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Abstract

RNA-protein interactions drive fundamental biological processes and are targets for molecular 

engineering, yet quantitative and comprehensive understanding of the sequence determinants of 

affinity remains limited. Here we repurpose a high-throughput sequencing instrument to 

quantitatively measure binding and dissociation of MS2 coat protein to >107 RNA targets 

generated on a flow-cell surface by in situ transcription and inter-molecular tethering of RNA to 

DNA. We decompose the binding energy contributions from primary and secondary RNA 

structure, finding that differences in affinity are often driven by sequence-specific changes in 

association rates. By analyzing the biophysical constraints and modeling mutational paths 

describing the molecular evolution of MS2 from low- to high-affinity hairpins, we quantify 

widespread molecular epistasis, and a long-hypothesized structure-dependent preference for G:U 

base pairs over C:A intermediates in evolutionary trajectories. Our results suggest that quantitative 

analysis of RNA on a massively parallel array (RNAMaP) relationships across molecular variants.

RNA-protein interactions drive a wide variety of critical biological processes from gene 

expression1 to viral assembly2. Up to 10% of the eukaryotic proteome is estimated to bind 

RNA3, and recent work has begun to uncover a web of RNA-protein interactions4-6 that can 
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control gene expression through splicing, RNA localization, and other post-transcriptional 

processes. Protein interactions with long noncoding RNAs also play a role in epigenetic 

state changes during differentiation7, perhaps through “scaffolding” chromatin 

remodelers8,9. Furthermore, RNA-protein interactions have proven powerful tools in 

synthetic biology, allowing gene expression control through post-transcriptional 

regulation10,11.

A biophysical understanding of the nucleic-acid sequence determinants of RNA-protein 

interactions lags behind our growing realization of their biological importance. Unlike 

double-stranded DNA, RNA substrates demonstrate diverse intramolecular interactions—

including, mismatched base bulges, stem loops, pseudo knots, g-quartets, divalent cation 

interactions and non-canonical base pairs—that determine three-dimensional RNA 

structure12-15 and set the landscape for interactions with RNA-binding proteins (RBPs)16. 

The combinatorial nature of RNA sequence and intramolecular interactions, coupled with 

the relative paucity of data produced from current biophysical methods has precluded a 

high-resolution, predictive understanding of both the sequence dependence of affinity and 

the resulting evolutionary constraints imposed by these requirements. Because the 

relationship between sequence and binding is often opaque, little is understood regarding the 

evolutionary constraints on these RNA structures, making bioinformatic identification of 

functional RNAs difficult17.

Current methods for investigating the sequence dependence of RNA-protein interactions 

include medium-throughput microfluidic methods18 and high-throughput methods coupling 

affinity-based selection with high-throughput DNA sequencing or array hybridization19 and 

recently have been used to generate a catalogue of RNA binding motifs20.

Although powerful, selection and sequencing methods bias results towards high-activity 

variants and do not directly and quantitatively measure the biophysical parameters that 

underlie biological function21. Recently, methods have been developed to quantitatively 

measure catalysis22,23, however, no such high-throughput methods exists for determining 

binding parameters kon, koff and Kd for RNA-protein interactions.

The technological innovations that have propelled the high-throughput sequencing 

revolution provide the foundations for massively parallel, fluorescence-based observations 

over a large variety of nucleic acid structures immobilized on a surface24-27. Recent work 

characterizing DNA-protein interactions27 has demonstrated the utility of these instruments 

for high-throughput binding affinity assays across large DNA sequence space. In this work, 

we have leveraged the Illumina DNA sequencing platform, an instrument that integrates 

solid-phase molecular biology, fluidics and high-throughput TIRF imaging for massively 

parallel DNA sequencing28, to create a platform for direct, ultra-high throughput 

measurement of RNA-protein interactions. In addition, we have developed quantitative 

image analysis tools for large-scale analysis of these data, and demonstrate measurement of 

both equilibrium binding constants and dissociation kinetics. We apply these methods to the 

MS2 coat protein2,29-33, a system with widespread applications in affinity purification34, 

RNA imaging35 and synthetic biology10,11. This approach enables quantitative measurement 

of binding and dissociation of a protein to >107 RNA targets generated directly on the flow 
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cell surface, providing massive biophysical datasets enabling predictive models for affinity 

tuning, decomposition of binding energies between primary and secondary structures and 

quantitative analysis of evolutionary trajectories across sequence space.

