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Abstract

With an ever-increasing interest in understanding the relationships between the microbiota

and the host, more tools to map, analyze and interpret these relationships have been devel-

oped. Most of these tools, however, focus on taxonomic profiling and comparative analysis

among groups, with very few analytical tools designed to correlate microbiota and the host

phenotypic data. We have developed a software program for creating a web-based integrative

database and analysis platform called MANTA (Microbiota And pheNoType correlation Analy-

sis platform). In addition to storing the data, MANTA is equipped with an intuitive user interface

that can be used to correlate the microbial composition with phenotypic parameters. Using a

case study, we demonstrated that MANTA was able to quickly identify the significant correla-

tions between microbial abundances and phenotypes that are supported by previous studies.

Moreover, MANTA enabled the users to quick access locally stored data that can help inter-

pret microbiota-phenotype relations. MANTA is available at https://mizuguchilab.org/manta/

for download and the source code can be found at https://github.com/chenyian-nibio/manta.

Introduction

The genetic material of microorganisms residing within or upon the surface of the human

body, especially gut microbiome, live in a mutualistic relationship with the host. These associa-

tions are key contributors to the host metabolism and are usually essential for human health.

The microbiota of the intestinal tract (gut microbiota) can assist in breaking down nutrients

that the host cannot digest or synthesizing vitamins that the host cannot produce. Alterations

in the microbiota can lead to diseases such as obesity [1–4]. Therefore, the study of microbiota

has considerable importance for public health.

The improvement of next generation sequencing technology, along with the decrease in the

cost of large-scale analyses, has facilitated research on microorganism communities, for example,
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by 16S rRNA gene amplicon sequencing. However, processing these sequencing data requires a

large amount of computational efforts. Post-sequencing the computational analysis [5] of microbial

data broadly consists of three phases. (1) Data cleaning and normalization: comprised of multiple

steps depending on the data source and sequencing technology, such as binning, pair-ends joining,

and quality filtering; (2) Taxonomy and abundance estimation: in which taxonomy is assigned to

the processed sequence reads, and their abundance in biological samples is estimated; and (3) anal-

ysis and interpretation of alpha and beta diversities, and functional annotation and the correlation

between the microbial abundances and the physiological, environmental, or behavioral factors.

Both the first and the second phases above are sophisticated, time-consuming, and require

high computational resources, in both 16S amplicon profiling and shotgun sequencing.

QIIME [6] and Kraken [7] are well-known examples in this category. Other related tools

include MEGAN [8], METAGEN-assist [9], EBI metagenomics, and MG-RAST [10].

In contrast, the third phase requires extensive user-interaction with researchers to select

parameters and visualizing the output, especially when parameters with high dimensionality

such as dietary, behavioral, and economic statuses are considered. The organization and stor-

age of such multi-dimensional data types is challenging and a non-trivial task. MicrobiomeA-

nalyst [11], Calypso [12], Shiny-phyloseq [13], and Mian [14] are web-based online tools to

address these challenges. Those tools provide interactive web interfaces to mediate R (such as

phyloseq [15], vegan [16], and ade4 [17]) or Python packages. Although those well-designed

tools provide various kinds of visualization and many sophisticated analytical approaches, they

cannot store the data for sharing and reuse among project members. Moreover, some of those

tools require the researchers to upload their data to third-party servers, which often invites

data security concerns. When handling big multi-dimensional metadata, researchers often

need to explore iteratively the efficacy of combining different parameters, or using different

subsets of the data in the analytical framework. A database that can allow the users to manipu-

late stratified datasets quickly and efficiently would be extremely useful for such analysis.

We, therefore, aimed to develop a tool to facilitate the third phase of the analysis with the

following features; (1) a smooth and interactive user interface to quickly and efficiently analyze

the data with no programming efforts on the part of the user, (2) the ability to save the data in

a readily accessible format, and (3) to be flexible and easily installed on individual workstations

or servers to ensure quick access and secure data storage.

In this paper, we describe MANTA, a software program for creating an integrative database

and analysis platform for microbiome and phenotypic data. MANTA has two important unique

features: (1) the ability to store and share the data, either on-line or locally, in a user friendly eas-

ily-accessible database, and (2) providing an interactive environment to examine the correlation

between the microbial abundances and other data collected such as dietary habits and lifestyle

parameters, which can be of huge size and in multiple dimensions. MANTA is scalable, and fur-

ther functionalities can be added as desired to the open-source code made available.

We have also demonstrated the usefulness of this platform by using a real-life dataset of

microbiome and lifestyle-related data, which included dietary intake and physical activity

obtained from 20 Japanese individuals. This case study shows that our platform can provide a

novel hypothesis on the relationship between the relative abundance of specific bacteria and

specific lifestyle parameters.

Materials and methods

Implementation

Our aim in this study was to develop a database framework that is able to store and share the

data on human microbiome studies. The framework consists of a database and a web
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application, including a suite of analytical and visualization tools; it provides analytical features

via a graphical user interface that can easily facilitate visualizing and correlating microbiome

and phenotypic data. MANTA-based instances can be accessed from any computer through a

modern web browser.

