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Polyketides, a diverse group of heteropolymers with antibiotic and antitumor properties, are assembled in bacteria by
multiprotein chains of modular polyketide synthase (PKS) proteins. Specific protein—protein interactions determine the
order of proteins within a multiprotein chain, and thereby the order in which chemically distinct monomers are added
to the growing polyketide product. Here we investigate the evolutionary and molecular origins of protein interaction
specificity. We focus on the short, conserved N- and C-terminal docking domains that mediate interactions between
modular PKS proteins. Our computational analysis, which combines protein sequence data with experimental protein
interaction data, reveals a hierarchical interaction specificity code. PKS docking domains are descended from a single
ancestral interacting pair, but have split into three phylogenetic classes that are mutually noninteracting. Specificity
within one such compatibility class is determined by a few key residues, which can be used to define compatibility
subclasses. We identify these residues using a novel, highly sensitive co-evolution detection algorithm called CRoSS
(correlated residues of statistical significance). The residue pairs selected by CRoSS are involved in direct physical
interactions in a docked-domain NMR structure. A single PKS system can use docking domain pairs from multiple
classes, as well as domain pairs from multiple subclasses of any given class. The termini of individual proteins are
frequently shuffled, but docking domain pairs straddling two interacting proteins are linked as an evolutionary
module. The hierarchical and modular organization of the specificity code is intimately related to the processes by
which bacteria generate new PKS pathways.
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Introduction

The extraordinary biosynthetic capabilities of polyketide
synthases (PKS), some of the largest known bacterial multi-
enzyme complexes, have been extensively investigated over
the past decade. Using a combination of biochemical and
genetic techniques, researchers have developed a detailed
understanding of the organization and structure of these
complex enzymes, as well as of the biochemical reactions they
catalyze [1]. The assembly of a polyketide proceeds by the
successive addition of acyl extender groups to a growing
biochemical polymer. Each module of a modular PKS is a
multidomain catalytic unit responsible for a single step of
polyketide chain extension. PKS proteins can each contain
one or more modules. Different modules add different basic
or modified extender units, so the order of proteins and their
modules in the multiprotein chain determines the chemical
structure of the final polyketide product. Crucially, PKS
catalytic domains exhibit broad substrate tolerance, and are
able to extend “unnatural” polyketide substrates [2,3]. In
particular, PKS modules are catalytically active even when
their order is changed, enabling a combinatorial diversity of
possible polyketide products. This property, which suggests
that modules are frequently shuffled during natural selection,
has generated enormous interest in using PKS pathways to
achieve combinatorial biochemistry in the laboratory [2-6].

Biochemical studies of PKS systems have recently been
complemented by powerful computational tools. These tools
allow results from well-characterized PKS systems to be
extended to the rapidly growing set of putative PKS gene
clusters in fully sequenced bacterial genomes. Computational
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analysis of sequence data has been used to identify catalytic
domains and to predict their substrate specificity, both for
PKS systems [7,8] as well as for the closely related non-
ribosomal peptide synthase (NRPS) systems [8,9]. In a recent
analysis, Minowa et al. [10] were able to effectively predict the
catalytic function of individual proteins, as well as the order
in which multiple proteins act to produce the final polyketide
product, by combining a variety of data including the
chromosomal context of genes, and the sequences and
phylogeny of catalytic and linker regions. While these
predictive tools can be extremely accurate, their output
cannot necessarily be interpreted in ways that provide
biological insight. It is therefore important, in parallel with
predictive approaches, to investigate underlying evolutionary
and molecular mechanisms. For example, a new generation of
sequence-based classification algorithms promises not only to
have predictive power, but also to reveal sequence features
that are important for discrimination, thus providing insight
at the molecular level [11]. Comparative sequence analysis

Editor: Chaitan Khosla, Stanford University, United States of America

Received March 16, 2007; Accepted August 10, 2007; Published September 28,
2007

Copyright: © 2007 Thattai et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: CRoSS, correlated residues of statistical significance; FP, false
positive; PKS, polyketide synthase; ROC, receiver operating characteristics; TP, true
positive

* To whom correspondence should be addressed. E-mail: thattai@ncbs.res.in

September 2007 | Volume 3 | Issue 9 | €186



can also be used to shed light on the evolutionary history of a

system, as shown in a recent study of PKS catalytic-domain
duplication [12].

Here we use sequence data to investigate PKS protein
interactions. For the PKS proteins to line up in the correct
order, protein interactions must be specific [13,14]: certain
protein pairs must be allowed to bind, while others must be
prevented from doing so. It is remarkable that these proteins
are able to correctly discriminate between various possible
binding partners, given that all the docking domains which
mediate their interactions are homologous. We uncover key
sequence features that govern PKS protein interactions, and
thereby construct a predictive specificity code. We show that,
by studying how the code is organized, we can learn a great
deal about the evolutionary origins as well as the molecular
basis of this elegant specificity.

Results

Docking Domains and Interaction Compatibility Classes

Biochemical investigations have shown that interactions
between PKS proteins map to docking domains at their N-
and C-termini [13-15]. Starting with a seed alignment of
terminal fragments from well-characterized PKS pathways [7],
we used PSI-BLAST to assemble a dataset of proteins with
regions homologous to these (Text SI, Section 1). Homolo-
gous regions were only detected at protein termini, never in
the interior. Most of the proteins we pulled up belonged to
biochemically characterized modular PKS pathways, and the
rest to putative modular PKS pathways in fully sequenced
genomes. Almost all known modular PKS proteins contained
homologous termini, and we found no significant hits to non-
PKS proteins. This suggests that all modular PKS proteins
employ the same mechanism to mediate interactions.