Results

A high-throughput RNA array for quantitative measurements

To generate a library of RNA targets, we first made an Illumina sequencing library 

containing an E. coli RNA polymerase (RNAP) initiation and stall sequence and a region 

coding for diverse sequence variants of the MS2 RNA hairpin synthesized using doped 

oligonucleotides (Fig. 1a,b, Supplementary Fig. 1, Supplementary Table 1). To ensure 

multiple measurements of each RNA variant and reduce sequencing error36, we introduced 

single-molecule barcodes 5’ of the RNAP initiation sequence. The barcoding strategy serves 

to identify individual molecules within a population by uniquely tagging each molecule 

using a barcode. We then diluted the amplification reaction such that approximately 8×105 

molecules were amplified in the reaction, which created a “bottleneck” in the population of 

barcoded molecular variants. This procedure allowed for each barcoded molecular species to 

be sequenced a median of 15 times per sequencing lane, allowing for multiple redundant 

measurements across the flow cell (Supplementary Fig. 2). The sequencing process 

converted individual molecules within the library to ~1 μm diameter clusters of ~1,000 

clonal DNA molecules on the flow cell surface28, and provided the sequence and position of 

the DNA templates across the 2D array.

Following sequencing, we removed the sequenced DNA strand, and regenerated double 

stranded DNA (dsDNA) using DNA polymerase to extend a biotinylated primer. We then 

saturated the flow cell with streptavidin to create a terminal biotin-streptavidin roadblock on 

these dsDNA fragments. To synthesize RNA, we adapted methods from single-molecule 

investigations37 designed to generate a single RNA per DNA template. First, we initiated E. 

coli RNA polymerase holoenzyme (RNAP) in CTP-starved conditions, which allows RNAP 

to generate 26 bases of RNA (the footprint of RNAP) before stalling at the first guanine on 

the DNA template strand. Second, we washed excess RNA polymerase from solution and 

introduced all four nucleotides, allowing RNAP to transcribe the variable region and stall at 

the biotin-streptavidin roadblock. This procedure results in transcribed RNA tethered to its 

parent DNA via RNA polymerase (Fig. 1a, Supplementary Fig. 3). The resulting RNA 

array contained 1.2 × 107 distinct RNA features comprising 1.48 × 105 unique sequences in 

a single sequencing lane.

Quantitative binding and dissociation measurements

To measure binding energies, we flowed MS2 coat protein fluorescently labeled with 

SNAP14 Surface 549 over the RNA array, and imaged bound MS2 protein at equilibrium 

using total internal reflection fluorescence (TIRF) at 10 increasing concentrations. After the 

final measurement, we perfused 1.8 μM unlabeled MS2 protein and recorded the 

fluorescence decay caused by dissociation (Fig. 1c, Supplementary Movie 1). The high-

concentration of unlabeled MS2 protein blocks other binding sites on the array, preventing 

re-binding of fluorescently labeled MS2. To quantify bound MS2 protein, we developed 
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image analysis tools that cross-correlate cluster centers from sequencing data to acquired 

images and fit the observed binding in each cluster to a 2D Gaussian (Supplementary Fig. 

4-5, software is available as Supplementary Data). Using this approach, we quantified the 

fluorescence signal for each cluster in 6,240 images representing 120 tiles imaged in two 

fluorescence color channels across 11 equilibrium MS2 concentrations and 15 dissociation 

time points. Fluorescence signals from single clusters fit canonical dissociation (Fig. 1d, 
Supplementary Fig. 6) and binding curves (Fig. 1e, f, Supplementary Fig. 7), yielding 

binding energy estimates in excellent agreement with published measurements (R = 0.94, 

slope = 1.08, Fig. 1g) and in vitro binding assays (R = 0.92, slope = 0.76, Supplementary 
Fig. 8).