We store all the microbiome and phenotypic data using PostgreSQL [18], an open-source

relational database. The microbiome data need to be pre-processed and prepared in a standard

format. In addition to microbiota composition, pre-processing was also performed to provide

additional information. These additions included the identification of the dominating taxon-

omy for each sample, to allow for the plotting of easily readable bar charts or heat maps. This

annotation was achieved by merging the low abundance taxonomies in the “others” category

that was always set to be below a specific threshold (we used 10 percent in our application).

Next, we added the alpha diversity indices, including Shannon, Simpson, and Chao1 [19–21].

Finally, we included the phylogenetic distances used for hierarchical clustering and principal

coordinate analysis, such as Jaccard distance, weighted and unweighted UniFrac distance [22]

or Bray-Curtis dissimilarity [23] for each pair of samples. These phylogenetic distances could

be calculated using the R phyloseq, or vegan packages.

The phenotypic data can include—but are not limited to—multiple physical measurements

and the measurements taken while exercising such as blood profiles, lifestyle questionnaires, and

immunological studies. For convenience, we refer to these data as ‘parameters’. The parameters

were classified into continuous, nominal, and ordinal variables, and text. The data that are labeled

as text type can only be browsed in the application and are not to be used for further analysis. To

deal with variable sets of parameters, possibly from different studies, we designed database tables

to store the parameters in the form of name-value pairs. The database schema is shown in the

form of Entity-relationship (ER) diagram and is released together with the source code.

The user interface was developed using Google Web Toolkit, a Java-based framework for web

application development [24]. All calculations were implemented in Java programming language.

Case study: Correlations between dietary fat intake and microbiome

To demonstrate main functions of MANTA, we prepared an example database and named it

MANTA demonstration database (MDD). The data stored in MDD is a subset of the

NIBIOHN cohort data, a project conducted by National Institutes of Biomedical Innovation,

health and Nutrition (manuscript in preparation). MDD includes twenty fecal samples col-

lected from 20 healthy adult volunteers (21–41 years old, male) from Minamiuonuma City,

Niigata Prefecture, Japan. The NIBIOHN cohort study also collected a wide range of parame-

ters from the participants, including physical and exercise measurements, blood profiles, life-

style questionnaires, and immunological parameters. (MDD includes only a subset of these

parameters.) To enable quick access to these parameters, we further classified them into cate-

gories and subgroups (as listed in Table 1). Informed consent was obtained from all the partici-

pants. This study was approved by the Ethical Committee of National Institutes of Biomedical

Innovation, Health, and Nutrition (KENEI-78).

The fecal samples were processed, and 16S rRNA gene amplicon sequencing was performed

using Illumina MiSeq in the National Institutes of Biomedical Innovation, Health, and Nutri-

tion, as described by Hosomi et al. [25]. The resulted sequences were analyzed using the

QIIME software package [6]. The steps from trimming of paired-end reads to OTU picking

were performed by QIIME Analysis Automating Script (Auto-q) [26, 27]. The pre-processed

sequences were clustered into OTUs based on the sequence similarity (> 97%) using open-ref-

erence OTU picking with UCLUST software [28] against the SILVA reference sequence library

v128 [29, 30]. The taxonomy (phylum, class, order, family, and genus) and relative abundances
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were calculated using the SILVA database [29] as the reference database. MANTA does not

depend on any specific taxonomy systems but for MDD, we decided to use the NCBI Taxon-

omy Database [31] identifiers (taxon IDs). We converted the SILVA taxon names to the corre-

sponding taxon IDs using TargetMine [32, 33]. We annotated the names that were not found

in the NCBI Taxonomy Database as ‘unclassified’. Although we have used QIIME in this case

study, in principle, any suitable analysis tool can be used to provide the taxonomy and abun-

dance data if prepared as per the guidelines on our website.

Results

We have developed MANTA, a software program for creating an integrative database and

analysis platform, that can store and correlate microbiome and phenotypic data. The platform

is a web-based application and can be accessed with any modern web browser. The platform is

designed for integrating and hosting a large quantity of data from multiple studies. MANTA

can be installed on a local server. For users who wish to use the platform in PC or Mac, we also

developed a stand-alone version (MANTA basic), which can be installed on a PC or Mac and

provides a user interface to import the data with minimal effort (details described below). The

source code and an example database (MANTA demonstration database, MDD) can be found

at https://mizuguchilab.org/manta/. MDD demonstrates the main (but not all) functions of

MANTA and does not provide user data upload and account management functions.

Data import

The database schema of MANTA is available along with the source code. To build a new web-

based database using MANTA, the user needs to pre-process the microbiome data and

Table 1. Main and subcategories of the parameters.

