaction web for the same ecosystem based on
species effects on abiotic conditions and species responses to abiotic conditions, as inferred from information provided for this
ecosystem by Hook & Burke (2000), and general information for other drylands (van Breemen 1993; Austin et al. 2004). The
key process here is the modification of soil texture by plants and fungi (through effects on weathering and run-on/run-off
balance, and the high sensitivity of soil biota to texture. Interaction weights were not available for the interaction web shown in
(c). Numbers inside each box indicate the trophic functional group (figure 2). See figure 1 for the interpretation of the different
types of arrow.
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Owen-Smith & Mills (2008a), while the plant–
herbivore part was calculated using diet data provided
by Gagnon & Chew (2000), and using densities and
allometric equations. It should be noted first that the
web shown in figure 6a is again a subweb of the total
consumer–resource network found in this ecosystems.
For example, small mammals and invertebrate herbi-
vores (such as grasshoppers) were not included, nor
was the entire detritus-based decomposition chain of
the food web. Clearly, this consumer–resource subweb
is firmly rooted in two energy channels formed by the
grasses (fast turnover) and woody plants (slow turn-
over). Within the herbivore trophic level, a strong
stoichiometric body size gradient is found, where
species seem to alternate within each size class between
the two energy channels. It is unclear yet whether this is
a general principle. Resource partitioning between
herbivores of different size is a classic theme of
investigation in tropical savannahs (Vesey-Fitzgerald
1960; Bell 1971). The outcome of earlier studies is that
body size differences promote coexistence along
gradients of productivity and plant quality, with bigger
species being better able to handle poorer quality, but
needing more food (Prins & Olff 1999; Ritchie & Olff
1999; Haskell et al. 2002; Olff et al. 2002). This
provides coexistence opportunities, especially in the
presence of spatial heterogeneity of food quality and
quantity (Ritchie & Olff 1999; Cromsigt & Olff 2006;
Cromsigt & Olff 2008), and leads to facilitation
interactions (Vesey-Fitzgerald 1960; Prins & Olff
1999; Arsenault & Owen-Smith 2002). The ‘hori-
zontal’ size spectrum of herbivores forms again a niche
axis along which competing predators partition their
prey (figure 6a), with generally bigger herbivores
sustaining bigger predators, but with strong niche
overlap. Also in this case, spatial heterogeneity is
expected to contribute to the coexistence of competing
predators, and are important indirect effects observed
(not shown in the figure) of vegetation structure on
predator–prey interactions (Hopcraft et al. 2005).
Although from a trophic perspective, this web perfectly
forms three layers, this is caused by the choice of the
researchers to include only direct predator–prey
interactions. From large to small, predators have been
observed to form a competitive hierarchy, where
predators interfere through kleptoparasitism and beha-
vioural interference (chasing each other away from
their kills and territories). Inclusion of such effects
would bring a more ‘vertical’ structure in the
interaction web. Also, it should be noted that the
observed prey choices of these savannah predators are
Phil. Trans. R. Soc. B (2009)
quite flexible due to adaptive foraging (Owen-Smith &
Mills 2008b), emphasizing again the importance of
‘conditional probabilities’.

Figure 6b shows the web of key non-trophic
interactions which we think operate in this ecosys-
tem, in combination with its important trophic links.
The main abiotic variable is the intensity of
savannah fires that regularly occur, which depends
on weather conditions, fuel load formed by coarse
detritus (mostly formed by grasses) and human fire
management (when and where to light fires). In
addition, the system holds a strong legacy of the past, as
the fuel load depends on the duration since the last fire
(a management decision). Intense fires have two main
effects: (i) they kill woody plants (especially young
ones) and (ii) they transfer nutrients in coarse detritus
partially into the mineral nutrient pool, while partially
facilitating nutrient loss through combustion and run-
off of ash. Fires therefore provide a short cut,
temporally shutting down the decomposition chain
that the coarse grass detritus would enter if the system
was not burned. This also locks out all higher trophic
levels that could be based on this detrital chain
(compare with figure 5a). From an ecosystem perspec-
tive, fire should therefore not be viewed as a ‘non-
selective herbivore’ (Bond & Keeley 2005). Instead, it
operates as a very fast and efficient detrivore. Again, the
consumer–resource network and the network based on
other types of interaction strongly interact in this
system. Through killing trees, intense fires promote
the balance in competition for resources (water and
nutrients) between trees and grasses in the advantage of
the latter. However, if a site is not burned for a long time
then trees outshade grasses and create moist micro-
climates, which may suppress fires for a long time. By
the sudden mineralization of nutrients, fires promote
nutrient uptake by grasses, from which herbivores
profit. Also, the decreased woody cover and shorter
grass that results from intense fires reduce the hunting
success of their predators, providing a dual
advantage. The net result of these processes is strong
spatial and temporal unpredictability of ecosystem
configurations in climatic regions where fires occur
(Bond 2005).

