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Abstract

DNA damage response (DDR) and selective autophagy both can be activated by reactive

oxygen/nitrogen species (ROS/RNS), and both are of paramount importance in cancer

development. The selective autophagy receptor and ubiquitin (Ub) sensor p62 plays a key

role in their crosstalk. ROS production has been well documented in latent infection of onco-

genic viruses including Epstein-Barr Virus (EBV). However, p62-mediated selective autop-

hagy and its interplay with DDR have not been investigated in these settings. In this study,

we provide evidence that considerable levels of p62-mediated selective autophagy are

spontaneously induced, and correlate with ROS-Keap1-NRF2 pathway activity, in virus-

transformed cells. Inhibition of autophagy results in p62 accumulation in the nucleus, and

promotes ROS-induced DNA damage and cell death, as well as downregulates the DNA

repair proteins CHK1 and RAD51. In contrast, MG132-mediated proteasome inhibition,

which induces rigorous autophagy, promotes p62 degradation but accumulation of the DNA

repair proteins CHK1 and RAD51. However, pretreatment with an autophagy inhibitor off-

sets the effects of MG132 on CHK1 and RAD51 levels. These findings imply that p62 accu-

mulation in the nucleus in response to autophagy inhibition promotes proteasome-mediated

CHK1 and RAD51 protein instability. This claim is further supported by the findings that tran-

sient expression of a p62 mutant, which is constitutively localized in the nucleus, in B cell

lines with low endogenous p62 levels recaptures the effects of autophagy inhibition on

CHK1 and RAD51 protein stability. These results indicate that proteasomal degradation of

RAD51 and CHK1 is dependent on p62 accumulation in the nucleus. However, small hairpin

RNA (shRNA)-mediated p62 depletion in EBV-transformed lymphoblastic cell lines (LCLs)

had no apparent effects on the protein levels of CHK1 and RAD51, likely due to the constitu-

tive localization of p62 in the cytoplasm and incomplete knockdown is insufficient to manifest

its nuclear effects on these proteins. Rather, shRNA-mediated p62 depletion in EBV-trans-

formed LCLs results in significant increases of endogenous RNF168-γH2AX damage foci

and chromatin ubiquitination, indicative of activation of RNF168-mediated DNA repair
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mechanisms. Our results have unveiled a pivotal role for p62-mediated selective autophagy

that governs DDR in the setting of oncogenic virus latent infection, and provide a novel

insight into virus-mediated oncogenesis.

Author summary

Reactive oxygen/nitrogen species (ROS/RNS) can induce both DNA damage response

(DDR) and selective autophagy, which play crucial roles in cancer development. The

selective autophagy receptor and ubiquitin (Ub) sensor p62 links their crosstalk. However,

p62-mediated selective autophagy and its interplay with DDR have not been investigated

in latent infection of oncogenic viruses including Epstein-Barr Virus (EBV). In this study,

we provide evidence that p62-mediated selective autophagy is constitutively induced in

virus-transformed cells, and that its inhibition exacerbates ROS-induced DNA damage,

and promotes proteasomal degradation of CHK1 and RAD51 in a manner depending on

p62 accumulation in the nucleus. However, rigorous autophagy induction results in accu-

mulation of DNA repair proteins CHK1 and RAD51, and p62 degradation. Further, tran-

sient expression of a constitutive nucleus-localizing mutant of p62 recaptures the effects

of autophagy inhibition on CHK1 and RAD51 protein stability. These findings support

the claim that p62 accumulation in the nucleus in response to autophagy inhibition pro-

motes proteasome-mediated CHK1 and RAD51 protein instability. However, small hair-

pin RNA (shRNA)-mediated p62 depletion did not affect CHK1 and RAD51 protein

levels; rather, shRNA-mediated p62 depletion activates RNF168-dependent DNA repair

mechanisms. Our results have unveiled a pivotal role for p62-mediated selective autop-

hagy in regulation of DDR by overriding traditional DDR mechanisms in the setting of

oncogenic virus latent infection, and provide a novel insight into the etiology of viral

cancers.

Introduction

p62 (also named EBIAP, ZIP3, SQSTM1/Sequestosome-1), a human homolog of mouse ZIPs

(Zeta PKC-interacting proteins), is well known as a selective autophagy receptor and a ubi-

quitn sensor, which controls myraid cellular processes, including redox homeostasis, DNA

damage response (DDR), cancer development, aging, inflammation and immunity, osteoclas-

togenesis, and obesity, with or without the involvement of autophagy [1–3].

Autophagy, with either non-selective (random) or selective fashion, is a unique intracellular

process that engulfs damaged and even functional cellular constituents and delivers them to

lysosomes for digestion and recycling in the cytosol under diverse stresses, such as nutrient

deprivation, viral replication, cancer hypoxia, genotoxic stress, and replicative crisis. Autop-

hagy is thereby a crucial cellular machinery conserved from yeast to higher eukaryotes that

maintains organ metabolism, genome stability, and cell survival, and functions as either tumor

suppressor at early stage or promotor at late stage [4–6]. Distinct from non-selective autop-

hagy, selective autophagy sort specific substrates to lysosomes, and is mediated by an increas-

ing pool of receptors, including p62, NBR1, TAX1BP1, NDP52, OPTN, TRIMs, and TOLLIP

[3, 7–10].

Reactive oxygen/nitrogen species (ROS and RNS), the major cause of endogenous DNA

damage, can be produced in chronic viral infections, in which viral replication is generally

p62-mediated autophagy promotes DNA damage response in virus-transformed cells
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absent [11]. They can directly modify DNA and generate different levels of lesions, including

double strand breaks (DSBs) [12, 13]. Eukaryotic organisms have developed sophisticated

strategies to repair DNA damage to ensure genomic integrity, with homologous recombina-

tion (HR) and nonhomologous end joining (NHEJ) being two non-redundant repair mecha-

nisms for DSBs [14]. Unrepaired DSBs, however, incite chronic inflammation, resulting in

genomic instability that promotes malignant transformation under certain conditions [15].

ROS/RNS also induce p62 expression through the Keap1-NRF2 pathway, licensing the

induction of p62-mediated selective autophagy [16]. Mounting evidence indicates that DDR

and selective autophagy closely crosstalk in response to oxidative stress, in which p62 plays a

key role [17]. While p62 inhibits DNA damage repair, p62-mediated selective autophagy pro-

motes DNA repair by targeting ubiquitinated substrates including p62 itself for degradation in

cancer cells [18, 19], which usually harbor deficient traditional DNA repair mechanisms and

heavily rely on autophagy as an alternative repair mechanism for survival [20, 21]. In this

sense, p62-mediated selective autophagy, which is activated upon DNA damage caused by var-

ious stresses such as conventional chemotherapeutic agents, allows these cancer cells to escape

DNA damage-induced cell death [22, 23].