Class Category Subgroup

Information Basic information Basic information

Health condition Medical history Medical history

Family medical history

Presence of any malaise

Medication

Menstruation Menstruation

Defecation habit Defecation habit

Physical characteristics Body composition Body composition

Blood profile Blood profile

Lifestyle Physical activity (accelerometer) Physical activity

Diet Food Intake frequency

Amount of Food intake

Amount of Food class intake

Nutrients

Nutrition statistics

Eating behaviour

Other lifestyle Smoking

Physical activity (subjective)

Exercise habit

Working status

Sleep & rest

Stress and tiredness

https://doi.org/10.1371/journal.pone.0243609.t001
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phenotypic parameters to fit in the corresponding tables. In addition, the sample-to-sample

distance, and the alpha-diversity should be calculated in advance.

MANTA basic offers smaller functionalities but provides a user interface for importing data

more efficiently. The user can upload the data from the ’Data management’ function using a

graphical user interface. For more details, see S1 Appendix. The Jaccard distance and Bray-

Curtis dissimilarity will be calculated instantly for the uploaded data.

Data visualization and data analysis

The main page of the application shows a list of available samples in a scrollable table (Fig 1A).

Above the table, there is a navigation bar that helps the user to navigate among the different

views. On this sample list page, the user can browse all the details of an individual sample by

clicking on the sample entry in the table. Since the primary purpose of this framework is to

correlate the microbiota composition with the phenotypic data, the samples without micro-

biota data are shaded in grey and are not selectable for further analysis.

After a set of samples are chosen, an analysis screen with a few tabs appears (Fig 1B). Each

tab represents a different start point for data visualization and data analysis. Currently, we pro-

pose three entry points as follows: ‘Microbiota composition’, ‘Phenotypic parameters’, and

‘Compare two parameters’.

The first tab, ‘Microbiota composition’, shows a table of the microbiota data of a specific

rank (Fig 1B). The default rank is ‘phylum’, and the user can change the rank using the drop-

Fig 1. General view of the application user interface. (a) The main page of the application shows a list of available samples in a

scrollable table. (b) The first tab of the analysis page, ‘Microbiota composition’, shows a table of the microbiota data of a specific rank.

(c) Clicking on the Pie Chart icon displays the current microbiota composition for the current rank as a pie chart.

https://doi.org/10.1371/journal.pone.0243609.g001
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down list. If there are more than ten taxa, only the ten most abundant ones will be shown by

default. The user can change the displayed taxa (columns) by clicking on the column manage-

ment icon—the gear icon at the upper left. Each row contains three types of diversity indexes

and a pie chart icon. Clicking on the pie chart icon displays the current microbiota composi-

tion for the current rank as a pie chart (Fig 1C). Clicking on the taxon expands the pie chart

and shows the taxon composition of the next rank for the selected taxon.

At the beginning of the page, there is a box to compare the microbiota composition with

the parameter measurements (limited to continuous variables). After choosing a taxon and

clicking on the search button, the system will calculate the correlation between the selected

microbial taxon and the available numeric parameters (Fig 2). Two types of correlation calcu-

lations are available, the Pearson’s correlation coefficient and the Spearman’s rank correlation

coefficient, which is known to be more robust against outliers [34, 35]. The results are dis-

played as a table showing the obtained correlation coefficient in descending order. Clicking on

the parameter name displays the correlation between ‘Organism (x-axis)’ and ‘Parameter (y-

axis)’ in a scatter plot or table view. Three visualization options are available above the compo-

sition table: ‘Bar Chart’, ‘Heat Map’, and ‘PCoA Chart’ (Fig 3). The Bar Chart option displays

the microbiota composition in a stacked composite bar chart plot, whereas the Heat Map

option colors different taxa by proportion.

The hierarchical clustering feature allows the user to cluster the samples using three differ-

ent linkage types, average, complete, and single. The clustering is based on the pre-calculated

distances, for example, weighted and unweighted UniFrac [22] or Bray-Curtis dissimilarity

[23], and the samples are sorted according to the dendrogram obtained by this clustering

Fig 2. Correlation search for Bacteroidetes. The table in the left part of the search results shows the correlation coefficient

in descending order. The user can toggle the order by clicking on the column header. The right part shows the scatter plot

for Bacteroidetes relative abundance and the selected parameter (sugar intake in this example).

https://doi.org/10.1371/journal.pone.0243609.g002
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operation. The user can change the displayed rank using the drop-down menu at the top; the

default rank is set to the one chosen on the previous (microbiota composition) page. Clicking

on the taxon bar expands the bar chart visualization and shows the composition of the next

rank of the selected taxon. The items displayed here are chosen according to the pre-calculated

dominant taxa.

PCoA, also known as classical multi-dimensional scaling, is an analytical approach that

visualizes distance matrix information in the form of a two-dimensional scatter plot. Four dif-

ferent distance metrics are available in the system, as described above. Each point in the PCoA

plot represents a sample. The continuous or nominal parameters can be used to color the sam-

ple points (Fig 3), which can help to identify the correlation between microbiota composition

and the chosen parameter.

