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Abstract
Brief periods of ischaemia followed by reperfusion of one tissue such as
skeletal muscle can confer subsequent protection against ischaemia-induced
injury in other organs such as the heart. Substantial evidence of this effect has
been accrued in experimental animal models. However, the translation of this
phenomenon to its use as a therapy in ischaemic disease has been largely
disappointing without clear evidence of benefit in humans. Recently, innovative
experimental observations have suggested that remote ischaemic
preconditioning (RIPC) may be largely mediated through hypoxic inhibition of
the oxygen-sensing enzyme PHD2, leading to enhanced levels of
alpha-ketoglutarate and subsequent increases in circulating kynurenic acid
(KYNA). These observations provide vital insights into the likely mechanisms of
RIPC and a route to manipulating this mechanism towards therapeutic benefit
by direct alteration of KYNA, alpha-ketoglutarate levels, PHD inhibition, or
pharmacological targeting of the incompletely understood cardioprotective
mechanism activated by KYNA.
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Introduction
Ischaemia followed by reperfusion of one tissue such as muscle  
can confer subsequent protection against ischaemia-induced  
injury in other organs such as the heart. Substantial evidence of 
this effect has been accrued in experimental animal models, but  
the translation to a therapy in ischaemic disease has not been  
definitively achieved in humans. Furthermore, experimental evi-
dence for a large number of potential mediators and mechanisms 
has been obtained, but a clear understanding of the mechanisms 
is lacking. This commentary focuses on recent work examining a 
novel mechanism that may underlie remote ischaemic precondi-
tioning (RIPC)1.

What is ischaemic preconditioning?
Ischaemic preconditioning is the phenomenon whereby brief peri-
ods of ischaemia followed by tissue reperfusion confer subsequent 
protection against ischaemia-induced injury. The concept, proposed 
30 years ago by Murry et al., demonstrated that brief cycles of 
ischaemia and reperfusion of the coronary arteries protect the myo-
cardium from subsequent prolonged ischaemia and reperfusion, 
leading to a reduction in infarct size2.

What is remote ischaemic preconditioning?
The concept was developed further with the observation that 
ischaemia in one coronary territory could protect cardiac tissue 
supplied by other epicardial arteries3. Birnbaum et al. went on to 
demonstrate that “remote” transient ischaemia of non-myocardial 
tissues could also be associated with reductions in the extent of 
myocardial infarction. They combined partial reduction of blood 
flow to the hindlimb with increased oxygen demand by rapid elec-
trical stimulation of the gastrocnemius muscle and showed reduced 
myocardial infarct size in rabbits4. Subsequently, Kharbanda et al. 
showed similar beneficial effects in a porcine model of myocardial 
infarction and applied the concept of RIPC to healthy human volun-
teers by inducing transient non-invasive ischaemia with the use of a 
blood pressure cuff applied to one arm and demonstrated improved 
endothelial function in the contralateral arm5.

Does it benefit patients?
The important clinical question has emerged of whether RIPC 
can be used therapeutically in the wide range of medical condi-
tions in which ischaemic injury occurs. RIPC has been applied in 
elective cardiac surgery, vascular surgery, percutaneous coronary  
intervention, and organ transplantation in attempts to improve 
cardiac, renal, and other outcomes. Individual, small randomised 
controlled trials have been reported to show potential benefit6–9. Hu 
et al. undertook a systematic review of 30 randomised controlled 
trials to investigate the effects of RIPC on the incidence and out-
comes of acute kidney injury (AKI) and found evidence of benefit 
in preventing contrast-induced AKI10. However, there was not ben-
efit in ischaemia reperfusion-induced AKI10, and more recent trials 
have also failed to see clear benefit in that setting11. The REmote 
preconditioning for Protection Against Ischaemia-Reperfusion 

in renal transplantation (REPAIR) trial found some evidence that 
RIPC using transient arm ischaemia-reperfusion improved renal 
transplant function12.