ROS/RNS overproduction, deregulation of host DDR machinery, and chronic inflamma-

tion, are the most common features of viral persistent infections, and together with non-selec-

tive autophagy, have also been documented in latency of herpesviruses including Epstein-Barr

Virus (EBV) [24–32]. Moreover, we and others have provided overwhelming evidence sup-

porting that EBV latent infection reprograms the host ubiquitin machinery for its own benefits

[33–35], including the employment of linear ubiquitin chain assembly complex (LUBAC)-

mediated ubiquitination to modulate LMP1 signal transduction [36]. However, as the major

selective autophagy receptor and a ubiquitin sensor, p62 and its relationship with EBV latency

and oncogenesis have never been investigated. In our recent publication, our findings have

implied a role for the p62-autophagy interplay in ROS-elicited DDR in EBV latency [37].

In this study, we aimed to investigate the potential role of p62-mediated selective autophagy

in regulating DDR in EBV latent infection. Our results show that p62-mediated selective autop-

hagy is constitutively induced in virus-transformed cells, and correlates with ROS-Keap1-NRF2

pathway activity, and that a well-balanced basal level of p62-mediated selective autophagy is

essential for maintaining genomic stability in this setting.

Results

p62-mediated selective autophagy is constitutively induced in viral latency

and correlates with ROS-Keap1-NRF2 pathway activity

Our recent findings have shown that treatment of EBV+ cells with the calcium ionophore iono-

mycin, which raises the intracellular level of calcium (Ca2+) essential for ROS production, ele-

vates the protein levels of both p62 and LC3b-II (the smaller cleavage product of LC3b, which

generally represents a marker of autophagosomal activity in mammalian cells), and induces

DNA damage; autophagy deficiency also elevates p62 protein levels [37]. Since both p62 and

LC3b are targeted by autophagy for degradation, their turnover represents the autophagic flux

(autophagic degradation activity) [38, 39]. These results have implied that the p62-autophagy

interplay may be involved in oxidative stress in EBV latent infection.

We thus sought to evaluate the correlation between intracellular ROS, and p62 and autop-

hagy levels in EBV latency programs. Results show that, although nearly 100% cells of each

tested virus-associated cancer cell line produce ROS, their levels, as indicated by mean of fluo-

rescence intensity (MFI), are consistently higher in SavIII, JiJoye, and MT4, compared to SavI,

P3HR1, and CEM, respectively (Fig 1A). Correspondingly, the cell lines with higher ROS
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production remarkably express higher p62 consistently at both protein and mRNA levels (Fig

1B and 1C). Furthermore, the basal levels of p62-mediated selective autophagy activity, as indi-

cated by both the cleaved LC3b product LC3b-II and phosphorylation of p62(Ser403), corre-

spond to the endogenous ROS levels, and are readily detectable by immunoblotting in EBV

type III latency and human T-cell leukemia virus-1 (HTLV1)-transformed MT4 cell line (Fig

1B). Phosphorylation of p62(Ser403), which promotes p62-Ub binding, is crucial for activation

of p62-selective autophagy [40]. Furthermore, interaction between selective autophagy recep-

tors and Ub-like proteins (UBLs), such as LC3b, is the molecular basis for selective autophagy

Fig 1. p62-mediated selective autophagy is endogenously induced in viral latency and correlates with ROS-Keap1-NRF2

pathway activity. A. Endogenous ROS production in viral latency was measured by flow cytometry with the CellRox Green reagent

(Invitrogen). Three independent repeats were conducted, and representative results are shown. Results are the mean ± standard error

(SE) of duplicates for each sample. MFI = mean fluorescence intensity. B. The correlation of endogenous p62 protein levels and

autophagy activity with the Keap1-NRF2 pathway activity in viral latency was evaluated by immunoblotting with indicated

antibodies. C. The correlation of p62 expression with viral latency was evaluated at the transcription level by qPCR. The mRNA levels

in SavI, P3HR1, and CEM were set to 1, and compared with the paired SavIII, JiJoye, and MT4 cell lines, respectively. D. Interaction

of endogenous p62 with LC3b in virus-transformed cells was evaluated by IP. Cell lysates (1 mg each) were pre-cleared with mouse

IgG (Sigma) before subjected to IP with IgG or anti-p62 clone D-3 (Santa Cruz). immunoprecipitants and inputs (5% of cell lysates)

were probed with indicated antibodies.

https://doi.org/10.1371/journal.ppat.1007541.g001
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[41, 42]. Our IP results show that endogenous p62 and LC3b interact in virus-transformed

cells (Fig 1D). These results indicate that a basal level of p62-mediated selective autophagy is

constitutively induced and correlates with the endogenous ROS level in viral latency.

The antioxidant transcription factor NRF2 is spontaneously degraded by the ubiquitin (Ub)

E3 ligase complex Keap1/Cul3/RBX1 under normoxia; ROS/oxidative stress triggers autophagic

degradation of Keap1, resulting in the accumulation and activation of NRF2, which then

induces p62 expression [43, 44]. Thus, we evaluated the Keap1-NRF2 pathway activities, indi-

cated by Keap1 and NRF2 expression levels, in these cell lines. As indicated in Fig 1B, the

endogenous p62 levels positively correlate with the Keap-NRF2 pathway activities, strongly sug-

gesting that the Keap1-NRF2 pathway induces p62 expression at least in part in viral latency. In

support of our findings, Keap1-NRF2 pathway is also activated in KSHV latency [45, 46].

Together, these results indicate that p62-mediated selective autophagy is constitutively

induced in oncovirus latency, and correlates with the endogenous ROS-Keap1-NRF2 pathway

activity.

ROS that correlate with Keap1-NRF2 pathway activity contribute to p62

expression and activation of p62-mediated autophagy in viral latency

We next aimed to verify the induction of p62 by the ROS-Keap1-NRF2 pathway in viral

latency. To this end, we first treated SavI and SavIII cells with the clinical topoisomerase II

inhibitor doxorubicin (Doxo), which generates the highest level of mitochondrial ROS causing

DSBs [47]. Results show that Doxo augments the activities of the Keap1-NRF2 pathway in

both cell lines in a time-dependent manner. Interestingly, p62 protein levels and p-p62(S403)

are increased by Doxo treatment in SavI cells, but p62 protein levels are decreased in SavIII

cells. Moreover, LC3b-II is increased in both cell lines but decreased at late stage in SavIII cells

(Fig 2A). These results are consistent with the notion that considerable levels of ROS are

required for induction of p62 and mediated autophagy, but excess ROS and selective autop-

hagy result in autophagic degradation of p62 and LC3b in that both are targets of p62-medi-

ated selective autophagy [38, 39].