The tab ‘Phenotypic parameters’ provides an alternative entry point for the data analysis

(Fig 4A). The system calculates the correlation coefficient (Pearson’s or Spearman’s) for the

selected parameter against the microbial taxonomies. The last tab provides a function to show

the correlation coefficient of an arbitrary pair of designated taxa or the parameter (Fig 4B).

Case study: Correlations between fat intake and microbiome

The microbiome data from 20 Japanese adults (21–41 years old, male) were analyzed as a case

study to test the efficacy and usefulness of our tool. More information about the sample collec-

tion is described in the “Materials and methods” section. This example database, MDD, can be

found at https://mizuguchilab.org/manta/mdd/. First, we performed PCoA using Bray-Curtis

based on OTUs as distance type to evaluate the similarity among the volunteers. The 1st and

2nd principal coordinates explained 21.24% and 12.43% of the variance, respectively (Fig 5).

For this plot, the user can change the color of the dots according to the selected ‘Diet and phys-

ical activity parameters’ by clicking on one of the parameters of interest from the pull-down

Fig 3. Microbiome data visualization. Clicking on the Bar Chart and Heat Map icons will display the microbiome

data. The samples can be ordered by sample identifiers or hierarchical clustering. There are several options for the

distance metric and linkages. The users can perform principal coordinate analysis (PCoA) by clicking on the PCoA

Chart icon, display its result in a 2D scatter plot, and color the dot in the scatter plot according to the selected

parameter from the drop-down list at the right side.

https://doi.org/10.1371/journal.pone.0243609.g003
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menus. This function led us to find that the volunteers were grouped separately according to

several specific parameters such as ‘Cooking oil’, ‘Fat’, or ‘ω-6 polyunsaturated fatty acids’ (Fig

5A, 5B and 5C, respectively). Next, we searched for the gut microbiota compositions that cor-

related with ‘Fat’ based on the Spearman’s correlation coefficient. This analysis showed that

Lachnospiraceae had a positive correlation with fat intake, estimated using a brief-type self-

administered diet history questionnaire (Fig 6).

Lachnospiraceae comprises butyrate producers, and it was reported that a high-fat diet with

low carbohydrate intake is associated with the abundance ratios of Firmicutes to Lachnospira-
ceae and Ruminococcaceae [36]. With these results, we hypothesized that the ratios of Lachnos-
piraceae to Ruminococcaceae were affected mainly by diet, and especially fat intake.

We then explored the dietary and physical activity parameters that correlated with Lachnos-
piraceae. We observed a positive correlation between this group and monounsaturated fatty

acid or saturated fatty acid intake (Fig 7A), and a negative correlation with parameters related

to the time spent doing physical activity (Fig 7B). Interestingly, Ruminococcaceae showed a

similar but notably distinct tendency. This family showed a positive correlation with ω-6 poly-

unsaturated fatty acid intake (Fig 7C) and a negative correlation with parameters related to

body composition, such as body weight and total energy expenditure, as well as the intake of

carbohydrate sources such as boiled rice and grains (Fig 7D). Since Lachnospiraceae showed

no strong correlation with the parameters that correlated with the Ruminococcaceae relative

abundance, and vice versa, it was suggested that these two microbes are independently affected

by diet.

As shown in the case study, our tool allowed us to hypothesize the relationship between gut

microbiota composition (Lachnospiraceae or Ruminococcaceae) and diet and physical activity

parameters (fatty acids, physical activity, or body composition). Our results are consistent with

those of Zhang et al. [36], who suggested that different types of fatty acids independently affect

Lachnospiraceae and Ruminococcaceae. Although these findings will require further verifica-

tion for a deeper understanding of the relevant relationships, it is noteworthy that our tool suc-

cessfully hypothesized probable links between microbiome and lifestyle.

Fig 4. Screenshots of the other two tabs. (a) The phenotypic parameters can be browsed in the ‘Phenotypic parameters’ tab. The user can

examine the correlations to the microbiota composition for a selected parameter. (b) In the ‘Compare two parameters’ tab, the correlation of

any combination of the taxa or parameter is calculated and also displayed in a scatter plot.

https://doi.org/10.1371/journal.pone.0243609.g004
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Discussion

To fully understand how the microbiota affect lifestyle and vice versa, it is essential to collect

microbiome data together with a detailed information about the host or the environment, in

which the microbiome data were obtained. However, the analysis of such heterogeneous data

is a non-trivial task. So far, the web applications that may easily allow the users to browse and

analyze such data are not publicly available. Therefore, we developed a software platform for

microbiome studies that allows the creation of an integrative database of the microbiome and

phenotypic data and provides a user-friendly interface with online analytical functions to

uncover the relationships between bacterial composition and phenotypic features.

Our case study suggested that MANTA is not only adept at storing microbiome data but is

also capable of clearly demonstrating the correlations between the microbiome and lifestyle

parameters. MANTA is user friendly and much of the operations can be performed by the user

with only a few clicks of the mouse. Although we have analyzed the data from the human gut

microbiome as the case study, MANTA framework can easily be used to investigate micro-

biome data from non-human hosts.