We next confined our attention to 42 biochemically
characterized modular PKS pathways in which the order of
proteins within the multiprotein chain has been determined
(Dataset S1). An alignment of the protein termini revealed
short, conserved regions at the very ends of the proteins
(Figure 1A): a 19 aa C-terminal “head” region, and a 27 aa N-
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Figure 1. PKS Docking Domains

(A) Location of docking domains at protein termini. A pair of interacting
PKS proteins are represented as chevrons, with their docking domains
indicated in grey: the C-terminal head domain (pointed) and the N-
terminal tail domain (notched). The boxes immediately below give an
overview of the 149 head and tail domains in our dataset. Each
horizontal line represents a single protein sequence; the sequences are
aligned according to their conserved docking domains (grey), and sorted
according to the lengths of their unconserved overhangs. We see that
most docking domains are to be found within a few amino acids of
protein termini.

(B) Representative multiple-sequence alignments of the 19 aa C-terminal
head domains (left) and 27 aa N-terminal tail domains (right). Hydro-
phobic residues are colored red, hydrophilic residues are colored blue,
and intensity reflects sequence conservation [29]. Note that sequences
are sorted differently than in Figure 1A. Each row shows an interacting
head-tail pair, labeled by the PKS pathway it belongs to, and the
interface number within that pathway. For example, ampho_003
represents the interface between proteins 3 and 4 of the amphotericin
PKS. (Pathway abbreviations are described in detail in Dataset S1.) The
head and tail alignments are divided into three groups each (H1, H2, H3,
and T1, T2, T3) corresponding to the clusters discussed in Figure 2.
doi:10.1371/journal.pcbi.0030186.9g001

terminal “tail” region (Figure 1B). Throughout our discus-
sion, we shall refer to these regions as docking domains. (The
docking domains originally defined by Broadhurst et al. [15]
are slightly larger protein interaction regions, of which the
heads and tails defined here form only a part: PKS protein
termini typically contain one conserved N-terminal helix,
which corresponds to our tail domain, and three conserved
C-terminal helices, of which the most C-terminal helix
corresponds to our head domain.) When these domains were
clustered according to sequence similarity [16] (Text S1,
Section 2), the heads and tails each independently assorted into
three phylogenetic groups (Figure 2A). When the docking
domains of the proteins in each multiprotein chain were
labeled according to group membership (Figure 2B), a
striking pattern emerged: phylogenetic clustering coincided
precisely with head-tail interactions (Figure 2C). Heads from
one group could only interact with tails from a correspond-
ing group, but were incompatible with other tails, and vice
versa. From this one-to-one pairing, we were able to assign
common labels to the head and tail clusters, thus defining
three mutually incompatible classes of docking domain pairs:
HI-TI, H2-T2, and H3-T3. However, membership within a
compatibility class was only a necessary, not a sufficient,
condition for head-tail interaction: there were still numerous
cases in which domain pairs belonging to the same
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Figure 2. Docking Domain Compatibility Classes

(A) Docking domains are clustered according to sequence similarity (Text
S1, Section 2). Each node represents a particular head (left) or tail (right)
domain; two domains are connected by a line if their BLAST e-value is
less than a defined cutoff (2.0e-4 for heads, and 1.0e-4 for tails). Head and
tail domains each independently assort into three phylogenetic clusters,
labeled H1, H2, H3, and T1, T2, T3, respectively. For the moment, cluster
coloring is arbitrary.

(B) Examples of PKS multiprotein chains. Each row shows a different PKS
pathway, with names as defined in Dataset S1. Proteins are represented
as chevrons, with C-terminal head domains (pointed) and N-terminal tail
domains (notched) now colored according to their phylogenetic group,
as defined in Figure 2A. The pathway termini, as well as domains which
could not be clustered, are colored grey. Note that interactions
predominantly occur between docking domains of the same color.
There are only two exceptions to this rule, one of which is shown in the
nanch multiprotein chain. (The other, in the nidda multiprotein chain,
involves a domain that lies at the boundary of its parent cluster,
indicating that it has probably been misclassified by our clustering
algorithm; see Dataset S2.) Actinobacterial pathways tend to use
domains pairs of type HI1-T1 and H2-T2, while myxobacterial and
cyanobacterial pathways use domain pairs of type H3-T3 alone. (Again,
the few exceptions to this rule, such as in the epoth multiprotein chain,
are likely due to misclassification.)