We next used 3-amino-1,2,4-triazole (3-AT) to inhibit the endogenous activities of catalase,

an enzyme converting H2O2 to H2O+O2, in cell lines with lower ROS levels to elevate their

endogenous ROS levels. Then, we evaluated the Keap1-NRF2 pathway activity, and p62, autop-

hagy, and DNA damage levels. Results show that 3-AT treatment substantially elevates endoge-

nous levels of the Keap1-NRF2 pathway activities and p62 expression at both protein and

mRNA levels, and also induces p62(S403) phosphorylation, autophagy and the DNA damage

hallmark γH2AX that are readily detectable (Fig 2B). Accumulation of LC3-II does not neces-

sarily reflect an increased autophagic activity; instead it may represent its decreased clearance

due to the blockage of autophagic degradation. Thus, we further measured autophagy flux, as

indicated by MFI, by flow cytometry (Fig 2C). In contrast, quenching endogenous ROS with

the ROS scavenger N-acetylcysteine amide (NACA) in indicated cell lines substantially damp-

ens p62 levels and autophagy activities due to blockage of their endogenous Keap1-NRF2 path-

way activities, as well as attenuates endogenous DNA damage (Fig 2D). Furthermore, confocal

microscopy (Fig 2E) and flow cytometry (Fig 2F) results show that treatment of IB4 cells with

3-AT or with the traditional oxidative DNA damage inducer H2O2 remarkably increases p62

expression, autophagosomes and autophagy flux, and that most p62 foci co-localize with

autophagosomal bodies in the cytoplasm.

Taken together, these results indicate that endogenous ROS, which correlate with

Keap1-NRF2 pathway activity, are responsible for p62 expression and for induction of

p62-mediated selective autophagy in viral latency.

p62-mediated autophagy promotes DNA damage response in virus-transformed cells

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007541 April 24, 2019 5 / 23

https://doi.org/10.1371/journal.ppat.1007541


Autophagy inhibition sensitizes EBV+ cells to ROS-induced DNA damage

that is associated with p62 accumulation

Since we have previously shown that mild ionomycin treatments induce p62 expression and

profound autophagy in lymphoblastic cell lines (LCLs), but stringent treatments promote p62

Fig 2. ROS correlate with Keap1-NRF2 pathway activity and contribute to p62 expression and activation of p62-mediated

autophagy in viral latency. A. SavI and SavIII cells, which were derived from the same patient, were treated with 2 µM of the

topoisomerase II inhibitor doxorubicin HCl (Doxo) (UBPBio) for different time periods. B-C. SavI, P3HR1, and CEM were

treated with 20 mM of the H2O2 catalase 3-amino-1,2,4-triazole (3-AT) (Fisher Scientific) or vehicle control for 48 h. Cells were

then subjected to IB, qPCR, and flow cytometry analyses. D. IB4, LCL45, and MT4 were treated with 3 mM of the antioxidant N-

acetylcysteine amide (NACA) (Sigma) or vehicle control for 30 h. The treated cells were then subjected to analyses for p62,

autophagy, Keap1-NRF2 pathway, and ROS production. E. IB4 cells were treated with 20 mM 3-AT (Fisher Scientific) or vehicle

control for 48 h, and analyzed for p62-autophagosome colocalization by confocal microscopy. Living cells were first stained with a

Cyto-ID Autophagy Detection kit (Enzo), and then fixed for staining with the mouse p62 antibody (D-3) and Alexa 555 coupled

anti-mouse antibody (Invitrogen). Bar = 2 µm. F. IB4 cells were treated with 50 µM H2O2 for 30 min and then medium was

replaced and continued in culture for 2 days, or treated with 20 mM 3-AT for 48 h, before subjected to analysis of autophagy flux

by flow cytometry with the Cyto-ID Autophagy Detection kit. MFI = mean fluorescence intensity.

https://doi.org/10.1371/journal.ppat.1007541.g002
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degradation due to induction of massive autophagy [37], we used ionomycin treatment here to

study the p62-autohagy interplay in regulating DDR in LCLs, which serve as a system crucial

for genetic and functional study of carcinogen sensitivity and DNA repair [48].

We first used the lysosome-specific inhibitor bafilomycin A1 (BafA1), which inhibits lyso-

somal activity that occurs after LC3 processing, to inhibit autophagy activity induced by iono-

mycin in LCLs. Results show that both p62 and LC3b, which are both selectively degraded by

p62-mediated autophagy [38, 39], are accumulated in ionomycin-treated cells due to impaired

autophagy activities. As a consequence, the levels of γH2AX are remarkably augmented (Fig

3A and 3B). To minimize the interference of potential “off-target” effects of BafA1, we per-

formed this experiment using another lysosome-specific inhibitor chloroquine, and obtained

similar results (Fig 3C). These results indicate that the autophagy-p62 interplay plays a role in

DDR in EBV latency.

We further show that ionomycin triggers profound ROS production and DNA damage in

LCLs in a time-dependent manner (Fig 3D and 3E), and the ROS scavenger NACA offsets the

effects of ionomycin (Fig 3E). Thus, these results indicate that ROS are responsible for iono-

mycin-induced autophagy and DNA damage in EBV latency.

Autophagy inhibition promotes DNA damage-induced cell death in

association with p62 accumulation in the nucleus

To confirm the requirement of ROS for induction of autophagy and DNA damage in EBV

latency, we further used H2O2 to treat IB4 cells. Results show that H2O2 treatment induces pro-

found DNA damage and reduces the endogenous p62 protein level in a dose-dependent man-

ner, and blockage of autophagy activity with BafA1 potentiates the DNA damage that

correlates with elevated p62 protein levels (Fig 4A).

Furthermore, autophagy inhibition by BafA1 promotes cell death (as indicated by 7-AAD

expression and Annexin-V binding, or caspase-3 activity) induced by H2O2 (Fig 4B and 4C) or

ionomycin (Fig 3B), respectively. Importantly, confocal microscopy results further show that

p62 translocates from the cytoplasm to the nucleus in response to autophagy inhibition (Fig 4D).

Taken together, these results (Figs 3 and 4) indicate that autophagy inhibition exacerbates

ROS-induced DNA damage by promoting p62 stabilization and nuclear translocation, further

supporting that p62-mediated autophagy promotes DDR in EBV latency.