We calculated off rates (koff) for 3,029 sequences and dissociation constants (Kd) for 

129,248 sequences, encompassing 57 single (100%), 1,539 double (100%), and 24,181 triple 

(92.4%) mutants (Fig. 2a, b, for data see Supplementary Table 2-3, for error estimation 

and quality control Supplementary Fig. 9-10). To investigate how sequence variation in the 

RNA hairpin impacts MS2 binding, we examined differential binding energies for all single-

mutants compared to the consensus sequence (−ΔΔGconsensus=0 kBT). The average binding 

energy change from all possible single-base changes at each position reveals a sensitivity to 

mutation throughout the hairpin that complements the effects of mutating individual residues 

on the binding surface of MS2 to alanine38 (Fig. 2c and Supplementary Fig. 11). 

Specifically, we observe high mutation sensitivity at base-paired positions near the loop and 

at specific single-stranded positions, suggesting significant primary sequence and secondary 

structure requirements for RNA recognition.

Affinity partitioned between primary and secondary structure

To comprehensively examine these primary and secondary structure effects on binding, we 

calculated the −ΔΔG of all double-mutants (Fig. 2d). We observed high positive epistasis in 

a population of “compensating mutants”, suggesting that these pairs of mutations preserve 

hairpin structure and maintain high binding affinities (Fig. 2e). We also observed negative 

epistasis in non-compensating mutants near the base of the stem, potentially due to 

cooperative effects on hairpin destabilization in these regions. Reciprocal mapping of 

positive epistasis signatures (≥1 s.d.) allowed de novo reconstruction of the bound hairpin 

structure, identifying base-paired, loop, and bulge positions (Supplementary Fig. 12a) 

demonstrating the feasibility of reconstructing molecular RNA structures from large-scale 

sequence-function data.

We modeled the contributions of base-specificity (primary structure) and base-pairing 

(secondary structure) to binding energy at each position in the hairpin with a linear 

regression model from a set of 121 training sequences. This model provides two free 

parameters for each unpaired base accounting for primary sequence changes in the form of 

transitions or transversions. For each pair of interacting bases, the model provides a total of 

six free parameters–one for transition and transversion of each base in the pair (four 

parameters) as well as one parameter to account for disruption owing to the loss of base-

pairing and one parameter representing possible non-canonical base-pairing interactions. 

These parameters were optimized jointly, in order to identify (via regression) the energetic 
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contributions of primary sequence changes (i.e. transitions or transversions that occur while 

holding secondary structure constant) and secondary structure changes (i.e. inferred 

energetic consequences of secondary structure disruptions or formation of non-canonical 

bases in isolation from primary sequence perturbations). To quantify the sensitivity for non-

canonical base-pairing at positions in the hairpin stem, we trained the model eight separate 

times (once for each possible non18 canonical pairing) with one free parameter representing 

the energetic cost of the respective non-canonical pairing. This re-fitting analysis allowed 

the model to incorporate a different energetic penalty for having non-canonical base pairs at 

a specific position instead of the energetic penalty for a full loss of base-pairing. In this 

analysis, G:U base pairs caused substantially less disruption to the binding energy than other 

non-canonical base pairs (Fig. 3a), consistent with the formation of a wobble base pair at 

G:U positions that allows partial rescue of the secondary structure12,39. Our final model, 

which incorporated a free parameter for G:U non-canonical base pairs, captured 92% of the 

variance in binding energy of the training set (Supplementary Fig. 12b) and predicted the 

binding energy of second and third mutations for variants with mutations in both paired and 

unpaired positions with correlation coefficients R=0.94 and R=0.83, respectively (Fig. 3b).

The model fit parameters allowed quantitative decomposition of primary and secondary 

determinants of affinity across the RNA structure (Fig. 3c, d). Energetic penalties for 

disrupting base-pairing increase with proximity to the loop, while non-canonical G:U base 

pairs cause substantially less energetic disruption at the –8:–3 and –11:–1 positions. Altering 

the primary sequence at –10A (bulge) and –4A (loop), residues that interact with the Lys61 

binding pocket on alternate halves of the dimer31, confers energetic costs that exceed 

disrupting the hairpin structure at any single base pair. We also observed important roles for 

the –7A and –5C residues, consistent with stacking interactions at these positions40. Altering 

the primary sequence on the 5’ side of the hairpin confers a greater energetic penalty 

compared with altering the 3’ side, which we speculate results from direct interactions with 

MS2 on the 5’ side38.