(C) Phylogenetic clusters coincide with docking domain compatibility
classes. Each PKS pathway in our dataset gives us a list of known
interactors, as well as a list of known noninteractors. For example, the
amphotericin pathway contains five internal head and tail domains; of
the 25 possible pairings of these domains, five represent interactors
(three H1-T1 and two H2-T2), while the remaining 20 represent
noninteractors (six H1-T1, six H1-T2, six H2-T1, and two H2-T2). We
tallied such interaction and noninteraction information over the 42 PKS
pathways in our dataset, and summarized our results in a single table.
Each row corresponds to a head cluster, and each column to a tail
cluster. The top-left entry of every cell reports the number head-tail pairs
of the given variety known to be interactors; the bottom-right entry
reports the number of head-tail pairs known to be noninteractors. For
example, we know one interactor and 73 non-interactors of the H1-T2
variety. The correspondence between the head and tail clusters is
obvious: we find large numbers of interactors within compatible clusters
(on-diagonal, highlighted in orange) and large numbers of noninter-
actors between them (off-diagonal, highlighted in purple). This defines a
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one-to-one pairing of head and tail clusters into three compatibility
classes, H1-T1 (green), H2-T2 (red), and H3-T3 (blue), and justifies the
common coloring used in Figure 2A. This division into compatibility
classes is a useful predictive tool for actinobacterial pathways, since they
tend to contain docking domains of multiple varieties. For example, since
the ampho pathway has three H1-T17 domain pairs and 2 H2-T2 domain
pairs, only 12 of the 120 possible ways of pairing them are compatible
(213! out of 5!). Of the 33 actinobacterial pathways in our dataset, 19
contain both H1-T1 and H2-T2 varieties (Dataset S2). For these mixed
pathways, on average less than a third of all possible ways of pairing
their domains are compatible.

doi:10.1371/journal.pcbi.0030186.9002

compatibility class did not interact (Figures 2B and 2C). This
implies that, within each class, there are additional rules that
determine the set of allowed interactions. In essence, there is
another layer to the PKS specificity code.

CRoSS: Sensitive Detection of Co-Evolving Residues

To gain further insight into the rules that governed
specificity, we sought to identify residue pairs that co-evolved
between interacting partners [17,18]. This task is complicated
by the fact that our dataset is small and nonuniformly
sampled, therefore dominated by spurious correlations. To
overcome this problem, we developed a new algorithm called
CRoSS (correlated residues of statistical significance) which
uses both interaction and noninteraction data to identify
significant pairings between head and tail residues (Methods).
For each site pair, the algorithm first calculates, separately for
interactors and noninteractors, the joint distribution of
amino acids summed over pathways. It then assigns a score
to that site pair, which is essentially a p-value reporting the
significance of the difference between these distributions.
CRoSS has numerous advantages over existing co-evolution
algorithms [17,18] (Figure S1D). Because it is based on
comparisons within rather than between pathways, it is less
susceptible to errors from nonuniform sampling; because it
reports a significance rather than a correlation, it can be
applied to datasets of any size; and because it identifies sites
but averages over amino acids, it is more sensitive given
smaller datasets. CRoSS can generally be used to investigate
protein specificity whenever data are available about which
protein pairs do or do not interact, such as for bacterial two-
component systems [19].

Code Words and Interaction Compatibility Subclasses
We used CRoSS to investigate the key residues that
determine specificity within each compatibility class. We
were able to detect significant residue pairs only for class HI-
T1 (Figures 3A and 3B). (This does not mean there are no
correlations in the other cases, only that we cannot detect
them with confidence given the smaller sizes of those
datasets.) We found that the HI-T1 correlation matrix was
extremely sparse (Figure 3B), showing that a small number of
site pairs co-evolved independently, uncorrelated to any
broad phylogenetic patterns. CRoSS identified only seven
significant correlated residue pairs for HI-TI interactors,
involving three head residues and five tail residues (Figure
S1C). Note that while residues involved in protein secondary
structure are expected to be highly conserved, those that
determine specificity should show moderate sequence con-
servation but strong co-evolution. Such residues cannot be
identified from structure alone, but can only be identified
from the type of correlation analysis presented here, or from
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Figure 3. Co-Evolving Residues

In this figure, symbols associated with head domains are colored red, and
those associated with tail domains are colored green. This coloring is
unrelated to compatibility class, as all domains pictured belong to
compatibility class H1-T1.

(A,B) CRoSS matrices, showing the residue pairs that significantly
contribute to specificity (Methods). Residues on the C-terminal head
domain are indexed vertically (i=1, ..., 19); residues on the N-terminal
tail domain are indexed horizontally (j = 1, ..., 27). Each entry shows
-log1o(pj) for the corresponding site-pair, with the scale indicated on the
color bar; the higher this value, the more significant the site-pair as a
determinant of specificity.

(A) The H1-T1 control matrix, generated by comparing random pairings
with noninteractors. Since we expect no significant hits, these entries
provide us with an estimate of the random background.

(B) The H1-T1 interaction matrix, generated by comparing interactors
with noninteractors. Several entries are highlighted above the back-
ground (white circles serve as guides to the eye). The matrix is sparse,
showing that residue pairs at a few key sites vary independently,
uncorrelated to any broad phylogenetic patterns. There are only seven
significant residue pairs (Figure S1C). These are, in order of significance,
{i, j} = {6,5}, {1311}, {1218}, {12,11}, {12,12}, {12,16}, {12,5}. The
three head residues and five tail residues that make up these pairs are
indicated along the axes by red and green arrows, respectively.

(C) Representative multiple-sequence alignments of H7 head domains
(left) and T17 tail domains (right), with cartoon representations of the
head and tail domains shown below. Each row shows an interacting
head-tail pair, labeled by the PKS pathway it belongs to, and the
interface number within that pathway. The three head residues and five
tail residues selected by CRoSS are indicated by red and green arrows,
respectively; the corresponding positions in the sequence alignments are
highlighted in bold. The three most significant head and tail residues
(used to define code words in Figure 4) are indicated by asterisks. The
head and tail alignments are divided into four groups each (H1a-H1d
and T1a-T1d) corresponding to the subclasses discussed in Figure 4.
doi:10.1371/journal.pcbi.0030186.g003

detailed domain swapping and mutagenesis experiments
[20,21].