Nuclear p62 accumulation upon autophagy inhibition destabilizes HR

DNA repair proteins CHK1 and RAD51 in viral latency

It has been reported that autophagy inhibition or nuclear p62 accruing from autophagy defi-

ciency promotes proteasomal degradation of HR DNA repair proteins such as RAD51, CHK1

and FLNA [17, 49]. Our results show that SavIII, JiJoye, MT4, and IB4, which have higher

endogenous p62 and autophagy levels (Fig 1B), have lower CHK1 and RAD51 protein levels as

well as CHK1 activity (as indicated by phosphorylation of CHK1(S345)), compared to SavI,

P3HR1, CEM, and BJAB, respectively (Fig 5A). These results suggest that the p62-autophagy

interplay may also regulate proteasome-dependent stability of CHK1 and RAD51 proteins and

CHK1 activity in viral latency. It has also been reported that p62 promotes NHEJ by activating

the Keap1-NRF2 pathway in a feedback loop, which consequently induces expression of

NHEJ-specific repair proteins such as 53BP1 [50]. However, our results show that 53BP1

reversely correlates with p62 at the protein level in viral latency (Fig 5A), indicating that

NHEJ-mediated DNA repair activity is also compromised in virus-transformed cells. In addi-

tion, endogenous DNA damage (as indicated by γH2AX expression) is consistently lower in

viral latency with higher p62-mediated autophagy levels, in which both HR and NHEJ

p62-mediated autophagy promotes DNA damage response in virus-transformed cells
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pathways are deficient (Fig 5A), supporting our hypothesis that p62-mediated autophagy func-

tions as an alternative mechanism that enables these cells to resist to DNA damage.

To check if autophagy has a role in regulation of the stability of these DNA repair proteins

in virus-transformed cells, we inhibited endogenous autophagy activities with BafA1. Results

show that autophagy inhibition did not affect 53BP1, but clearly decreases CHK1 and RAD51

protein levels that are associated with elevated endogenous p62 protein levels (Fig 5B).

To validate whether proteasome also mediates degradation of CHK1 and RAD51 in virus-

transformed cells, we used the proteasome inhibitor MG132 to treat these cells that express

Fig 3. Autophagy inhibition sensitizes EBV+ cells to ROS-induced DNA damage that is associated with p62 accumulation.

A. Cell lines with higher endogenous autophagy levels were treated with 0.4 µM of the vacuolar ATPase inhibitor bafilomycin A1

(BafA1) (Sigma) or vehicle control for 24 h, and then DNA damage (γH2AX) was evaluated by immunoblotting. B-C. The LCL

lines IB4 and LCL45 were treated with ionomycin (Iono) (Sigma) with indicated concentrations for 48 h plus 0.4 µM BafA1 or

vehicle control for 24 h or plus 50 µM of the lysosome inhibitor chloroquine (Chloro) (MP Biomedicals) or vehicle control for 6

h. p62, autophagy, and γH2AX were analyzed by immunoblotting. D. IB4 cells were treated with 5 µg/ml Iono or vehicle control

for different time periods, and ROS production was measured by flow cytometry with the CellRox Green reagent (Invitrogen). A

representative result from three independent repeats is shown. E. IB4 and LCL45 cells were treated with 5 µg/ml Iono plus 3 mM

NACA or vehicle control for different time periods (upper panel) or for 30 h (lower panel). p62, autophagy, and γH2AX were

analyzed by immunoblotting.

https://doi.org/10.1371/journal.ppat.1007541.g003
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high levels of endogenous p62. As expected, our results show that MG132 treatment remark-

ably increases the protein levels of CHK1 and RAD51 (Fig 5C, left panel), confirming that

CHK1 and RAD51 protein stability is controlled in a proteasome-dependent manner in virus-

Fig 4. Autophagy inhibition promotes cell death in association with p62 accumulation in the nucleus. IB4 cells were treated

with indicated concentrations of H2O2 in medium for 30 min. Then the medium was removed, and 0.4 µM BafA1 (Sigma) or

vehicle control was added in freshly replaced medium for 48 h. A. p62, autophagy, and DNA damage were analyzed by

immunoblotting. B-C. Cell death was analyzed by flow cytometry for Annexin V and 7-AAD expression. Results from a

representative experiment of five independent repeats are shown (B), and statistical analysis results are expressed as

mean ± standard error (SE) (C). D. p62 subcellular localization was visualized under confocal microscope. Bar = 10 µm.

https://doi.org/10.1371/journal.ppat.1007541.g004

p62-mediated autophagy promotes DNA damage response in virus-transformed cells

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007541 April 24, 2019 9 / 23

https://doi.org/10.1371/journal.ppat.1007541.g004
https://doi.org/10.1371/journal.ppat.1007541


transformed cells. In addition to its ability to inhibit proteasomal activity, MG132 is capable of

inducing autophagy in various cancer cells [51]. Our results show that MG132 also increases

Fig 5. p62 accumulation upon autophagy inhibition destabilizes HR DNA repair proteins CHK1 and RAD51 in viral latency.

A. Correlation of p62 with CHK1, RAD51 and 53BP1 protein levels in viral latency were analyzed in paired cell lines. B. Cell lines

with higher levels of p62 protein were treated with 0.4 µM BafA1 (Sigma) for 48 h. Indicated proteins were probed by

immunoblotting. C. Cell lines with higher levels of p62 protein were treated with 10 µM of the proteasome inhibitor MG132 for 6 h

(left panel), or pre-treated with 0.4 µM BafA1 before MG132. Indicated proteins were probed by immunoblotting. D. Cell lines with

lower levels of p62 protein were transfected with 5 µg (+) or 10 µg (++) of HA-p62 plasmids, its mutants with Flag tag, or vector

control in each electroporation (1X107 cells). Indicated proteins were analyzed by immunoblotting 48 h post-transfection. E-F. IB4

cells stably harboring p62 shRNA or shRNA control in 1 µg/ml puromycin were treated with 0.4 µM BafA1 for 48 h or 10 µM

MG132 for 6 h, before subjected to immunoblotting or flow cytometry. shRNA expression was induced by 1 µg/ml doxycycline for

2 days before the drug treatments. MFI = mean fluorescence intensity. G. CHK1 and RAD51 protein stability was evaluated by

immunoblotting in virus-transformed IB4 cells stably expressing control shRNA or p62 shRNA that were induced by 1 µg/ml

doxycycline for different time points.

https://doi.org/10.1371/journal.ppat.1007541.g005
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the LC3b cleavage product LC3b-II in virus-transformed cells, and dramatically reduces p62

protein levels (Fig 5C, left panel).