We conclude from the examples in figures 4–6 that the
application of a food web template as developed in
figure 3 seems to really work, and facilitates the
comparison of the role of functionally equivalent species
across very different ecosystems. Also, for each of the
ecosystem observed, various interaction webs can be
drawn using the six main types of interaction shown in
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figure 1. These different interaction webs were found to
show strong mutual interferences, which calls for their
joint analysis.

6. LINKING ECOLOGICAL NETWORKS WITH
DIFFERENT TYPES OF INTERACTION
So given webs based on different types of interaction
occur in ecosystems, how do we link these different
webs, conceptually and in models? We think that we are
just beginning to understand this, and will suggest
some directions. A first step in approaching this
Phil. Trans. R. Soc. B (2009)
problem is to think about the temporal and spatial
scales involved in each class of processes that forms
separate interaction webs. The important question is
then whether these scales are clearly separate or merge.
Figure 7 shows a qualitative graph of the phase plane of
the temporal scale of consumer–resource interactions
(increasing with size and lifespan of organisms
involved, and decreasing with turnover time of
resources in biotic compartments), and the temporal
scales of interactions between species and abiotic (non-
resource) conditions (decreasing with the rate of



Figure 6. (Opposite.) The general framework for studying ecological networks (figures 1 and 2), as applied to the savannah
ecosystem of Kruger National Park, South Africa. (a) The subweb of consumer–resource interactions that involves larger
mammalian herbivores and their predators. The interaction topology and weights (presented here as annual energy flow, in J yrK1)
for the herbivore–predator interactions is from the data presented by Owen-Smith & Mills (2008a), where feeding rates based on
meat were converted to energy flows, using a conversion of 1 kg meatZ23 600 J (Karasov & Martinez del Rio 2007). The energy
flow ( J dK1) between all plants and each herbivore population was first calculated allometrically as N!7940 W 0.646 (Demment &
van Soest 1985), where W is the body mass of the herbivore (g) and N is the population density, as reported by Owen-Smith & Mills
(2008a). Then, this total energy flow per herbivore species was partitioned over its three main food item classes according to the
proportional diets given by Gagnon & Chew (2000). (b) The interaction web for the same ecosystem based on physical and
chemical interactions, detritus-based consumer–resource interactions, and interactions between organisms and abiotic (non-
resource) conditions. The key process here is the role of fire, short-cutting nutrients away from the horizontal decomposition
pathway (figure 2), making nutrients partly directly available to plants through burning off energy and carbon, while partly
stimulating nutrient losses through ash run-off and gaseous losses. Also, fire kills (especially young) trees, while grasses are much
more resistant to fire (Bond & Vanwilgen 1996). The higher coarse detritus production by grasses compared with trees increases
the fuel loads, which promotes fires, benefiting grasses in competition with trees for light and water. On the other hand, if trees
manage to outshade grasses during long fire intervals, then the fuel load is highly reduced, and fires become permanently
suppressed. Also, high grazer densities can deplete grass biomass, which suppresses fires, and can lead to tree invasion (Dublin
1995; Sinclair 1995). This makes the outcome of the tree–grass interaction in grazed tropical systems at intermediate rainfall in the
presence of fire highly unpredictable (Bond 2005), but very diverse in large herbivores (Olff et al. 2002). Quantitative interaction
weights were not available for the interaction web shown in (b). Numbers inside each box indicate the trophic functional group
(figure 2). See figure 1 for the interpretation of the different types of arrow.
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change of key abiotic factors). We have shown the
tentative position of different ecosystems in this phase
plane, including the three we discussed in the previous
section. For the short grass plains, one can argue that
these temporal scales are clearly separated, where the
landscape-forming processes that determine texture
dynamics along landscape gradients are larger and
slower than the consumer–resource interactions
between the organisms in the food web. The same
may hold, for example, on coral reefs where the reef-
building process (deposition of calciferous structures)
is a much slower one than the actual consumer–
resource dynamics that govern it (filter-feeding
anthozoans). In this case, a hierarchical approach can
be used (Allen & Starr 1982), where the dynamics of
the species–abiotic environment interactions is solved
first, followed by solving the consumer–resource
dynamics, under the assumption of quasi-steady state
of the abiotic conditions. However, in the intertidal
mudflat example, we saw that the time scales of the
consumer–resource interactions started to blur with the
time scales of the species–abiotic environment
interactions, and the latter may even be faster than
the first. The savannah example had a bit of both
(figure 7). The special feature of fire in this
system suddenly speeds up dynamics in environmental
conditions to become much faster than consumer–
resource interactions, but only temporarily. In the case
where time scales of different types of process cannot
be clearly separated any more, we suggest both implicit
and explicit approaches to addressing the interplay
between the parallel networks at work.