While MANTA can accommodate different data structures, it requires significant efforts by

the database administrator to format the data into specific tables. To address this issue, we

have developed MANTA basic, which contains a smaller number of database tables (and

hence, slightly limited capabilities) but has retained the core MANTA functionality. In addi-

tion, MANTA basic is bundled with a portable web server and hence requires no additional

Fig 5. Relationship between microbiome composition and fat intake as detected by Principal Coordinate Analysis (PCoA). The

dots are colored by the energy intake from (a) cooking oil, (b) fat, and (c) ω-6 polyunsaturated fatty acids. The coloring suggests that the

participants could be separated into two groups, namely, High-fat (red dashed circle) and low-fat consumption (green dashed circle).

https://doi.org/10.1371/journal.pone.0243609.g005

PLOS ONE MANTA, an integrative database and analysis platform that relates microbiome and phenotypic data

PLOS ONE | https://doi.org/10.1371/journal.pone.0243609 December 4, 2020 9 / 14

https://doi.org/10.1371/journal.pone.0243609.g005
https://doi.org/10.1371/journal.pone.0243609


applications to be installed separately. A comparison of MANTA and MANTA basic is listed

in Table 2. In MANTA basic, we have implemented a data management interface to allow the

user to upload their data; the user only needs to prepare two file types, microbiota and pheno-

typic parameter data in the form of tab-delimited text. Further details on how to use MANTA

basic can be found in the online documentation (https://mizuguchilab.org/manta/manta-

basic.html). Both MANTA and MANTA basic are available at https://mizuguchilab.org/

manta/.

We are in the process of expanding our global collaborations to elucidate associations

between microbiota and the host using a variety of cohorts; thus, data will be provided by

various users, and a more comprehensive user administration function will be necessary.

In addition, a well-organized ontology is required to integrate the phenotypic descriptions

from different cohorts. Moreover, some studies may collect data from multiple time points

and thus necessitating an ability to perform temporal analysis as required. We will contin-

uously develop new features to address these and other emerging issues in microbiome

research.

Conclusions

MANTA is an analysis platform that can assist researchers working on human microbiome

studies with data sharing and analysis, either on-line or on their desktop. The focus on

data storage and sharing implies that MANTA is not designed to replace other tools, for

example, for processing the raw sequencing data. However, MANTA is more than a

generic database tool and provides some specialist functionalities; currently our emphasis

is to examine the correlation between the microbial abundances and parameters such as

dietary or life style parameters. MANTA addresses a long-standing challenge in

Fig 6. Search for microbiota that correlates with the parameter ‘Fat’. Our tool enables investigation of the

correlation between ‘microbiota composition’ and ‘Diet and physical activity parameters’ by a simple operation

(selecting parameters of interest from the drop-down list). The tool shows that Lachnospiraceae was the family most

positively correlated with fat intake.

https://doi.org/10.1371/journal.pone.0243609.g006
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microbiome research and not so easily achievable by other tools that are currently avail-

able. The MANTA framework has the potential to adequately assist studies involving

human data as well those from other organisms.

Fig 7. Search of ‘diet and physical activity parameters’ that correlate with Lachnospiraceae or Ruminococcaceae. (a) Positive correlation

between monounsaturated fatty acids (MUFAs) and Lachnospiraceae. The table (left) shows the top 10 positively correlated parameters. The scatter

plot (right) shows the relationship between Lachnospiraceae (x-axis) and C17:1 monounsaturated fatty acids (y-axis), which exhibited a positive

correlation. (b) Negative correlation between physical activity and Lachnospiraceae. The table (left) shows the top 10 negatively correlated

parameters. The scatter plot (right) shows the relationship between Lachnospiraceae (x-axis) and time spent in moderate-intensity physical activity

(y-axis), which showed a negative correlation. (c) Positive correlation between polyunsaturated fatty acids (PUFA) and Ruminococcaceae. The table

(left) shows the top 10 positively correlated parameters. The scatter plot (right) shows the relationship between Ruminococcaceae (x-axis) and C18:3

ω-6 polyunsaturated fatty acids (y-axis), which showed a positive correlation. (d) Negative correlation between carbohydrates (e.g. boiled rice) and

Ruminococcaceae. The table (left) shows the top 10 negatively correlated parameters. The scatter plot (right) shows the relationship between

Ruminococcaceae (x-axis) and ‘Boiled rice’ (y-axis), which exhibited a negative correlation.

https://doi.org/10.1371/journal.pone.0243609.g007

Table 2. A comparison of MANTA and MANTA basic.