In the setting of cardiac surgery, meta-analyses have not con-
firmed any therapeutic benefit from RIPC13 nor have more recent 
larger-scale studies. The Effect of RIPC on Clinical Outcomes in  
Coronary Artery Bypass Graft (CABG) Surgery (ERICCA) study, 
a randomised controlled clinical trial in 1,612 patients, showed 
no effect of RIPC on clinical outcomes14. RIPC consisting of four  
5-minute cycles of ischaemia-reperfusion of the upper arm did not 
improve clinical outcomes in patients undergoing elective CABG. 
No differences were seen in mortality, stroke, myocardial infarc-
tion, or AKI. The RIPC for Heart Surgery (RIPHeart) trial of 1,385 
patients used a similar upper limb ischaemia protocol but also failed 
to see benefit15.

Overall, these results are disappointing but convincing in their 
failure to see a therapeutic benefit of RIPC in most patients. The 
optimum type, duration, and timing of the ischaemic intervention 
is uncertain; skeletal muscle mass, hepatic function, concurrent 
medications, choice of anaesthetic, and the effect on different target 
organs may also vary and influence the effect of the intervention. 
How can the benefits seen in experimental studies be translated  
to a useful therapy, and does RIPC operate in humans? Under-
standing the mechanism of effect might enable optimisation of  
the clinical use of RIPC.

What is the mechanism of remote ischaemic 
preconditioning?
Whilst definitive evidence for therapeutic benefit in humans is 
lacking, evidence that experimental manipulations can have a pro-
tective benefit is strong (for review, see 16). A large number of 
different mechanisms have been suggested, including roles for neu-
rally mediated mechanisms and hormonal mediators (for selected 
examples, see Table 1), with a recent workshop suggesting that the 
mechanisms underlying RIPC remain unclear17. Recent work has 
implicated the hypoxia response and the generation of circulating 
molecular mediators. Hypoxia is a central component of ischae-
mia, and the hypoxia-inducible factor (HIF) transcription factors 
play a dominant role in co-ordinating the transcriptional response 
to hypoxia. The abundance of the HIF-α factors is controlled by 
oxygen-dependent prolyl hydroxylation by the PHD family of  
2-oxoglutarate dioxygenases18–20 (PHD1, 2, and 3, also known as 
EGLN2, 1, and 3, respectively) and their transcriptional potency 
by the FIH-1 asparaginyl hydroxylase21,22. Several studies have 
implicated the HIF–PHD system in the mechanism of RIPC. These 
include impaired RIPC in mice heterozygous for a knockout allele 
encoding HIF-1α23, activation of HIF-1α by ischaemic precondi-
tioning, and enhancement of cardiac protection by pharmacologi-
cal and genetic enhancement of HIF-1α24. Mice with genetically 
reduced levels of PHD2 (and hence enhanced HIF-1α levels) 
showed greater resistance to cardiac ischaemia25,26, as did animals 
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target protected organ nor the relative contributions of neural or 
hormonal mediators.

Is there a role for kynurenic acid as the mediator of 
remote ischaemic preconditioning?
A major insight into the mechanism of RIPC and the role of the 
HIF–PHD system and circulating mediators has come from the 
recent work of Kaelin and colleagues1. They initially provided  
further evidence for the protective effects of HIF activation by 
showing that genetic and chronic PHD2 inactivation in mice  
hearts conferred protective benefit against permanent and transient 
cardiac ischemia. Similar beneficial effects were also seen with 
acute systemic PHD2 genetic inactivation and with systemic admin-
istration of a pharmacological PHD inhibitor. To determine whether 
manipulations of the HIF–PHD system in the remote ischaemic 
tissue (but not the target heart) affected RIPC, they studied mice 
with PHD2 inactivated only in skeletal muscle. Such mice again  
showed enhanced myocardial protection following ischaemia. 
They then undertook parabiotic experiments to provide important 
evidence that this protective effect was mediated by a circulating 
factor. To determine the nature of this circulating factor, they tested 
for cytokine and metabolite differences in the blood of mice with 
and without PHD2 skeletal muscle inactivation. No significant  
changes were seen in cytokines or molecules such as erythropoi-
etin, which has previously been suggested to act as a circulating 
mediator of RIPC. Similarly, no plausible secreted candidates were 
identified from genetic expression analyses between mice with and 
without PHD2 skeletal muscle inactivation. However, when blood 
was compared by analysis with liquid chromatography and mass 
spectroscopy, significant differences in tryptophan metabolites 
were observed. Similar alterations were also seen in blood shortly 
after pharmacological PHD inhibition with significant elevations in 
the level of the tryptophan metabolite kynurenic acid (KYNA).