Having identified the sites predominantly responsible for
HI1-TI specificity, we next asked whether we could construct
a specificity code for interactions within this class. We
focussed on the three most significant CRoSS pairs, which
involved three residues each on the head and tail domains
(indicated by asterisks in Figure 3C, and by arrows in Figure
4A). For any given head or tail, these residues define a short
amino acid code word. We used a Monte Carlo technique to
cluster these words into cliques [22], such that interactions
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were enriched within cliques but suppressed between them
(Figures 4B and 4C; Text S1, Section 3). The code words broke
up into clearly distinguishable sets of synonyms (Figure 4D),
with sequences much more similar than expected by chance
(p-value < 0.02, estimated by using datasets with randomly
permuted interactions; Figure 4E). These clusters essentially
correspond to a refinement of HI-TI into interaction
compatibility subclasses (Figure 3C).

Testing the Specificity Code

The organization of docking domains into compatibility
classes and subclasses is striking, but perhaps circumstantial.
Are there falsifiable predictions that can be tested against
independent sources of data, other than those used during
the original analysis? In this section, we present three tests of
the specificity code. The first test is structural: by mapping
our results onto an NMR structure of PKS docking domains,
we ask whether the correlated residue pairs picked out by
CRoSS involve actual physical interactions. The second test is
statistical: we break up our data into training and test sets,
using the former to make predictions, and the latter to
validate them. The third test is functional: we use published
experimental data involving hybrid PKS pathways to validate
our classification of docking domains into compatibility
classes.

Structural: Physically interacting residues. A key compo-
nent of our analysis, information about which protein pairs
in a PKS system do or do not interact, is based on PKS
multiprotein chain order, which in turn is typically inferred
from the nature of the polyketide synthesized by the system.
Underlying this inference is the assumption that there is only
one order in which the proteins can interact, namely that
which results in the correct polyketide product. Alternatively,
it could be argued that protein interactions are nonspecific,
and that multiprotein chains of various permutations do
arise, only one of which is catalytically active and therefore
detectable. Under the former hypothesis of physical specific-
ity, we might expect some of the co-evolving residue pairs
detected by CRoSS to be involved in direct physical
interactions. Under the latter hypothesis of chemical specif-
icity, co-evolution would arise indirectly due to the con-
straints of catalysis, and would therefore have no relationship
to physical interactions. In order to distinguish between these
two possibilities, we mapped our HI-T1 CRoSS residues onto
the only available NMR structure of a PKS docking domain
interaction complex [15], corresponding to an HI-T1I inter-
face between proteins 2 and 3 of the erythromycin synthase
pathway (Text S1, Section 4). Remarkably, four of the seven
CRoSS pairs mapped to residue pairs separated by 5 A or less
in the NMR structure (Figure 5). Of the 19 X 27 =513 possible
residue pairings between the head and tail domains, only 31
lie within this separation (Figure 5A). If we had selected seven
residue pairs at random, we would have picked out four or
more such proximate pairs with probability p = 3.4e-4. This
highly significant agreement between sequence and structure
provides strong, independent confirmation that CRoSS is
picking out residue pairs involved in physical specificity. By
the same token, it provides confidence that the structure
inferred from NMR is an accurate description of the in vivo
interaction complex.

Statistical: Training and test data. Any successful predictive
code must be able to generalize to previously unseen data.
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Figure 4. Code Words and Compatibility Subclasses

In this figure, symbols associated with head domains are colored red, and those associated with tail domains are colored green. This coloring is
unrelated to compatibility class, as all domains pictured belong to compatibility class H1-T7.

(A) The three most significant CRoSS pairs pick out three residues each on the head (red) and tail (green) domains. These residues (indicated by asterisks
in Figure 3C) are highlighted by arrows, with their position along the domain shown in parentheses. The amino acids at these positions define our code
words.

(B) Schematic representation of code word clusters. Each node of the graph represents a unique head (red) or tail (green) code word, and each edge
represents a known interaction (orange) or noninteraction (purple) between code words. We use a Monte Carlo algorithm (Text S1, Section 3) to group
the nodes into clusters, such that interactions are enriched within a cluster, and noninteractions are enriched between clusters. These clusters thus
represent a refinement of H1-T1 into compatibility subclasses.

(C) Actual code word clusters. This is a matrix representation of the interaction graph shown in Figure 4B. Each row corresponds to a head code word
(red), and each column to a tail code word (green). The entries represent edges, showing that the corresponding code word pairs have been found on
known interactors (orange), known noninteractors (purple), both (pink), or neither (white). Code words are grouped into four clusters (each labeled by a
different shade of red or green), corresponding to subclasses of H1-T1 within which interactions are enriched. Nodes that occur as singletons are not
shown.

(D) Synonymous sets of code words. The code words belonging to each subclass are explicitly listed, in the same order as in the matrix of Figure 4C.
Comparison with the matrix shows that, within a given subclass, each head is compatible with several tails, and vice-versa. The subclasses are labeled by
shade, as well as by the index g, b, ¢, d. Within each subclass, we see a high degree of code word sequence similarity. If an amino acid occurs in a
majority of instances at a given position, it is included in the consensus sequence characterizing a given subclass.