(a) Implicit approaches for linking networks

Recently, Arditi et al. (2005) proposed an ‘interaction
modification’ approach that implicitly deals with the
modification of environmental conditions by organ-
isms, a concept that was further developed by
Dambacher & Ramos-Jiliberto (2007) and Goudard &
Loreau (2008). In addition to the interaction of an
organism with its own resources, organisms can also
modify the interaction between other organisms and their
resources. Arditi et al. propose to capture this through a
Phil. Trans. R. Soc. B (2009)
‘net effect’, without taking the explicit modification of

the environmental conditions, and the response of

species to them, explicitly into account. For example,

microbial crusts in the desert can reduce the infiltrationof

water, which strongly affects the consumer–resource

interaction of higher plants with soil water (West 1990).

Or lugworms (Arenicola) in soft-bottom intertidal

sediments strongly promote the aeration of the sediment

through bioturbation, which facilitates many other larger

detritus feeders that require such aerobic conditions

(Herman et al. 1999). Trophic relationships higher up

in the web can also be dealt with through this approach.

For example, thorny shrubs or chemically defended

plants can reduce the consumption by large herbivores of

palatable tree saplings, which has large consequences for

ecosystem dynamics and the formation of spatial

structure in grazed ecosystems (Olff et al. 1999; Bakker

et al. 2004; Smit et al. 2007, 2008). Also, the role

of some organisms such as mussels and macroalgae in
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forming safe sites, where marine animals can find shelter
against their predators, could be captured by this
modelling approach.

(b) Explicit approaches for linking networks

An alternative to the interaction modification approach
is the explicit modelling of the modification of the
environmental conditions and/or resources affected by
the organism involved, with indirect consequences of
other interactions. Examples of studies using this
approach include the analysis of how plant cover in
semi-arid areas affects the water infiltration capacity of
the soil, and hence the soil water balance, which in turn
affects plant–herbivore interactions (Rietkerk et al.
2000). The resulting scale-dependent feedbacks
introduce interesting nonlinearities and sometimes
catastrophic behaviour in the ecosystems involved
(Rietkerk et al. 2004; van de Koppel et al. 2005a,b;
Kefi et al. 2007). Therefore, such feedbacks can be
viewed as destabilizing the system.

However, feedbacks of organisms on abiotic con-
ditions also have the potential to stabilize ecosystems.
Probably the most famous example of such a stabilizing
feedback has been the ‘daisy world’ mini-model,
originally presented by James Lovelock (Watson &
Lovelock 1983) to illustrate mechanisms that could
underlie his ‘Gaia hypothesis’, i.e. the importance of
life in promoting homeostasis in the global atmospheric
composition and climate, with returning benefits for
this life (Margulis & Lovelock 1974; Lovelock &
Watson 1982). Although highly controversial upon its
presentation, the operation of vegetation–climate
regulatory feedback is now generally accepted (e.g.
through differences in the albedo of snow, different
vegetation types and bare ground, the temperature
changes resulting from that, and the response of snow
and vegetation to such temperature change), an
increasingly important component in current global
change models (Luo 2007). Unfortunately, the original
Gaia idea was poorly communicated with probably too
much emphasis on ‘ultimate goals’ that the biosphere
would have (Wilkinson 1999; Free & Barton 2007),
which may explain why only very recently ecosystem-
level regulatory feedbacks are receiving some serious
theoretical scrutiny (Lenton 1998; Seto & Akag 2007;
McDonald-Gibson et al. 2008; Wood et al. 2008), and
also now in the context of food webs (Bagdassarian
et al. 2007). The idea of the importance of such
regulatory feedbacks fits well with our previous
recognition of the importance of causes of organization
that arise at a particular level of organization through
a specific topological arrangement of interactions.
Community and ecosystem ecologists could also
benefit here from insights into biochemical networks,
where ideas on the importance and operation of
regulatory feedbacks are well established.
7. CONCLUDING REMARKS
(a) Beyond predator–prey interactions