To further validate the role of autophagy-p62 interplay in proteasomal degradation of

CHK1 and RAD51, we pre-treated the cells with BafA1 to inhibit autophagy before inhibition

of proteasome activity. Results show that MG132 failed to cause CHK1 and RAD51 accumula-

tion after p62 restoration by autophagy inhibition (Fig 5C, right panel). These observations are

in line with the previous report showing that CHK1 and RAD51 accumulation is attributable

to p62 depletion resulting from robust autophagy induction [18].

Together, our results indicate that the CHK1 and RAD51 protein levels reversely correlate

with the p62 levels in viral latency, implying a role of the autophagy-p62 interplay in negative

regulation of their proteasome-mediated stability. However, the accumulation of CHK1 and

RAD51 and decrease of p62 after MG132 treatment did not mitigate DNA damage; instead,

DNA damage is strikingly increased (Fig 5C). This observation can be explained by the fact

that proteasome function is required for DNA damage repair [52].

Next, we sought to evaluate whether transient expression of p62 regulates DNA repair protein

stability. To this end, we transfected the expression plasmids harboring HA-p62 or pcDNA4 vec-

tor control into BJAB, P3HR1, and CEM cells, which express low levels of endogenous p62.

Then, we analyzed CHK1, RAD51, and 53BP1. Surprisingly, results show that exogenic expres-

sion of p62 did not affect the protein levels of CHK1 and RAD51, and did not induce LC3b

cleavage either (Fig 5D, left panel). By checking total p62 expression, we found that transfection

of p62 expression plasmids did not evidently increase p62 levels, likely due to relatively low

transfection efficiency of B cells. To address this issue, we transfected these cells with more p62

plasmids, and results show that a greater p62 expression is able to downregulate these proteins

(Fig 5D, right panel). We further employed two p62 mutants, with p62(4A) constitutively local-

izing in the cytoplasm and p62(2A/1E) mainly localizing in the nucleus, since a recent report

shows that nuclear accumulation of p62 responding to autophagy inhibition is required for its

degradation of CHK1 and RAD51 [18]. As expected, the nucleus-localizing mutant p62(2A/1E),

but not the cytoplasm-localizing mutant p62(4A), remarkably decreases CHK1 and RAD51 pro-

tein levels (Fig 5D, right panel). Together with Fig 5B and 5C, these results suggest that

p62-mediated destabilization of DNA repair proteins is dependent on its accruing from autop-

hagy inhibition, which we show results in p62 nuclear translocation (Fig 4D).

To further confirm the conditional role of p62 in downregulation of the DNA repair pro-

teins, we depleted p62 expression in IB4 cells using shRNA-mediated gene knockdown.

Results show that p62 depletion reduces autophagy activity, as shown by decreased autophagy

flux (Fig 5F), consistent with the notion that p62 is required for endogenous autophagy induc-

tion. However, the protein levels of CHK1, RAD51, and 53BP1 have no consistent and appar-

ent changes in p62-depleted cells (Fig 5E and 5G). Additional inhibition of the residual

autophagy activities, or treatment with MG132, which induces autophagy (Fig 5C), also did

not cause apparent difference on their levels in p62-depleted cells versus control cells (Fig 5E).

Considering that the majority of p62 is spontaneously located in the cytoplasm of virus-trans-

formed cells (Fig 4D), shRNA-mediated depletion might have minor effect on nuclear p62.

Thus, these results are indeed consistent with our findings and a recent report that nuclear

localization of p62 is required for destabilization of DNA repair proteins [18].

Collectively, these results demonstrate that p62 accumulation in the nucleus in response to

autophagy inhibition promotes proteasomal degradation of RAD51 and CHK1 in virus-trans-

formed cells. These results also indicate that a fine balance of p62 and autophagy levels is

required to confine endogenous p62 in the cytoplasm of virus-transformed cells. Further study

is required to determine how autophagy inhibition causes p62 accumulation in the nucleus.
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p62 depletion by RNA interference promotes RNF168-mediated chromatin

ubiquitination and DNA repair in viral latency

It has been shown that p62 inhibits both HR and NHEJ [18], through its physical interaction

with RNF168, which mediates histone ubiquitination that is prelude to activation of both HR

and NHEJ DSB repair mechanisms [19].

Consistently, our confocal microscopy results show that RNF168 co-localizes with endoge-

nous γH2AX DNA damage foci in IB4 cells. More importantly, shRNA-mediated p62 deple-

tion significantly increases RNF168-γH2AX foci (Fig 6A and 6B). Further, using the anti-

ubiquitinated proteins antibody FK2, we show that shRNA-mediated p62 depletion signifi-

cantly increases ubiquitination and FK2-γH2AX foci in the nucleus (Fig 6C and 6D). We fur-

ther validated the interaction of endogenous p62 with RNF168 by immunoprecipitation (IP)

in virus-transformed cells treated with BafA1 (Fig 6E), and the increased histone H3 ubiquiti-

nation due to p62 depletion in cells treated with ionomycin (Fig 6F). Our IP assays failed to

detect definite p62-RNF168 interaction and H3 ubiquitination in these cells without treat-

ments. In conclusion, these results indicate that p62 depletion promotes chromatin ubiquitina-

tion and RNF168-mediated DNA repair mechanisms.

Discussion

In this study, we provide several lines of evidence that support a crucial role for p62-mediated

autophagy in regulation of DDR in oncogenic virus latent infection. First, p62 is upregulated

by ROS that correlates with the activity of the Keap1-NRF2 pathway, and considerable levels of

p62-mediated selective autophagy are constitutively induced in this setting. Second, inhibition

of autophagy in virus-transformed cells exacerbates ROS-induced DNA damage, and destabi-

lizes the DNA repair proteins RAD51 and CHK1 in a manner depending on p62 accumulation

in the nucleus; in contrast, excess autophagy induction promotes accumulation of the DNA

repair proteins CHK1 and RAD51 that is associated with p62 degradation. Third, shRNA-

mediated p62 depletion promotes RNF168-mediated chromatin ubiquitination and DNA

repair in EBV latency. These findings have defined a crucial role for p62-mediated autophagy

in regulation of DDR in viral latency (Fig 7).