(E) Histogram of clustering energies for 50 datasets with randomized interactions (Text S1, Section 3). The more negative the energy, the better the
clustering. The red line indicates the energy of the true dataset, far to the left of the distribution for randomized datasets. This indicates that the
observed degree of clustering is statistically significant, with p-value < 0.02.

doi:10.1371/journal.pcbi.0030186.9004

This ability can be measured by training the code on one additional CRoSS residues were included in the construction
subset of data (e.g., allowing it to learn sequence patterns), of our code words, the performance was no better than
and testing its predictions against another (e.g., applying random. Thus, while we were able to identify key residue
those pattern-based rules to predict interactions). The true positions with excellent statistical significance (as discussed in
positive rate (TP) is the fraction of known interactors the previous section), the identification of predictive code
predicted to interact, while the false positive rate (FP) is the words proved more difficult. The reason for this is that
fraction of known noninteractors predicted to interact. CRoSS averages over amino acids, while code word clusters
Random guessing would give TP = FP; a code which are based on the particular amino acids found at each
performed better than random would have TP > FP; the position. Since there are many distinct code words, the
ideal code would have TP =1, FP = 0. We carried out training connections between them become sparse, leaving the
and testing separately for the two levels of the specificity code algorithm unable to generalize from training data to test
(Text S1, Section 5). We found that predictions based on the data. We do expect the predictive ability of the subclass code
classification of docking domains into compatibility classes to improve once the size of the dataset is increased, and
gave TP = 0.97, FP = 0.52. That is, matching of compatibility connections become better sampled.

class represents a necessary (almost all interacting pairs Functional: Whole-protein hybrid PKS systems. The hy-
match) but not sufficient (half of the noninteracting pairs also pothesis that docking domains from different compatibility
match) condition for head-tail interaction, consistent with classes cannot interact is certainly falsifiable: experimental
our earlier results. In contrast, predictions based on the evidence of a significant number of mismatched interactors
division into subclasses performed only marginally better would lead us to reject it. We see only two mismatched
than random, with TP = 0.6, FP = 0.5 (Figure S2). When interactors in our dataset, one of which involves a domain
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Figure 5. CRoSS Residues and Physical Interactions

In (B-F), symbols associated with head domains are colored red, and
those associated with tail domains are colored green. This coloring is
unrelated to compatibility class, as all domains pictured belong to
compatibility class H1-TT.

(A) Comparison of the residues selected by CRoSS to those that are in
physical contact in the docked domain NMR structure. The matrix has
residues of the head domain indexed vertically, and residues of the tail
domain indexed horizontally. Each entry is shaded gray if the pairwise
distance between the corresponding residues is 5 A or less, and white
otherwise. The residue pairs selected by CRoSS are highlighted as red
boxes; remarkably, four of the seven CRoSS pairs are separated by 5 A or
less. Residue pairs previously suggested as contributing to specificity are
highlighted as blue circles: R1, suggested by Broadhurst et al. [15] and
Weissman [20] as “code residue pairs” that play a critical role in
discrimination; R2, demonstrated by Weissman [21] to alter the efficiency
of docking in the erythromycin PKS. It has also been suggested that the
entire complement of hydrophobic residues at the docking interface
might contribute to specificity [20].

(B-C) Structure of the docking complex between the head domain of
protein 2 (red) and the tail domain of protein 3 (green) of the
erythromycin PKS [15]. PKS proteins exist as homodimers, so the docking
complex involves a pair of tail domains T, and T (which form a coiled
coil) and a pair of head domains H, and Hg (which are alpha helices that
lock around the coiled coil).

(B) Cartoon representation of the structure, showing domain labels.

(C) Space-filling representation of the structure. The head domains are
now colored dark grey, and the tail domains are colored light gray, while
the head and tail residues selected by CRoSS are colored red and green,
respectively. The three circles indicate regions that have been magnified
in subsequent panels of the figure.

(D-F) Space-filling representations of the structure, magnified around
the neighborhood of the CRoSS residues. The side chains of the
significant head (red) and tail (green) residues are also shown. As seen in
Figure 5A, four out of the seven CRoSS residue pairs correspond to
pairwise physical interactions: {i, j} = {6,5}, {12,12}, {13,11}, {12,16}.
Note that the two copies of any residue participate in symmetric
contacts, but it is not possible for CRoSS to assign which of two possible
pairings, i.e., A-A and B-B versus A-B and B-A, actually occurs. For
example, Hg6 contacts T,5, while H,6 contacts Tz5. One copy of each
interacting pair is shown here: (D) Hg6-T45, (E) HA12-Tg12, (E) H413-T411,
(F) Hg12-T416. We have also highlighted (F) T418, which does not lie on
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the head-tail interface but is instead buried within the tail coiled-coil. It is
possible that destabilization of the T,18-T318 contact changes the global
conformation of the coiled-coil, and thus has a long-range effect on
head-tail interactions. (Similar long-range effects have been demon-
strated to alter the efficiency of docking in the erythromycin PKS [21].)
doi:10.1371/journal.pcbi.0030186.9005