Features MANTA MANTA basic

Visualization (Heat map, Bar chart, Pie chart) Yes Yes

Hierarchical clustering Yes Yes

Correlation analysis Yes Yes

PCoA Yes Yes

Parameter grouping� Yes No

User login Yes No

Data upload interface No Yes

� The grouping here means there is no categories or subgroup for the parameters like we described in Table 1.

https://doi.org/10.1371/journal.pone.0243609.t002

PLOS ONE MANTA, an integrative database and analysis platform that relates microbiome and phenotypic data

PLOS ONE | https://doi.org/10.1371/journal.pone.0243609 December 4, 2020 11 / 14

https://doi.org/10.1371/journal.pone.0243609.g007
https://doi.org/10.1371/journal.pone.0243609.t002
https://doi.org/10.1371/journal.pone.0243609


Supporting information

S1 Appendix. An illustration for importing data into MANTA basic.

(DOCX)

Acknowledgments

We thank the members in the Mizuguchi lab for the critical reading of the manuscript.

Author Contributions

Conceptualization: Yi-An Chen, Jonguk Park, Kenji Mizuguchi.

Data curation: Yi-An Chen.

Formal analysis: Yayoi Natsume-Kitatani, Attayeb Mohsen.

Funding acquisition: Koji Hosomi, Haruka Murakami, Motohiko Miyachi, Jun Kunisawa,

Kenji Mizuguchi.

Investigation: Hitoshi Kawashima, Koji Hosomi, Kumpei Tanisawa, Harumi Ohno, Kana

Konishi.

Methodology: Yi-An Chen, Jonguk Park.

Project administration: Kenji Mizuguchi.

Software: Yi-An Chen.

Supervision: Haruka Murakami, Motohiko Miyachi, Jun Kunisawa, Kenji Mizuguchi.

Visualization: Yi-An Chen.

Writing – original draft: Yi-An Chen, Yayoi Natsume-Kitatani.

Writing – review & editing: Kenji Mizuguchi.

References

1. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental

factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States

of America. 2004; 101(44):15718–23. https://doi.org/10.1073/pnas.0407076101 PMID: 15505215;

PubMed Central PMCID: PMC524219.

2. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with

obesity. Nature. 2006; 444(7122):1022–3. https://doi.org/10.1038/4441022a PMID: 17183309.

3. Gkouskou KK, Deligianni C, Tsatsanis C, Eliopoulos AG. The gut microbiota in mouse models of inflam-

matory bowel disease. Frontiers in cellular and infection microbiology. 2014; 4:28. https://doi.org/10.

3389/fcimb.2014.00028 PMID: 24616886; PubMed Central PMCID: PMC3937555.

4. Clavel T, Desmarchelier C, Haller D, Gerard P, Rohn S, Lepage P, et al. Intestinal microbiota in meta-

bolic diseases: from bacterial community structure and functions to species of pathophysiological rele-

vance. Gut microbes. 2014; 5(4):544–51. https://doi.org/10.4161/gmic.29331 PMID: 25003516.

5. Allaband C, McDonald D, Vazquez-Baeza Y, Minich JJ, Tripathi A, Brenner DA, et al. Microbiome 101:

Studying, Analyzing, and Interpreting Gut Microbiome Data for Clinicians. Clin Gastroenterol Hepatol.

2019; 17(2):218–30. https://doi.org/10.1016/j.cgh.2018.09.017 PMID: 30240894; PubMed Central

PMCID: PMC6391518.

6. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows

analysis of high-throughput community sequencing data. Nature methods. 2010; 7(5):335–6. https://

doi.org/10.1038/nmeth.f.303 PMID: 20383131; PubMed Central PMCID: PMC3156573.

7. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments.

Genome biology. 2014; 15(3):R46. https://doi.org/10.1186/gb-2014-15-3-r46 PMID: 24580807;

PubMed Central PMCID: PMC4053813.

PLOS ONE MANTA, an integrative database and analysis platform that relates microbiome and phenotypic data

PLOS ONE | https://doi.org/10.1371/journal.pone.0243609 December 4, 2020 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243609.s001
https://doi.org/10.1073/pnas.0407076101
http://www.ncbi.nlm.nih.gov/pubmed/15505215
https://doi.org/10.1038/4441022a
http://www.ncbi.nlm.nih.gov/pubmed/17183309
https://doi.org/10.3389/fcimb.2014.00028
https://doi.org/10.3389/fcimb.2014.00028
http://www.ncbi.nlm.nih.gov/pubmed/24616886
https://doi.org/10.4161/gmic.29331
http://www.ncbi.nlm.nih.gov/pubmed/25003516
https://doi.org/10.1016/j.cgh.2018.09.017
http://www.ncbi.nlm.nih.gov/pubmed/30240894
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
https://doi.org/10.1186/gb-2014-15-3-r46
http://www.ncbi.nlm.nih.gov/pubmed/24580807
https://doi.org/10.1371/journal.pone.0243609


8. Huson DH, Beier S, Flade I, Gorska A, El-Hadidi M, Mitra S, et al. MEGAN Community Edition—Interac-

tive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS computational biol-

ogy. 2016; 12(6):e1004957. https://doi.org/10.1371/journal.pcbi.1004957 PMID: 27327495; PubMed

Central PMCID: PMC4915700.

9. Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, et al. METAGENassist: a comprehensive web server

for comparative metagenomics. Nucleic acids research. 2012; 40(Web Server issue):W88–95. https://

doi.org/10.1093/nar/gks497 PMID: 22645318; PubMed Central PMCID: PMC3394294.

10. Wilke A, Bischof J, Gerlach W, Glass E, Harrison T, Keegan KP, et al. The MG-RAST metagenomics

database and portal in 2015. Nucleic acids research. 2016; 44(D1):D590–4. https://doi.org/10.1093/

nar/gkv1322 PMID: 26656948; PubMed Central PMCID: PMC4702923.

11. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: a web-based tool for

comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic acids research. 2017;

45(W1):W180–W8. https://doi.org/10.1093/nar/gkx295 PMID: 28449106; PubMed Central PMCID:

PMC5570177.

12. Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion MJ, Berger B, et al. Calypso: a user-friendly web-

server for mining and visualizing microbiome-environment interactions. Bioinformatics. 2017; 33

(5):782–3. https://doi.org/10.1093/bioinformatics/btw725 PMID: 28025202; PubMed Central PMCID:

PMC5408814.

13. McMurdie PJ, Holmes S. Shiny-phyloseq: Web application for interactive microbiome analysis with

provenance tracking. Bioinformatics. 2015; 31(2):282–3. https://doi.org/10.1093/bioinformatics/btu616

PMID: 25262154; PubMed Central PMCID: PMC4287943.

14. Jin BT. Mian: Interactive Web-Based 16S rRNA Operational Taxonomic Unit Table Data Visualization

and Discovery Platform. bioRxiv. 2018:416073. https://doi.org/10.1101/416073

15. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of

microbiome census data. PloS one. 2013; 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217

PMID: 23630581; PubMed Central PMCID: PMC3632530.

16. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecol-

ogy Package. 2018.

17. Bougeard S, Dray S. Supervised Multiblock Analysis in R with the ade4 Package. J Stat Softw. 2018; 86

(1):17. Epub 2018-09-03. https://doi.org/10.18637/jss.v086.i01

18. PostgreSQL. Available from: https://www.postgresql.org/.

19. Nagendra H. Opposite trends in response for the Shannon and Simpson indices of landscape diversity.

Appl Geogr. 2002; 22(2):175–86. https://doi.org/10.1016/s0143-6228(02)00002-4

20. Hill TC, Walsh KA, Harris JA, Moffett BF. Using ecological diversity measures with bacterial communi-

ties. FEMS Microbiol Ecol. 2003; 43(1):1–11. https://doi.org/10.1111/j.1574-6941.2003.tb01040.x

PMID: 19719691.

21. Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, et al. Choosing and using diversity

indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol Evol.

2014; 4(18):3514–24. https://doi.org/10.1002/ece3.1155 PMID: 25478144; PubMed Central PMCID:

PMC4224527.

22. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities.

Applied and environmental microbiology. 2005; 71(12):8228–35. https://doi.org/10.1128/AEM.71.12.

8228-8235.2005 PMID: 16332807; PubMed Central PMCID: PMC1317376.

23. Bray JR, Curtis JT. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol

Monogr. 1957; 27(4):325–49. https://doi.org/10.2307/1942268

24. Google Web Toolkit. Available from: http://www.gwtproject.org/.

25. Hosomi K, Ohno H, Murakami H, Natsume-Kitatani Y, Tanisawa K, Hirata S, et al. Method for preparing

DNA from feces in guanidine thiocyanate solution affects 16S rRNA-based profiling of human micro-

biota diversity. Scientific reports. 2017; 7(1):4339. https://doi.org/10.1038/s41598-017-04511-0 PMID:

28659635.

26. Mohsen A, Park J, Chen YA, Kawashima H, Mizuguchi K. Impact of quality trimming on the efficiency of

reads joining and diversity analysis of Illumina paired-end reads in the context of QIIME1 and QIIME2

microbiome analysis frameworks. BMC Bioinformatics. 2019; 20(1):581. https://doi.org/10.1186/

s12859-019-3187-5 PMID: 31730472; PubMed Central PMCID: PMC6858638.

27. Mohsen A, Park J, Kawashima H, Chen YA, Natsume-Kitatani Y, Mizuguchi K. Auto-q Qiime Analysis

Automating Script. 1.0 ed: Zenodo; 2018.

28. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26

(19):2460–1. https://doi.org/10.1093/bioinformatics/btq461 PMID: 20709691.