Association rate contributes to changes in binding energies

We sought to quantify how changes in association and dissociation rates contribute to 

measured −ΔΔG values for all mutants with measurable kinetic data. We calculated the 

energetic contributions to −ΔΔG from changes in dissociation rates 

, and inferred the contribution from changes 

in association rates, . Because Δlog(koff) + 

Δlog(kon) = −ΔΔG, we treated these parameters as pseudo-energies. Using this 

decomposition, we examined the fractional contribution of change in dissociation rates to 

−ΔΔG across single and double mutants (Fig. 4a). At the base of the hairpin, only a small 

fraction of −ΔΔG measurements are explained by dissociation rate changes. This small 

effect suggests that mutations at these positions modulate association rates, possibly by 

causing fraying of the hairpin and/or allowing competition with alternate RNA structures, 

thereby reducing the per-collision probability of productive binding (see Supplementary 

Discussion). This interpretation is reinforced by examining Δlog(koff) and Δlog(kon) in this 
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region (Fig. 4b, c). Dissociation rates change little while inferred association rates remain 

similar to that of the consensus sequence only for structures that maintain base-pairing 

through compensating mutations. Across all measured variants, we observe a significant 

population of structures with −ΔΔG driven by association rates (Fig. 4d; P < 2.2 × 10−16, 

Wilcoxon signed rank test, μ = 0.5). These results suggest the kinetic drivers of observed 

affinity changes are position-specific and often operate through modulating association 

rates, likely by changing hairpin stability.

Analysis of quantitative evolutionary landscapes

We sought to understand how biophysical properties shape RNA sequence evolution 

towards higher binding affinity by examining the prevalence of epistasis, or differential 

mutational path probabilities caused by non-additive affinity gains, in molecular evolution—

a question of intense debate41,42. Following previous work43,44, we reconstructed 1,997 

complete sets of mutational paths (tesseracts) describing the probability of evolving through 

permutations of four mutations from 1,597 low-affinity to 127 high-affinity hairpins. We 

modeled the probability of mutation, or the traversal from a source to a target node, as the 

effective probability of MS2 binding to the target over all sequences within one mutation of 

the source in the tesseract. Mutations can arise in any order, resulting in N=4!=24 distinct 

paths through which mutations may be sequentially acquired (Fig. 5a), with path 

probabilities defined as the product of probabilities for each mutational step. This model 

allows us to examine how molecular evolution towards higher affinity could proceed in an 

RNA-protein interaction, a question separate from the in vivo evolutionary landscape of 

MS2 sequences where the relationship between affinity and cellular fitness, as well as 

pleiotropic roles of this sequence in the MS2 genome, define the contours of the fitness 

landscape.

We examined evolutionary constraint (EAUC), defined as the area under the curve of the 

cumulative probability of rank-ordered paths, in each set43 (Fig. 5a). The data from 47,928 

mutational paths revealed strong constraint in evolution towards higher affinity, with 81% of 

path probability contained within the top 30% of mutational paths (Fig. 5b). The observed 

evolutionary constraint exceeds that expected from a non-epistatic landscape accounting for 

measurement errors (null model), or from a model that assumes a random distribution of 

affinities. These results indicate that distributions of affinity effects in mutational paths are 

highly structured (Fig. 5c), consistent with widespread intramolecular epistasis in 

evolutionary phase space41,43-45.

The sum of the mutational path probabilities (ESUM) captures the probability of reaching a 

given high-affinity sequence from a given low-affinity sequence. We observed a non-

uniform distribution of both evolutionary probability (ESUM) and constraint (EAUC) from 

tesseracts involving mutations at different residues in the hairpin structure (Fig. 5d, e) 

implying that biophysical properties impose strong, systematic, structure-dependent effects 

on evolutionary trajectories.

By modeling evolutionary sequence preference of ribosomal RNA, Rousset et al. observed 

that trajectories transitioning from A:U to G:C base pairs preferentially traverse G:U versus 

A:C intermediates and hypothesized this non-canonical base-pairing as a general mechanism 
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for maintaining RNA-protein contacts in evolution46. Data from 696 tesseracts containing 

both G:U and A:C intermediates reveal differential preferences for paths traversing G:U 

intermediates across the hairpin stem (Fig. 5f, g), providing evidence that biophysical 

properties underling the preference for G:U intermediates derive not from universal 

properties of secondary structure, but from the details of the RNA-protein interaction. With 

the exception of one position (Supplementary Figure 13), we observe no strong differences 

between the path probabilities of G:A and U:C intermediates for U:A to G:C transitions 

highlighting the contextual dependencies of these path probabilities.