that is probably misclassified (Figure 2C; Dataset S2). On the
other hand, we have a large body of evidence in favor of it,
including the statistical analysis presented above. To further
test the validity of the hypothesis, we looked at cases in which
hybrid systems were generated by combining whole proteins
from different PKS pathways. There are several reported
examples of functional interactions between hererologous
proteins with compatible docking domains. These include
pikro__002-eryth__003 [23], pikro__002-olean__003 [23], and
eryth__001-pikro__002 [24], all of which would require HI1-T1
docking (Figure 2B). To some extent, this is to be expected:
successful hybrids tend to be made by combining closely
related PKS sytems, so the sequential interactions of the
parent multiprotein chains are recapitulated in the hybrid.
More interestingly, an efficient nonsequential interaction was
observed for eryth__001-pikro__004 [24], a pairing that would
seem to require H1-T2 docking (Figure 2B), thus violating the
compatibility class hypothesis. Closer inspection reveals that
the situation is more complicated. A successful eryth__001-
pikro__004 interaction ought to result in polyketide chain
elongation, similar to the natural interaction between
pikro__003 and pikro__004; instead, it results in polyketide
chain cyclization and release, similar to the nonstandard
interaction between pikro__003 and a truncated form of
pikro__004 (which lacks its N-terminal docking domain) [25].
The fact that the N-terminal docking domain of pikro__004 is
unnecessary for the nonstandard pikro__003-pikro__004 inter-
action suggests that it might be similarly unnecessary for the
observed eryth__001-pikro__004 interaction. However, this
remains to be directly demonstrated. Since the nonstandard
pikro__003-pikro__004 interaction can occur even when the N-
terminal docking domain of pikro__004 is present [26], and
since the C-terminal docking domain of eryth__001 is
necessary for the eryth__001-pikro__004 interaction [24], the
possibility of HI-T2 docking cannot be ruled out. Never-
theless, when taken together, the results from hybrid path-
ways suggest that the classification of docking domains into
compatibility classes is biologically meaningful.

Discussion

We set out to understand the rules that governed
interactions between modular PKS proteins. By focusing on
the conserved N- and C-terminal docking domains, we were
able to construct a predictive specificity code, and to prove
that it pertained to pairwise physical interactions. This code
provided us with necessary but not sufficient conditions for
protein interaction, indicating that further determinants of
specificity were required to explain the observed data. There
have been several proposals regarding the nature of such
determinants. First, it is possible that additional information
is contained in the docking domains themselves (Figure 5A).
For example, it has been suggested that interaction efficiency
could be influenced by long-range electrostatic interactions
between a set of “code residues” [15,20,21] and short-range
interactions between the complement of hydrophobic resi-
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Figure 6. Domain Shuffling and Domain Linkage

(A) AH is the fraction of amino acid differences between some pair of
head domains; AT is the fraction of amino acid differences between
some pair of tail domains. We compare the observed degree of similarity
of two head domains (AH), with that of the two tail domains on the same
proteins (AT) or the two tail domains that are their interaction partners
(AT’). Each such comparison gives us a point in AH — AT space; by
running over all possible pairs, we generate a family of points.

(B,C) Density plots of points in AH — AT space, with axes running from 0
(identical) to 1 (distinct). To generate these plots, a 2-D histogram was
calculated by binning the data into a 10-by-10 grid, which was then
smoothed by interpolation. The multimodal appearance of these plots is
a manifestation of the underlying phylogenetic clusters.

(B) Density plot of AH versus AT, when the head and tail domains belong
to the same protein. A priori, we expect two proteins descended from a
common ancestor to show a uniform degree of sequence similarity
across their entire length. Instead, we find that AH is largely uncorrelated
with AT (cc = 0.13). That is, proteins with very similar head domains can
have very diverged tail domains, and vice versa. This implies that
proteins are not inherited in their entirety, but instead undergo frequent
domain shuffling.

(C) Density plot of AH versus AT, when the head and tail domains are
interaction partners. In this case, AH and AT' are highly correlated (cc =
0.67), implying that these two domains are evolutionarily linked.
Remarkably, the interacting domain pair straddling two proteins, rather
than the protein itself, constitutes the true unit of inheritance.
doi:10.1371/journal.pcbi.0030186.9006

dues at the docking interface [20]. Second, it is clear that
multiple protein-protein interactions, other than those
between the docking domains, can influence the efficiency
and specificity of polyketide transfer. For example, truncated
PKS proteins lacking N-terminal docking domains can
nevertheless catalyze polyketide chain extension [25], and
interprotein interactions between the C-terminal ACP
domain and N-terminal KS domain of adjacent proteins
can mitigate the effect of mismatched docking domains [27].
If such interactions are relevant, it is likely that they will
influence residue co-evolution, both between docking do-
mains as well as between other domain varieties. At our
current level of sensitivity, we were able to identify a handful
of residue pairs contributing to the specificity of HI-TI
interactions, but were unable to find any significant pairs for
the other compatibility classes. Moreover, when we applied
the same analysis to the case of interactions between the
much larger ACP and KS domains, we found no significant
co-evolution (Figures S1E and S1F). If we are to increase the
sensitivity of our analysis, we must increase the number of
ordered PKS pathways in our dataset. Aside from waiting for
more PKS pathways to be biochemically characterized, one
way to achieve this would be to include putative pathways
from fully sequenced genomes whose order was inferred
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using techniques such as those developed by Minowa et al.
[10] (though this runs the risk of circularity).