The p62-autophagy interplay is well balanced and controlled in diverse contexts, with can-

cer and aging being two representative systems [4–6, 53]. Loss of this balance by exogenic or

endogenous stresses may result in different impacts on DDR. Pharmaceutical inhibition of

autophagy, or spontaneous autophagy deficiency during aging, chronic inflammation, or neu-

rodegeneration, leads to p62 accumulation, consequently attenuating DNA repair that

accounts for the etiology of age-related disorders [54, 55]. In contrast, substantial enhance-

ment of basal levels of autophagy in cancer cells by anticancer chemotherapeutic drugs or by

radiation therapy promotes p62 degradation, and consequently confers these cells resistance to

DNA damage-induced cell death [23, 56, 57]. Consistent with our findings, oncogenic viruses,

including EBV, are known to inhibit ROS and autophagy at the early stage of lytic infection for

optimal replication and oncogenic transformation [58–60], but induce ROS-mediated autop-

hagy in their latency to suppress replication and support oncogenic survival [26, 27, 32, 38,

61–67].

Moreover, our results indicate that the basal levels of p62-mediated autophagy are distinctly

regulated in different EBV latency programs. ROS are produced separately by the EBV prod-

ucts LMP1, EBNA1/2, and EBERs, amongst which LMP1 induces predominant ROS [68–72].

In consistent, our results show that EBV type III latency produces a greater level of ROS com-

pared with type I latency (Fig 1A). Thus, cells with type III latency express higher endogenous

levels of p62-mediated autophagy (Fig 1B), which are required to overcome the higher risk of
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DNA damage in response to endogenous higher oxidative stress and replication stress to sup-

port their aggressive proliferation, and growth and survival demands. As such, a higher level of

p62-mediated autophagy also confers these cells greater resistance to DNA damage in response

to drug treatments. The type III latency cell line P3HR1, which was derived from the parental

Fig 6. p62 depletion by RNA interference promotes RNF168-mediated chromatin ubiquitination and DNA repair in viral

latency. IB4 cells stably expressing control or p62 shRNA were maintained with 1 µg/ml puromycin, and shRNA expression was

induced by 1 µg/ml doxycycline for 3 days before subjected to confocal microscopy analysis for: A. RNF168, γH2AX and their

colocalization in the nucleus with a rabbit RNF168 antibody (Millipore) and an Alexa 488 coupled anti-rabbit antibody (Invitrogen),

and a mouse γH2AX(S139) antibody (BioLegend) and an Alexa 555 coupled anti-mouse antibody (BioLegend); C. chromatin

ubiquitination, γH2AX and their colocalization in the nucleus with the mouse ubiquitin antibody clone FK2 (Millipore) and the

Alexa 555 coupled anti-mouse antibody, and a rabbit γH2AX(S139) antibody (Cell Signaling Technol.) and the Alexa 488 coupled

anti-rabbit antibody. Bar = 6 µm. B and D. Quantification of RNF168/γH2AX foci or FK2/γH2AX foci in A and C, respectively. E.

Interaction between RNF168 and p62 was assessed by immunoprecipitation. The indicated cell lines were treated with 0.4 µM BafA1

for 48h, and then cell lysates (0.5 mg total proteins for each) were subjected to immunoprecipitation with a rabbit RNF168 antibody

(Proteintech Group Inc.), and immunoprecipitated proteins were analyzed by immunoblotting with the p62 antibody and the sheep

RNF168 antibody (Invitrogen). F. Histone H3 ubiquitination was assessed in p62-depleted IB4 cells treated with 2.5 µg /ml

ionomycin for 48 h. Cell lysates (0.5 mg total proteins for each) from IB4 cells stably expressing control or p62 shRNA were subjected

to denatured immunoprecipitation with a rabbit H3 antibody (Invitrogen), and immunoprecipitated H3 was probed with the FK2

antibody and the mouse H3 antibody (1G1) (Santa Cruz).

https://doi.org/10.1371/journal.ppat.1007541.g006
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JiJoye but lacks LMP1 expression, resembles type I latency cell lines in ROS production, and

expression of p62 and autophagy (Fig 1), and DNA repair proteins (Fig 5), further supporting

that LMP1 contributes the majority to these events.

Surprisingly, our results consistently show that, in contrast to p62 elimination by massive

autophagy, p62 depletion by shRNA potentiates, but not alleviates, DNA damage. There are a

few possibilities to explain this paradox. First, p62 depletion impairs p62-mediated selective

autophagy that is resident in the cytoplasm (Fig 2E) and required for maintaining the ability of

the cell to resist to DNA damage (Fig 5E and 5F); second, other p62-mediated, autophagy-

independent, DNA damage-protecting functions are abrogated after shRNA-mediated p62

depletion and consequently DNA damage is accelerated, given the fact that p62 is a multifunc-

tional protein [3]. Investigation of these potential p62-mediated but autophagy-independent

functions in viral latency and oncogenesis is underway. In fact, p62 depletion resulting in

worsen DNA damage is coincident with its role as a tumor promoter, which is induced by Ras

Fig 7. A diagram showing the interaction of p62-mediated autophagy with DDR in EBV latency. EBV latent

infection produces ROS, which further induce p62 expression through the Keap1-NRF2 pathway and activate

p62-mediated selective autophagy. ROS also cause DNA damage, including double strand breaks (DSBs). p62

accumulated in the nucleus due to autophagy inhibition inhibits DSB repair through promoting proteasome-mediated

degradation of CHK1 and RAD51 and interacting with RNF168. A moderate level of endogenous p62-mediated

autophagy in virus-transformed cells endows them with resistance to DNA damage. Loss of the p62-autophagy balance

by exogenic stresses that inhibit autophagy or inducing ROS will exacerbate endogenous DNA damage.

https://doi.org/10.1371/journal.ppat.1007541.g007

p62-mediated autophagy promotes DNA damage response in virus-transformed cells

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007541 April 24, 2019 14 / 23

https://doi.org/10.1371/journal.ppat.1007541.g007
https://doi.org/10.1371/journal.ppat.1007541


that accounts for at least 25% of human cancers [73]. p62 overexpression in hepatocellular car-

cinoma (HCC) predicts poor prognosis [74].

Based on the observations from us and other relevant studies, we propose that p62 plays a

dichotomous role in DDR, depending on the presence or absence of autophagy that deter-

mines the p62 protein level and subcellular localization. Higher levels of nuclear p62 resulting

from defective autophagy inhibit DNA repair and therefore perturb genomic instability that

facilitates tumor initiation [75]. In line with our findings, it has been reported that p62 ablation

decreases tumorigenesis in mouse models with defective autophagy [73]. A recent report has

also shown that autophagy resulting from telomere shortening during replicative crisis pro-

tects genomic stability, and acts as a suppressor of tumor initiation [76]. In contrast, consider-

able levels of p62 in cancer cells promote DNA repair by mediating selective autophagy

activation in the cytoplasm, and consequently confer these cancer cells resistance to DNA

damage. p62 is upregulated at considerable levels in different cancer cells, including breast and

prostate cancers, where it is required for induction of selective autophagy to support cancer

cell metabolism and survival [74, 77, 78].