Discussion

Using in situ transcription and inter-molecular tethering of RNA to DNA, we have 

converted a high-throughput DNA sequencing flow cell into an RNA array for quantitatively 

measuring both binding kinetics and thermodynamics at an unprecedented scale. Using this 

quantitative deep mutational profiling approach we report, to our knowledge, the largest 

collection of binding affinities and kinetic constants for an intermolecular interaction. Using 

this dataset, we addressed long-standing biophysical questions, including (i) the relative 

contributions of primary and secondary structure elements to binding energy, (ii) the 

sequence-dependent kinetic contributions to observed affinities, (iii) the prevalence of 

evolutionary epistasis and (iv) the context-dependence of preference for G:U intermediates 

in secondary structure.

Our predictive model for RNA-protein affinity across thousands of point mutations provides 

a map for quantitative tuning of both the association rate and the equilibrium constants of 

this RNA-protein interaction. We anticipate this resource of sequence variants will enable 

affinity tuning of MS2-based RNA sensors enabling new applications in synthetic biology. 

Additionally, these data provide quantitation of the effect of primary sequence, secondary 

structure and non-canonical base-pairing, creating a valuable framework for understanding 

the design and evolution of new RNA aptamers.

We hypothesize that inferred changes in on-rates are due to destabilization of the RNA 

hairpin formation or competition with alternate secondary structure, reducing the number of 

productive binding collisions47 (Supplementary Discussion). These observations suggest the 

data provided here may also provide a rich resource for modeling the RNA hairpin stability 

and alternate structure formation. While this is an area of inquiry beyond the focus of this 

work, the potential for formation of alternate structures and the effects of local sequence on 

native folding of RNA are well suited for study using this platform, as the RNA transcripts 

are synthesized by E. coli RNAP and folded co-transcriptionally, closely approximating 

synthesis conditions in vivo.

We observe that evolutionary landscapes of RNA-protein interactions are highly 

constrained, further supporting a major role for intramolecular epistasis in shaping 

evolutionary trajectories and providing insight into complexities of both natural and human- 

directed evolutionary methods for generating high-affinity ligands. Our analysis provides a 

quantitative mapping of G:U bias in evolutionary intermediates that has been previously 

observed46. However, our observation complicates the simple assumption that G:U bias is 
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simply a function of regions of RNA that form secondary structure and interact strongly 

with RNA. By observing a lack of G:U/C:A bias at the –9 base pair adjacent to the adenine 

bulge, we note that this preference is dependent on the context and the specifics of the 

secondary structure in this region.

We anticipate this RNA-MaP methodology will be a powerful addition to selection- and 

sequencing-based methods. In addition, the technique might provide quantitative 

information on RNA libraries generated by systematic enrichment of ligands by exponential 

enrichment (SELEX), allowing affinity tuning for the design of biological parts. Although 

SELEX methods often begin with large libraries (~1014) and produce a small number of 

selected molecules, our RNA array methodology allows quantitative characterization of a 

much larger library subset (~105), opening the door to a detailed understanding of the 

sequence-specific rules driving acquisition of affinity in the selection process. Alternatively, 

our approach might be coupled to sequenced in vivo RNA immunoprecipitation libraries48,49 

and used to directly quantify molecular affinities on in vitro generated RNA, providing 

measurements of interactions in well-defined conditions. The multicolor imaging 

capabilities of the sequencer enables measurement of more complex biological interactions 

such as cooperativity between differentially labeled binding partners or RNA structure 

inference via fluorescence resonance energy transfer (FRET). In addition, the sequencing 

platform is capable of generating DNA clusters >1kb50, enabling transcription of long RNAs 

and allowing investigations of long non-coding RNAs and catalytic ribozymes (see 

Supplementary Discussion for possible limitations). In short, we believe future application 

of RNA-MaP to diverse RNA-protein and RNA-RNA interactions promises to enable 

quantitative prediction and engineering of binding affinities and functional RNA molecules, 

as well as the identification and understanding of evolutionary sequence constraints based 

on underlying biophysical parameters.