Hierarchy, Modularity, and Abstraction

One of our central findings is that the PKS specificity code
is hierarchical. At the highest level, there are phylogenetically
diverged, extremely distinct compatibility classes of docking
domains; at the next level, there are subclasses of domains
that essentially differ from one another at just a few residues.
As such, it is possible to achieve interactions between any pair
of docking domains in a given phylogenetic class by a handful
of mutations, but docking domains from different phyloge-
netic classes are likely to remain forever incompatible. This
hierarchical organization provides important clues about the
selective pressures that operate on PKS pathways. If it were
possible to switch the class of any docking domain to any
other by mutation, undesirable interactions in PKS multi-
protein chains would arise at high frequency, reducing the
overall fitness of a bacterial population. At the opposite
extreme, if docking domains were all extremely distinct from
one another, it would be prohibitively difficult to “repro-
gram” the order of a PKS multiprotein chain, so bacteria
would not be sufficiently nimble in response to rapidly
changing ecological conditions. The observed hierarchy of
classes and subclasses might represent an optimal intermedi-
ate strategy, balancing the competing requirements of
robustness and flexibility.

If we examine how PKS pathways are encoded at the
genetic level, we uncover two further puzzles. First, why are
the PKS docking domains positioned so close to protein
termini (Figure 1A), when it is not uncommon to find
protein—protein interaction domains deep within protein
coding regions? Second, why does gene order tend to match
protein order in PKS pathways, when experiments involving
hybrid PKSs [23,24] have shown that gene order is not
essential for function? The key to both these puzzles lies in
the patterns of PKS pathway inheritance. If proteins were
inherited in their entirety over evolutionary timescales, we
would expect their N- and C-termini to have similar
phylogenetic trees. Instead, we find that pairs of proteins
with closely related tails can have distantly related heads and
vice versa (Figure 6B), implying that domain shuffling occurs
frequently. More remarkably, we find that the interacting
domain pairs, the head of one protein and the tail of its
partner, have similar phylogenies (Figure 6C). Interacting
docking domains, straddling two proteins, constitute the unit of
inheritance. This is presumably because the two also
represent a unit of function, one being useless without the
other. Their combined inheritance is ensured if these two
protein fragments are encoded contiguously on the genome.
Indeed, we find that most of the docking domain pairs in our
dataset are adjacently transcribed (Dataset S2). Of course, this
would require that docking domains map to gene termini,
and that gene order match protein order. In a world of
rampant recombination and gene transfer, domain and gene
order are functionally irrelevant, but evolutionarily impor-
tant.

The high-level structure of the PKS protein interaction
code is striking. The hierarchical organization of docking
domains into compatibility classes and subclasses creates
multiprotein chains that are simultaneously robust and
reprogrammable. A pair of interacting docking domains
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form a single module, a genetic unit straddling protein
termini, so they are always inherited together. And the
correspondence between gene order and protein order is a
beautiful example of abstraction, allowing new protein config-
urations to be efficiently sampled through the underlying
process of DNA recombination. All this amounts to a
common standard for information exchange, allowing mi-
crobes to access a shared pool of biosynthetic capabilities. It
would appear that PKS pathways should not simply be
regarded as machines, evolved to produce this or that
polyketide product. Rather, they represent a sort of genetic
sketchpad, allowing biosynthesis to be abstractly represented,
shared, and shuffled, in a process of continual biochemical
innovation.

Methods

CRoSS algorithm: Correlated residues of statistical significance.
Head and tail domains of interest were grouped by PKS pathway. For
each pathway, known interactors (I) and known noninteractors (NI)
were coupled, and appropriately weighted. For example, consider a
hypothetical pathway which involves five proteins, with m; =4 head-
tail interfaces. Let the heads be labeled h; and the tails t;, numbered
by interface i = 1, ..., m;. The I dataset will contain the m; = 4
interacting pairs {h;, t;} through {hy, t4}, each with weight w; = 1.
The NI dataset will contain the my; = 12 noninteracting pairs {hy, to},
{hy, ts}, ..., {hy, to}, {hy, t3}, each with a weight wy;=my/mx; = 1/3. The
total contribution of this pathway to both the I and the NI dataset will
therefore be:

Wimyp = wWNpmyp = my (1)

We carried out this procedure for all pathways, leaving out those
with my; = 0. The datasets I and NI each contain an ordered list of
head-tail pairs indexed by r, with corresponding weights w,. The
sequences of the rth domain pair are represented by binary variables
as follows: A}, {73, where i runs over head sites and j over tail sites, and
o and P run over the 20 amino acids. We next calculated the joint
distribution of amino acids at some site pair {i, j}:

I _ rogr NI __ ror
Sap = D whiyliy,  Ojog = D whi,ly (@)
rel reNI

For any given site pair {i, j}, it follows from Equation 1 that the
marginal distribution of amino acids are identical:

Z ijap = ﬂﬁv Z(‘fj-uﬁ = ZG%B’
o

Z fap = D O (3)

Therefore, the only way the joint distributions can be different is if
they display different correlations. However, we must be careful not
to take the observed correlations too seriously, given the small size of
the dataset. We therefore calculated the significance of the difference
between the joint distributions using a chi-squared test [28]:

2
\
pij_Q<2j72]>> (4)

where
ol NI \2
X2 _ Z( B Gijaﬁ)
! ap ( ij.op + G;LB)

Ola,x) = ﬁ / "y, (5)

Here, v;; is the number of bins for which either o}, or 6} is nonzero,
Q is the incomplete gamma function, and I'(a) is the Euler gamma
function.