PLOS ONE MANTA, an integrative database and analysis platform that relates microbiome and phenotypic data

PLOS ONE | https://doi.org/10.1371/journal.pone.0243609 December 4, 2020 13 / 14

https://doi.org/10.1371/journal.pcbi.1004957
http://www.ncbi.nlm.nih.gov/pubmed/27327495
https://doi.org/10.1093/nar/gks497
https://doi.org/10.1093/nar/gks497
http://www.ncbi.nlm.nih.gov/pubmed/22645318
https://doi.org/10.1093/nar/gkv1322
https://doi.org/10.1093/nar/gkv1322
http://www.ncbi.nlm.nih.gov/pubmed/26656948
https://doi.org/10.1093/nar/gkx295
http://www.ncbi.nlm.nih.gov/pubmed/28449106
https://doi.org/10.1093/bioinformatics/btw725
http://www.ncbi.nlm.nih.gov/pubmed/28025202
https://doi.org/10.1093/bioinformatics/btu616
http://www.ncbi.nlm.nih.gov/pubmed/25262154
https://doi.org/10.1101/416073
https://doi.org/10.1371/journal.pone.0061217
http://www.ncbi.nlm.nih.gov/pubmed/23630581
https://doi.org/10.18637/jss.v086.i01
https://www.postgresql.org/
https://doi.org/10.1016/s0143-6228%2802%2900002-4
https://doi.org/10.1111/j.1574-6941.2003.tb01040.x
http://www.ncbi.nlm.nih.gov/pubmed/19719691
https://doi.org/10.1002/ece3.1155
http://www.ncbi.nlm.nih.gov/pubmed/25478144
https://doi.org/10.1128/AEM.71.12.8228-8235.2005
https://doi.org/10.1128/AEM.71.12.8228-8235.2005
http://www.ncbi.nlm.nih.gov/pubmed/16332807
https://doi.org/10.2307/1942268
http://www.gwtproject.org/
https://doi.org/10.1038/s41598-017-04511-0
http://www.ncbi.nlm.nih.gov/pubmed/28659635
https://doi.org/10.1186/s12859-019-3187-5
https://doi.org/10.1186/s12859-019-3187-5
http://www.ncbi.nlm.nih.gov/pubmed/31730472
https://doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
https://doi.org/10.1371/journal.pone.0243609


29. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene

database project: improved data processing and web-based tools. Nucleic acids research. 2013; 41

(Database issue):D590–6. https://doi.org/10.1093/nar/gks1219 PMID: 23193283; PubMed Central

PMCID: PMC3531112.

30. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and "All-species Living

Tree Project (LTP)" taxonomic frameworks. Nucleic acids research. 2014; 42(Database issue):D643–8.

https://doi.org/10.1093/nar/gkt1209 PMID: 24293649; PubMed Central PMCID: PMC3965112.

31. NCBI Taxonomy Database. Available from: https://www.ncbi.nlm.nih.gov/taxonomy/.

32. Chen YA, Tripathi LP, Mizuguchi K. TargetMine, an integrated data warehouse for candidate gene prior-

itisation and target discovery. PloS one. 2011; 6(3):e17844. https://doi.org/10.1371/journal.pone.

0017844 PMID: 21408081; PubMed Central PMCID: PMC3050930.

33. Chen YA, Tripathi LP, Mizuguchi K. An integrative data analysis platform for gene set analysis and

knowledge discovery in a data warehouse framework. Database: the journal of biological databases

and curation. 2016; 2016:baw009. https://doi.org/10.1093/database/baw009 PMID: 26989145;

PubMed Central PMCID: PMC4795931.

34. Morgenthaler S. A survey of robust statistics. Stat Methods Appl. 2007; 15(3):271–93. https://doi.org/

10.1007/s10260-006-0034-4

35. Croux C, Dehon C. Influence functions of the Spearman and Kendall correlation measures. Stat Meth-

ods Appl. 2010; 19(4):497–515. https://doi.org/10.1007/s10260-010-0142-z

36. Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L. Structural resilience of the gut microbiota in adult

mice under high-fat dietary perturbations. ISME J. 2012; 6(10):1848–57. https://doi.org/10.1038/ismej.

2012.27 PMID: 22495068; PubMed Central PMCID: PMC3446802.

PLOS ONE MANTA, an integrative database and analysis platform that relates microbiome and phenotypic data

PLOS ONE | https://doi.org/10.1371/journal.pone.0243609 December 4, 2020 14 / 14

https://doi.org/10.1093/nar/gks1219
http://www.ncbi.nlm.nih.gov/pubmed/23193283
https://doi.org/10.1093/nar/gkt1209
http://www.ncbi.nlm.nih.gov/pubmed/24293649
https://www.ncbi.nlm.nih.gov/taxonomy/
https://doi.org/10.1371/journal.pone.0017844
https://doi.org/10.1371/journal.pone.0017844
http://www.ncbi.nlm.nih.gov/pubmed/21408081
https://doi.org/10.1093/database/baw009
http://www.ncbi.nlm.nih.gov/pubmed/26989145
https://doi.org/10.1007/s10260-006-0034-4
https://doi.org/10.1007/s10260-006-0034-4
https://doi.org/10.1007/s10260-010-0142-z
https://doi.org/10.1038/ismej.2012.27
https://doi.org/10.1038/ismej.2012.27
http://www.ncbi.nlm.nih.gov/pubmed/22495068
https://doi.org/10.1371/journal.pone.0243609