Online Methods

Library Design and Construction

To generate a high density RNA array, we designed a custom DNA library containing a 

barcode, E. coli RNA polymerase (RNAP) promoter, RNAP stall sequence, constant region, 

and degenerate MS2 hairpin sequence (Supplementary Fig. 1). The reverse compliment of 

the region containing the stall sequence, constant region, and MS2 hairpin were synthesized 

by the Stanford Protein and Nucleic Acid Facility. Degenerate bases were introduced into 

the MS2 hairpin region using hand-mixed bases containing 88% of the consensus base and 

4% of each non-consensus base. This degeneracy ratio was chosen to maximize the total 

number of variants represented on the RNA array as well as the fractional representation of 

triple mutants. The RNAP promoter, barcode, and Illumina sequencing primers and adapters 

were subsequently added by PCR.

Library Bottlenecking and Amplification

The sequencing library was then bottlenecked to ensure multiple measurements of each 

RNA variant (Supplementary Fig. 2). To quantify the amount of starting material, we used 

a prequantified commercially available PhiX library (Illumina) as a concentration standard. 
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PhiX library was diluted to 50 pM then diluted 1:2 seven times in 10 mM Tris pH 8 + 0.01% 

Tween20 to create a dilution series ranging from 50 pM to 0.39 pM. For each concentration 

of diluted PhiX and for the assembled MS2 hairpin library, 1 μL of library was added to a 

qPCR mix containing 1x NEBnext PCR Mix, 1.25μM oligos C and D, and 0.6x Sybr Green. 

qPCR was carried out for 40 cycles, and the Ct values for each PhiX dilution and library 

sample were obtained. For PhiX, the concentration of each sample was plotted against the Ct 

value and was fit to a line. Using the resulting equation, we related Ct to concentration and 

calculated the concentration of the MS2 hairpin library. We then diluted the MS2 hairpin 

library to approximately 30.6 fM (~9.2×105 molecules) in 50 μL of the same PCR mix and 

amplified the library to approximately 30 nM (21 cycles).

Sequencing Amplified Libraries

Libraries were sequenced on an Illumina GAIIx to a cluster density of 1.23×107 clusters per 

lane. The libraries were sequenced in 2 steps using the standard single-end sequencing 

protocol. First, 15 cycles were used to read the barcode, and then 27 cycles were used to 

read the variable hairpin region. Reading the random 15 bp barcode first improved 

sequencing quality (data not shown) due to higher sequence diversity of the first 15 cycles of 

sequencing. Sequencing was done by ELIM Biopharmaceuticals (Hayward, CA).

MS2 Coat Protein Purification

The MS2-dlFG mutant30 of the MS2 Coat Protein was cloned into a custom expression 

vector containing an N-terminal FLAG and SNAPtag (NEB) and a C-terminal 6xHis tag 

(https://benchling.com/s/oYAOq4). The construct was transformed into BL21(DE3) cells 

(NEB), and starter cultures of transformed cells were grown overnight in a rotator at 37°C in 

10 mL LB with 50 μg/mL kanamycin. 500 mL LB with 50 μg/mL kanamycin was 

inoculated with 10 mL overnight starter culture and grown shaking at 37°C for 2.5 hours. 

SNAPtag-MS2 expression was induced with 0.5 mM IPTG for 5 hours at 22°C, and then 

cells were collected by centrifugation at 4000 rpm for 15 minutes at 4°C. Cell pellets were 

frozen at −20°C overnight. MS2 protein was purified using the Qiagen Ni-NTA Fast Start 

Kit. To maximize purity, twice the suggested amount of cell pellet was used, cell lysis was 

extended to one hour, the flow through was reapplied to the column 5 times, and the column 

was washed 2 times with 8 mL wash buffer. Purified protein was dialyzed 1:1,000,000 into 

100 mM Ultrapure Tris-HCl, pH 8.0 (Invitrogen), 150 mM NaCl, and 1 mM DTT using 

Slide-A-Lyzer 7000MWCO dialysis cassettes (Thermo). Protein was quantified by A280 

absorption on a NanoDrop and Coomassie Plus Protein Assay (Thermo). Attempts to purify 

an MS2-dlFG fused to tagRFP in place of the SNAPtag via the same protocol resulted in 

protein aggregation in culture and on the sequencing chip (data not shown).