Regarding the mechanisms underneath deregulation of DDR by the p62-autophagy inter-

play, our results indicate that autophagy inhibition promotes proteasomal degradation of

RAD51 and CHK1 in a manner depending on p62 accumulation in the nucleus (Fig 5), and

that p62 depletion promotes RNF168-mediated DDR (Fig 6). Our results show that the majority

of endogenous p62 is tethered to autophagosomes in the cytoplasm (Fig 2E), but inhibition of

DNA repair requires p62 in the nucleus [18]. Consistently, we show that autophagy inhibition

promotes p62 nuclear translocation (Fig 4D), although the mechanism remains to be disclosed.

Thus, our results define a new role for p62-mediated autophagy in preventing DNA damage by

confining p62 in the cytoplasm. In conclusion, p62-mediated selective autophagy not only con-

fers invulnerability to DNA damage, but also at least partially contributes to the deficiency of

traditional DDR mechanisms, in virus-transformed cells. In this regard, it is to our understand-

ing that an oncogenic virus gains a dual benefit by invoking p62-mediated autophagy: one facet

of p62-mediated autophagy endows its host cell with ability to resist DNA damage to support

cell survival; the other facet hijacks the traditional DDR mechanisms in the host cell to facilitate

genomic instability that promotes accumulation of oncogenic mutations.

Although p62 was reported to promote NHEJ by inducing 53BP1 expression through the

Keap1-NRF2 pathway that requests p62 S349 phosphorylation [50, 79], our results show that

p62 reversely correlates with 53BP1 in viral latency (Fig 5A), and that p62 accumulation failed to

regulate 53BP1 levels (Fig 5B). Thus, p62 does not regulate 53BP1 in our system, and how 53BP1

is downregulated in virus-transformed cells is worthy of further examination. Rather, p62 inter-

acts with RNF168 in response to autophagy inhibition, and consequently inhibits RNF168-me-

diated chromatin ubiquitination in viral latency (Fig 6). In this regard, our findings are

consistent with a recent study [18], which has shown that p62 can impede both HR and NHEJ

through its interaction with RNF168, given that RNF168-mediated histone ubiquitination is pre-

requisite for activation of all DSB repair mechanisms [19]. Although these dsDNA repair path-

ways are compromised in EBV latency, we realize that they still have considerable levels of

activity, which render successful CRISPR-mediated genome editing in these cells [80–83].

Viruses have evolved diverse strategies to hijack host traditional DDR machinery during

their chronic infections to perturb genomic integrity, including their ability to deregulate the

p62-autophagy balance, which we believe only makes partial contribution. In fact, our group

has recently shown that traditional DDR mechanisms are also deficient in aging T cells in

chronic HCV infection [84, 85], at least partially attributable to endogenous p62 accruing from

deficient autophagy in these cells. p62 also inhibits DDR through other mechanisms that have

not been fully elucidated. For example, nuclear p62 interacts with and inhibits PML nuclear
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bodies, which are involved in DNA repair [86, 87]. Moreover, other autophagy mechanisms,

such as chaperone-mediated autophagy [88], also participate in DDR, by regulating stability of

DDR-related proteins such as HP1α and CHK1 [89, 90], and by regulating p62-dependent or

-independent cellular functions [91]. It is of great interest to investigate these potential mecha-

nisms and their coupled cellular mechanisms in virus-mediated oncogenesis.

Endogenous ROS/RNS trigger signal cascades that activate both DDR and autophagy pro-

grams. Unrepaired damaged DNA can serve as a major source of genomic instability particu-

larly in cancer cells where traditional DDR and cell death pathways are compromised. Thus,

cancer cells heavily rely on autophagy, not only to replenish their deficient DNA repair mecha-

nisms, but also to corroborate their higher metabolic demand than normal cells do. Therefore,

cancer cells are more vulnerable to autophagy inhibition, providing viable opportunities for

therapeutic strategy by targeting autophagy, in particular in combination with another cellular

mechanism that is specifically coupled with autophagy in a given cancer context for improving

clinical efficacy and specificity [3, 20, 92].

Materials and methods

Cell lines

SavI, SavIII, P3HR1 and JiJoye are human B cell lines derived from EBV-positive Burkitt’s

lymphoma (BL) patients. P3HR1 was derived from JiJoye but does not express LMP1 due to

lacking the entire EBNA2 ORF in the viral genome [93]. BJAB is an EBV-negative BL line. The

lymphoblastic cell line (LCL) IB4 was derived from umbilical cord B-lymphocytes latently

infected with EBV in vitro. KR4 is a LCL with gamma irradiation resistance [94]. LCL45 is a

newly established LCL by in vitro transforming primary B cells of a healthy adult peripheral

blood with the EBV strain B95.8. CEM is a HTLV1-negative, EBV-negative T cell line derived

from acute leukemia, and MT4 is a HTLV1-transformed CD4+ T cell line derived from umbili-

cal cord blood lymphocytes. B and T cell lines are cultured with RPMI1640 medium plus 10%

FBS and antibiotics. All cell culture supplies were purchased from Life Technologies.

Antibodies and reagents

p62 (D-3), LIMD1 (H-4), and histone H3 (1G1) mouse monoclonal antibodies were from

Santa Cruz for immunoprecipitation or immunoblotting. p62-Alexa Fluor 488 mouse anti-

body for flow cytometry was from Millipore or R&D Systems. Phospho-p62(S403), NRF2

(D1Z9C) mouse monoclonal antibody, and HRP-coupled secondary antibodies were from

Cell Signaling Technologies. RNF168 rabbit polyclonal antibody and the FK2 mouse monoclo-

nal antibody that recognizes K29-, K48-, and K63-linked polyubiquitin chains and monoubi-

quitin conjugation but not free ubiquitin for immunofluorescence were from Millipore. The

RNF168 rabbit polyclonal antibody for IP was from Proteintech Group Inc. RNF168 sheep

polyclonal, and LC3b and histone H3 rabbit polyclonal antibodies were from Invitrogen.

RAD51 rabbit polyclonal and CHK1 (G-4) mouse monoclonal antibodies were from Abcam

and Santa Cruz, respectively. The γH2AX(S139) mouse and rabbit antibodies were from Bio-

Legend and Cell Signaling Technologies, respectively. Mouse HA (clone HA-7) and Flag

(clone M2) antibodies were from Sigma. Secondary antibodies coupled with FITC, Alexa

Fluor, APC, PE, Cy5, or PerCP and human anti-CD19-PE were from BioLegend, BD Biosci-

ences, Invitrogen, or eBioscience.