If this were a true chi-squared test, the final CRoSS matrix pj;
would give the probability that the interaction and noninteraction
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distributions were drawn from the same underlying joint-distribu-
tion. The lower this value, the more significant the site pair {i, j} as a
predictor of specificity. In fact, the fractional weighting used in
Equation 1 means that the values p;; overestimate the probability of
the null hypothesis. Moreover, we are testing multiple hypotheses,
one for each site pair under consideration. In choosing a threshold to
classify a particular subset of site pairs as being significant, it is useful
to compare the distribution of values p; against a background
distribution p;;, generated by applying CRoSS to compare random
pairings with noninteractors. This is how the seven significant pairs in
Figure 3B were identified (Figure S1C).
CRoSS was implemented in MATLAB (The MathWorks).

Supporting Information

Dataset S1. List of PKS Pathways, Abbreviations, and Data Sources
Found at doi:10.1371/journal.pcbi.0030186.sd001 (11 KB TXT).

Dataset S2. Compatibility Class Multiple Sequence Alignments
Found at doi:10.1371/journal.pcbi.0030186.sd002 (13 KB TXT).

Figure S1. Selecting Significant CRoSS Residue Pairs

(A) The HI-T1I control matrix (also shown in Figure 3A), generated by
using CRoSS to compare random pairings with noninteractors, has
entries -logio(p ).

(B) The HI-TI interaction matrix (also shown in Figure 3B),
generated by using CRoSS to compare interactors with noninter-
actors, has entries -logyo(p;)-

(C) Cumulative histograms of the values loglo(p ;) (blue) and logw(ptj)
(red). The distribution of p-values in the CRoSS 1nterdct10n matrix
coincides with that of the control matrix above p ~ 107!, However,
the CRoSS interaction matrix shows a tail of much lower p-values.
The seven lowest points were selected as representing significant
CRoSS pairs.

(D) Significance and mutual information. For each site pair, we know
the joint distribution of amino acids for interactors, as well as for
noninteractors (Methods, Equation 2). CRoSS calculates a significance
score p, which reports the probability that these two observed
distributions could arise from the same underlying distribution. In
screening for co-evolving pairs, an alternative approach would be to
use the interactor joint distribution alone, and to measure the mutual
information between the head and tail amino acids (closely related to
the approach used in [17] and [18]). To compare these two
approaches, we plotted mutual information (in natural logarithms)
against the significance p, for all site pairs. The two most significant
points have the highest mutual information, and all seven chosen
points (red) have high mutual information as expected, since they are
useful predictors of specificity. However, there is a cloud of points of
low significance (black) which show a spread of mutual information
values. Selecting site pairs based on mutual information alone would
tend to include a large number of spurious correlations, or to exclude
most of the important correlations.

(E-F) Interactions between ACP and KS domains have been shown to
contribute to specificity [27]. We analyzed the C-terminal ACP
domains and N-terminal KS domains adjacent to the 90 HI-TI
docking domain pairs in our dataset, precisely as we had done for the
docking domains themselves. Starting with a multiple-sequence
alignment, we applied CRoSS to detect co-evolving residues by
comparing interactors with noninteractors (p;). We also applied
CRoSS on a control dataset, comparing random pairings with
noninteractors (poi,-).

(E) The ACP-KS CRoSS interaction matrix shows very low signals
(note the color scale, which is different from that used in Figure S1B).
(F) CRoSS entries in the interaction (red) and control (blue) matrices
are comparable, indicating that there are no significant co-evolving
pairs.

Found at doi:10.1371/journal.pcbi.0030186.sg001 (1.6 MB PDF).

Figure S2. Measuring the Predictive Ability of the Subclass Code

(A) Receiver operating characteristics (ROC) for predictions based on
Monte Carlo clustering. Each curve shows the TP rate versus the FP
rate, as the clustering threshold N,,;, is varied from high (TP =FP =0)
to low (TP = FP = 1). Curves of different colors correspond to
different partitions of the data into training and test sets.

B) Interpolated ROC curves were used to calculate the FP value at
each TP value, for each of the 15 training and test sets. Here we show
the mean ROC value (black) along with one standard error on each
side (gray) as a function of TP values. A random classifier would trace
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the curve TP =FP (red), while the ROC of a classifier that performed
better than random would lie above this diagonal. The performance
of our code is marginally better than random, but statistically
significant. The performance tends to be better at higher FP values.
The mean area under the ROC is 0.55 = 0.02, and at FP = 0.5, we have
TP = 0.6.

(C) Performance of the code as a predictor of PKS multiprotein chain
order. Consider a hypothetical five-protein chain for which the
termini (1, 5) are specified, so the three internal proteins (2, 3, 4) can
have six possible permutations. Using FP = 0.5 and TP = 0.6, we
generated a possible prediction of pairwise docking domain
interactions based on the correct underlying multiprotein chain
permutation. We then used Bayesian inference to assign a posterior
probability to the six possible permutations given the prediction, and
selected the permutation with the maximum posterior probability.
(The six possible permutations correspond to six allowed types of
pairwise interactions between the four internal head-tail pairs of the
multiprotein chain. These are represented as six 4 X 4 matrices with a
single entry in each row and column.) This procedure was repeated
for 1,000 trials. The figure shows the fraction of trials in which each of
the six possible permutations was selected as being most likely. We
see that the correct permutation is chosen in 42% of instances.
Random guessing would pick the correct permutation in 16.7% of
instances, so our performance is 2.5 times better than random.

Found at doi:10.1371/journal.pcbi.0030186.sg002 (1.1 MB PDF).
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