In this overview, we have tried to outline a framework
that may be useful in the further theoretical, observa-
tional and experimental studies of parallel ecological
networks. We need more structured approaches that
Phil. Trans. R. Soc. B (2009)
map for different ecosystems how strong ‘other-
than-food-web’ interactions affect species and ecosys-
tem dynamics. Also, we need to quantify on what spatial
and temporal scales these processes operate, as this has
consequences for modelling approaches. The strong
emphasis for example in soil ecological network studies
on trophic interactions does not mean that modification
of the abiotic habitat by organisms, or dispersal, play a
less important role. There may be just less of a tradition
to investigate it. Instead, researchers in intertidal
mudflat ecosystems have a strong tradition of studying
interactions between organisms and abiotic (non-
resource) conditions, and on studying imports and
exports of organic matter, but that does not mean that
food web interactions or dispersal are less important as
structuring forces. Similarly, the strong emphasis in
rainforest research on dispersal and immigration
(e.g. Hubbell 2001) does not mean that trophic
interactions, or interactions between plants and soil
formation, are less important. Similarly, in savannah
ecosystems, the dynamics of the detritus-based part of
the food web (and its interplay with fire) seems largely
ignored, while large herbivores and their predators have
received most attention. Rather than a priori assume that
a particular type of interaction is dominating the
structure and functioning of a particular ecosystem,
we need new ways to quantify the relative importance of
different main types of interaction as shown in figure 1,
and new approaches to study their interplay.

(b) Keystone species or keystone interactions?

Ecologists recognized early on that not all species or all
interactions are equally important for the structure of the
communities and the functioning of the interaction webs
that they form. Paine (1969) launched the influential
concept of keystone species, referred to as species that
preferentially consumed and held in check another
species that would otherwise dominate the system, noting
that such species may be unimportant as energy or
material transformers. Broadening later to include also
non-trophic interactions and emphasizing especially the
importance of subordinate species with a role dispropor-
tional large to their abundance (Power et al. 1996), many
examples of such species have now been documented
(Boogert et al. 2006). Approaching this problem more
from a systems perspective, Holling (1992) has suggested
that only a small set of plant, animal and abiotic
processes structure even the most diverse ecosystems.
However, a problem with the current keystone species
literature is that it seems to lack generality. Merely, it
can be characterized as an increasingly long list of case
studies with little general pattern.

Following Paine’s and Holling’s lead, we can use our
proposed list of six major interaction types to ask
whether a particular type of interaction has a very strong
impact on the overall community structure, and seek
for generality on that level. For example, the import-
ance of predation on herbivores yielding keystone
interactions has been widely demonstrated in rocky
intertidal (Paine 1969; Menge et al. 1994), kelp forest
ecosystems and freshwater lakes (Carpenter & Kitchell
1993). For tropical forests on the other hand, Hubbell
(2001) has proposed that tree propagule immigration is
the keystone interaction that dominates the community



climatic
forcing

resource
exploitation

pathogenic
effects

homeostasis
benefits

trophic
transmission
of the pathogen

immune
response

pathogenexternal
temperature

internal
temperature

predator

plant

mineral
nutrients

light

herbivore

+

–

–

Figure 8. The role of pathogens in ecological networks, using the various interaction types outlined in figure 1. Shown is an
example where a pathogen attacks a herbivore. Pathogens are successful not only because they use resources provided by hosts,
but also especially because they profit from the internal, often homeostatic non-resource conditions (such as temperature, pH)
that the host creates within its own body. Therefore, small, exothermic organisms such as bacteria and helminth worms can
achieve high populations in situations where they otherwise would be regulated by external (e.g. climatic) forcing; they become
uncoupled from those. In addition to receiving favourable conditions and resources from the host, the pathogen can impose
direct non-trophic negative (e.g. toxic) effects on the host while the host tries to do the same to the pathogen (e.g. attack it
through its immune system). The balance between these rewards and repercussions will determine the success of the pathogen,
and the indirect consequences for the host for its interactions with its resources and predators. See figure 1 for the interpretation
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structure and dynamics. For soft-bottom intertidal
ecosystems, the modification by organisms of abiotic
conditions, which include sediment aeration, texture
and hydrodynamics, has been viewed as a keystone
interaction (Herman et al. 2001; Widdows et al. 2004;
van Wesenbeeck et al. 2007) strongly structuring
communities and affecting ecosystem functioning.
For an understanding of the functioning of coastal
desert communities, the energy and material inputs
from the neighbouring sea ecosystem has been viewed
as the keystone interaction (Polis & Hurd 1996).
Making such an inventory to see which ecosystems are
dominated by which kinds of interaction is a different
approach than the quest for keystone species. For the
tropical rainforest example, not one single species may
dominate the community. Yet, the immigration and
colonization seem key to understand its structure. This
fits with the conclusion of Paine (1969) and later
authors that keystone species are often widely different
in traits and hard to predict. So where it may be
predictable that consumer–resource interactions dom-
inate in rocky intertidal ecosystem, it may be less
well predictable which species pick up that role
(e.g. depending on historic and geographical factors
(Ricklefs & Schluter 1993)). We thus conclude that
more generality can be found when exploring keystone
interactions rather than keystone species.
Phil. Trans. R. Soc. B (2009)
(c) Dealing with parasites and pathogens