HA-p62 cloned in pcDNA4 was a gift from Yu-Ying He [95], and Flag-p62 mutants were

gifts from Dr. Ying Zhao [18]. Flag-p62(R186A/K187A/K264A/R265A) (designated as p62

(4A)) cannot localize in the nucleus and Flag-p62(K7A/D69A/I314E) (designated as p62(2A/

1E)) mainly localizes in the nucleus [18]. CellRox Green, MG132, chloroquine, and doxorubicin
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HCl, were purchased from Invitrogen, EMD Millipore, MP Biomedicals, and UBPBio, respec-

tively. Ionomycin calcium salt, N-acetylcysteine amide, bafilomycin A1, doxycycline, and

mouse and rabbit IgG were purchased from Sigma. H2O2 was from Santa Cruz.

Transfection and selection of stable transfectants

A set of p62 shRNA cloned in pTRIPz/Puro comprising three individual p62 shRNA and a

scramble control plasmids were purchased from Dharmacon. We selected two of them for this

study and the targeting sequences on the human p62/SQSTM1 gene are: shRNA#1: 5’-TCTCT

TTAATGTAGATTCG-3’ and shRNA#2: 5’- TCAGGAAATTCACACTCGG-3’. Lentiviral

packing, preparation, infection, and selection of stable cells by puromycin (0.5 µg/ml) were

performed as detailed in our previous publication [37]. shRNA expression was induced by 1

µg/ml doxycycline for 3 days, and then cells (expressing red fluorescence) were subjected to a

second selection by FACS on a FACS/Aria Fusion Cell Sorter (BD Biosciences). Stable trans-

fectants were maintained in complete medium plus 1.0 µg/ml puromycin.

For transfection of BJAB, P3HR1, and CEM, GenePulser XCell (Bio-Rad) was used with

optimal programs. These representative cell lines were chosen in that they are easier to be

transfected with this technique, compared with other B cell lines.

Confocal microscopy

Cells were fixed in 2% paraformaldehyde (PFA) for 20 min, permeabilized with 0.3% Triton

X-100 in phosphate-buffered saline (PBS) for 10 min, blocked with 5% bovine serum albumin

(BSA) in PBS for 1 h, and then incubated with indicated primary antibodies at 4˚C overnight.

Cells were washed with PBS with 0.1% Tween-20 for three times, and then incubated with cor-

responding secondary antibodies coupled with FITC, Alexa Fluor, APC, PE, Cy5, or PerCP, at

room temperature for 1 h. Cells were then washed and mounted with DAPI Fluoromount-G

(SouthernBiotech, Birmingham, AL). Images were acquired with a confocal laser-scanning

inverted microscope (Leica Confocal, Model TCS sp8, Germany).

Immunoprecipitation and immunoblotting

To assess endogenous p62-RNF168 interaction, 1X107 cells for each sample were lysed with

NP40 lysis buffer (150 mM NaCl, 1% NP-40, 50 mM Tris-pH 8.0, plus protease inhibitors),

and cell lysates were subjected to immunoprecipitation (IP) with 1.5 µg anti-RNF168 for over-

night, and then incubated with 40 µl Protein A/G beads (Santa Cruz) for 1 h. After three

washes, proteins on beads were denatured in 1% SDS before subjected to immunoblotting

(IB). IB was carried out with indicated antibodies and signals were detected with an enhanced

chemiluminescence (ECL) kit following the manufacturer’s protocol (Amersham Pharmacia

Biotech). For H3 ubiquitination assay, endogenous H3 was pulled down with an H3 antibody

in denaturing IP, as detailed in our publication [96].

RNA Extraction and real-time quantitative PCR

Total RNA was isolated from tested cells using an RNeasy Mini kit according to the manufac-

turer’s protocols (Qiagen). The eluted RNA was subjected to reverse transcriptase reactions,

which were performed with the use of GoScript RT kit following the manufacturer’s instruc-

tions (Promega).

Quantitative real-time PCR (qPCR) was performed with the use of SYBR Green (Applied

Biosystems), on a CFX96 Real-time PCR Detection System (Bio-Rad). All reactions were run

in triplicates. Mean cycle threshold (Ct) values were normalized to 18s rRNA, yielding a
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normalized Ct (ΔCt). ΔΔCt value was calculated by subtracting respective control from the ΔCt,

and expression level was then calculated by 2 raised to the power of respective -ΔΔCt value.

The averages of 2^(-ΔΔCt) in the control samples were set to 1 or 100%. Results are the

average ± standard error (SE) of triplicates for each sample. Primers for real-time qPCR are as

follows: p62: F: 5’-CAGGCGCACTACCGCGATG-3’ and R: 5’-ACACAAGTCGTAGTCTGG

GCAGAC-3’. Keap1: F: 5’-CCATGGGCGAGAAGTGTGTCC-3’; R: 5’-ACAGGTTGAAGAA

CTCCTCTTGCTTG-3’. 18s rRNA: F: 5’-GGCCCTGTAATTGGAATGAGTC-3’ and R: 5’-CC

AAGATCCAACTACGAGCTT-3’.

Flow cytometry

Samples were fixed with 2% PFA for 20 min at RT, then wash with flow buffer (eBioscience).

Samples were then incubated with PE-conjugated anti-human CD19 antibody (eBioscience)

or isotype controls for 20 min at RT, then wash with flow buffer, followed by incubation with

p62-Alexa Fluor 488 antibody for 60 min at RT. Samples were then washed with flow buffer,

and analyzed with BD C6 plus flow cytometer.

For intracellular ROS measurement, 1X106 cells in 500 µl medium per well were seeded in

24-well plates, and cultured overnight. 1 µl CellROX Green Reagent (Invitrogen) was added to

each well and incubated for 30 min. Cells were then washed 3 times with PBS, and fixed with

2% PFA for 20min at RT, followed by extensive washes and then incubated with PE-conju-

gated anti-human CD19 antibody (eBioscience) for 20min at RT, before subjected to flow

cytometry.

Apoptosis assays

Apoptosis was quantified using flow cytometry as detailed in our previous publication [37], for

Annex V binding (BD Biosciences) and 7-Aminoactinomycin D (7-AAD) expression

(eBioscience). Caspase 3 activity was evaluated by Western blotting.

Statistical analysis

Unpaired, two-tailed student t tests were executed using GraphPad Prism (version 6) to deter-

mine the differences between two data sets obtained from three independent experiments.

p<0.05 (�) and p<0.01 (��), and p<0.001 (���) were considered significant. Data are expressed

as mean ± standard error (SE) of duplicate or triplicate samples, and representative results

from at least three independent repeats with similar results are shown.
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