Further evidence implicating KYNA as a mediator of ischaemic 
preconditioning were obtained by abrogating RIPC with inhibi-
tors of the tryptophan pathway and from the beneficial effects of 
administration of KYNA itself. Studies were then undertaken to 
explore the mechanism by which PHD2 inactivation in muscle 
resulted in increases in circulating KYNA and mediation via an 
increase in levels of the obligatory PHD co-substrate alpha-ketogl-
utarate with subsequent hepatic generation of KYNA (Figure 1).  
Systemic alpha-ketoglutarate administration also protected hearts 
from ischaemia-reperfusion injury. PHD2 inhibition appeared 
to increase alpha-ketoglutarate levels as a consequence of its  
reduced decarboxylation, with evidence provided of a high rate 
of PHD2-dependent alpha-ketoglutarate conversion to succinate. 
This is superficially surprising given its well-understood role as 
an oxygen-sensing enzyme as opposed to one with significant  
roles in metabolic flux. Some support for a role for the kynure-
nine pathway in the mechanism of RIPC has been provided by  
studies in humans and rats in which circulating metabolites, includ-
ing kynurenine and glycine, that demonstrated elevated levels 
after RIPC were injected prior to myocardial infarction and had a  
protective effect32.

Table 1. Selected animal studies that have implicated 
potential mechanisms and mediators of remote ischaemic 
preconditioning of the heart (RIPC).

Potential 
Mechanism/Mediator Species RIPC model Reference

Neurally mediated 
erythropoietin release Mice Hindlimb 

ischaemia 29

MicroRNA-144 Mice Hindlimb 
ischaemia 36

Neurally mediated 
bradykinin release Rat Mesenteric 

artery occlusion 37

Adenosine Rat Mesenteric 
artery occlusion 38

Bradykinin and 
epoxyeicosatrienoic 
acids

Dog Abdominal skin 
incision 39

Endogenous opioids Rat Mesenteric 
artery occlusion 40

SDF-1/CXCR4 Rat Hindlimb 
ischaemia 31

Adenosine and ATP-
sensitive potassium 
(KATP) channels

Rabbit Renal ischaemia 41

Haem oxygenase-1 Rat Hindlimb 
ischaemia 42

Interleukin-10 Mice Hindlimb 
ischaemia 23

Nitrite Mice Hindlimb 
ischaemia 43

Apolipoprotein A-I Rat Hindlimb 
ischaemia 44

Glucagon-like 
peptide-1 Rat Hindlimb 

ischaemia 45

Hypoxia inducible 
factor (HIF) Mice Hindlimb 

ischaemia 23

with activation of HIF by pharmacological PHD inhibition or VHL 
deficiency27, though other studies have suggested that HIF-1α 
upregulation is unnecessary in acute RIPC28.