A possible objection against the size-based food web
template that we laid out in figure 3 is that it does not
accommodate pathogens and parasites. Very large
herbivores and predators can have very small enemies
as well. Also, our main list of six interaction types does
not include host–pathogens interactions. Yet various
recent papers have stated that parasites are a key factor
in understanding food webs (Lafferty & Kuris 2002;
Lafferty et al. 2006, 2008). So does our proposed
framework break down at this point? We argue that it
does not, as parasites can be perfectly accommodated
as part of interaction webs through a combination of
consumer–resource interactions, effects of species on
abiotic (non-resource) conditions, responses of species
to these conditions and direct non-trophic interactions
among species (figure 8), i.e. through just a com-
bination of the interaction types listed in figure 1. The
key point is that a state of abiotic conditions has to be
assumed, which exists within organisms, as a result of
their physiological homeostasis (figure 8). By living
inside other organisms, pathogens become decoupled
from potential limitation by unfavourable external
conditions to which they would be poorly adapted
(being very small and ectothermic). The stoichiometric
framework shown in figure 2 also still holds, because
they compete with their hosts for resources, but only
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after their much bigger host has digested these
resouces. However, figure 8 shows that parasites and
pathogens cannot simply be plugged in into food webs
as additional consumers—a separate network of
interactions, which involves reciprocal negative
direct effects between host and pathogens (of which
the strength can be different for different host species),
is at least required. Various implicit and explicit
approaches may then be used to study their role in
ecological networks.

(d) Sampling theory for interaction webs

Interaction webs are often highly variable in space and
time. Not all interactions may be present everywhere
all the time (Berg & Bengtsson 2007; McCann &
Rooney 2009). Rare interactions have a higher risk of
not being observed than common, frequent
interactions. However, rare and weak interactions may
be very important in determining system dynamics
(Power et al. 1996). This calls for the development of
new, likelihood-based interaction web theory that takes
the sampling nature of the data explicitly into account,
and that can discriminate between alternative models
and explanations (Alonso et al. 2006; Allesina et al.
2008). This approach has been successful in comparing
alternative models (including different types of main
process) for the determinants of community structure
within trophic levels (Etienne & Olff 2005; Etienne et al.
2007). It can also potentially be applied to compare the
relative importance of different types of interaction in
parallel networks.

(e) Conservation considerations

An important conclusion of this paper is that
consumer–resource interactions are only a subset of
the relevant interactions that structure most ecosys-
tems. This implies that managing ecosystems on the basis
of consumer–resource interactions alone is unlikely to be
sustainable. A good case is made by the management of
fishes and shellfish stocks (e.g. Piersma et al. 2001). This
field has a long history of the development of harvesting
models just based on consumer–resource interactions,
(size-structured) population dynamics and food webs
(Hilborn et al. 1995; van Kooten & Bulte 2000).
Many fisheries (but not all) have been regulated on the
basis of the predictions of these models, by setting
harvesting quota. Yet such scientifically informed
management has not prevented a general collapse of
fish stocks worldwide, especially for species on higher
trophic levels (Myers & Worm 2003; Worm & Myers
2004; Worm et al. 2005, 2006; Berkes et al. 2006;
Heithaus et al. 2008). So something has gone wrong
here. We suggest that a main cause of this prime failure of
research–management interaction is that five out of the
six main interaction types that operate in ecosystems
(figure 1) have generally been ignored. Focusing on
consumer–resource interactions alone may lead to
surprising collapses of populations and regime shifts in
ecosystem states if other, non-trophic interactions (such
as dispersal, species–sediment interactions, physical
interactions involving temperature) start to kick in
(Weijerman et al. 2005; van Nes et al. 2007). Therefore,
we think that the analysis of the relative importance and
interplay among parallel interaction webs within
Phil. Trans. R. Soc. B (2009)
appropriate templates (as in figure 3) is urgently needed
to prevent further loss of biodiversity and impairment of
ecosystem functioning worldwide.

We thank Rampal Etienne, Kevin McCann, Charly Krebs,
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their helpful discussions.
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