There are a broad array of HIF-mediated responses to hypoxia  
that might help mediate ischaemic preconditioning, including the 
promotion of anaerobic metabolism, vascularity, and vasodilatation, 
reactive oxygen species protection, and alterations in cell survival 
and cell cycle. Some of these HIF-dependent hypoxic responses 
include the release of circulating mediators by ischaemic tissue, 
such as its canonical target erythropoietin29,30 and others includ-
ing CXCL12 (SDF-1)31, that might act as circulating mediators 
of RIPC. Whilst these studies do suggest a role for the HIF–PHD 
system in RIPC, they have not fully disentangled the requirement 
for HIF activation in the remote ischaemic tissue versus that in the 
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Figure 1. Schematic illustration of the pathways involved in 
enhanced kynurenic acid (KYNA) generation by the hypoxia-
inducible factor (HIF) hydroxylase PHD2 during hypoxia. The 
figure demonstrates the mechanism by which muscle hypoxia 
results in the inhibition of PHD2 function leading to enhanced alpha-
ketoglutarate generation and kynurenic acid production, which may 
mediate a cardioprotective effect. It also shows the canonical role 
of PHD2 in normoxia in the oxygen-dependent degradation of the 
transcription factor HIF. HIFα, hypoxia inducible factor α; PHD2, 
prolyl hydroxylase domain 2; VHL, von Hippel Lindau.

Conclusions
These findings provide vital insights into a potential mechanism of 
RIPC and generate intriguing questions (Box 1). Notably, what is 
the mechanism of the cardioprotective effect and does it operate in 
other tissues? Is it mediated through metabolic effects, via effects 
on specific G-protein-coupled receptors33, or by the known influ-
ence of KYNA on the aryl hydrocarbon receptor (AHR) response34 
(which shares with the HIF pathway the heterodimeric transcrip-
tion factor AHR nuclear translocator [ARNT])? Whilst protective 
effects of AHR activation have been suggested in some models of 
ischaemia, in others activation of the AHR response by tryptophan 
metabolites can have deleterious effects35.

Box 1. Outstanding questions concerning remote ischaemia 
preconditioning (RIPC) and the role of kynurenic acid (KYNA)

•    What is the mechanism of the cardioprotective effect, and 
does it operate in other tissues?

•    Can the manipulation of KYNA or alpha-ketoglutarate levels 
or direct pharmacological targeting of the cardioprotective 
mechanism activated by KYNA produce therapeutic benefit 
in patients with ischaemic diseases?

•    What mass of tissue ischaemia is necessary to achieve 
sufficient perturbations in the levels of circulating KYNA?

•    Will the emerging PHD inhibitors currently being trialled for 
their erythropoietic effect46 have protective benefits?

•    Do the other known influences on PHD function, such as 
oxygen availability, iron and ascorbate, or perturbations 
of alpha-ketoglutarate metabolism, influence protective 
mechanisms via this effect in vivo?

•     What effect is produced by acute versus chronic elevations 
in the levels of such molecules, and to what extent do 
metabolic compensations or the complex feedback loops 
operating in the PHD–hypoxia-inducible factor (HIF) system 
affect the operation of RIPC?

•    Does ischaemia operate locally to mediate protective effects 
through this mechanism?

•    Does this mechanism operate in other situations, such as 
hypoxic tumours?

•    Are there associations between levels of KYNA and 
outcomes in ischaemic diseases?

•    Is KYNA the dominant mediator of RIPC in humans, or are 
other mediators/mechanisms more important?

What is the relative importance of this newly defined mechanism 
of RIPC to other pathways, how is it related to neurally mediated 
effects, and how do they interact? Can manipulation of KYNA  
or alpha-ketoglutarate levels or direct pharmacological targeting 
of the cardioprotective mechanism activated by KYNA produce  
therapeutic benefit in patients with ischaemic diseases? In con-
trast to the impressive protective benefits seen in the work of  
Olenchock and colleagues1 and other animal studies, does the fail-
ure of RIPC to achieve improved clinical outcomes reflect inad-
equate suppression of PHD2 activity and/or insufficient increases 
in levels of KYNA? Improved understanding of the transduction 
of the RIPC signal from remote tissue to protected target may now 
allow improvements in clinical strategies to deliver the enormous 
potential benefits of RIPC and the development of new pharmaco-
logical approaches that directly activate the protective pathway.
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