Labeling MS2 Coat Protein with SNAPtag Substrate

5 μM purified SNAPtag-MS2 was labeled with SNAP-Surface 549 fluor (NEB) at 37°C for 

30 minutes in 50 mM Tris pH 8.0, 100 mM NaCl, 0.1% Tween 20, 1 mM DTT, and 10 μM 

SNAPSurface 549. Excess SNAP-Surface 549 was removed using Zeba Spin Desalting 

Columns (Thermo) equilibrated with TMK Buffer (100 mM Tris-HCl pH 8.0, 80 mM KCl, 

10 mM MgCl2, 1 mM DTT).
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RNA Labeling and Filter Binding Assays

RNA variants were obtained from IDT and the Stanford Protein and Nucleic Acid Facility. 

RNAs were diluted to 5 μM in 10 μL end labeling reactions of 1x T4 PNK buffer with 10 

units PNK (NEB) and 5 μCi gamma-ATP. Excess gamma-ATP was removed with the Zymo 

Oligo Clean and Concentrator kit. Approximately 20 pM labeled RNA was then incubated 

with varying concentrations of MS2 ranging from 0 to 8100 nM in TMKG buffer (TMK 

buffer, 10% glycerol, 100 μ g/mL BSA) for 1.75 hours at room temperature. The MS2/RNA 

mixtures were then filtered through a nitrocellulose membrane (GE) followed by a 

positively charged nylon membrane (GE) then Whatman paper on a dot-blot apparatus (Bio-

Rad) using the house vacuum (Supplementary Fig. 8a). Membranes were allowed to air dry 

before exposure to a phosphor screen for 12-96 hours. Phosphor screens were scanned on a 

Typhoon and the signal from each dot was quantified in ImageJ. Fraction bound (fbound) was 

determined for each filtered MS2/RNA mixture as the signal on the nitrocellulose 

(signalnitrocellulose) (which binds protein and therefore MS2-RNA complexes) over the total 

signal on both the nitrocellulose and the positively charged nylon (signal+Nylon) (which 

binds free RNA).

The concentration of protein (C) versus fraction bound was fit to a bimolecular binding 

curve in MATLAB for each of three replicates to find the Kd. (Fit parameters fmax=maximal 

fraction bound and fmax=minimum fraction bound.)

Modifications to the Illumina Genome Analyzer IIx (GAIIx)

To improve the optics and allow for equilibrium measurements on an Illumina sequencer, 

we modified the sequencer in several ways. First, we exchanged the standard Illumina 

fluorescence filter to a filter optimized for SNAP-Surface 549 fluorescence emission 

(Semrock FF01-562/40-25). Second, we eliminated unwanted wash steps after imaging and 

during the “safe state” mode by changing the default SCS files. C:\Illumina

\SCS2.10\DataCollection\bin\Config\HCMConfig.xml was modified to: <SafeStatePump 

Solution=“4” AspirationRate=“250” DispenseRate=“2500” Volume=“0” />, and C:\Illumina

\SCS2.10\DataCollection\bin\Config\ImageCyclePump.xml was modified to 

<ImageCyclePump On=“false” AutoDispense=“false”>. We also shortened all the fluidics 

lines of the GAIIx and the associated paired-end module.

Generation of the RNA array

All subsequent steps were performed on the modified GAIIx using GAIIx software running 

custom fluidics and imaging scripts. After sequencing, dsDNA clusters on the Illumina flow 

cell were denatured using 0.1 N NaOH. Following denaturing, we observed residual 

fluorescence from the sequencing reaction (Supplementary Fig. 3a,b). Therefore, we 
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incorporated an additional cleavage step (100 mM Tris, 125 mM NaCl, 100 mM TCEP, 50 

mM sodium ascorbate, and 0.05% Tween 20) (Supplementary Fig. 3c). Following 

cleavage, we annealed a 5’ biotinylated primer to the 3’ sequencing adaptor and 

resynthesized dsDNA using Klenow DNA polymerase (1× NEB buffer 2, 250 μM dNTP 

mix, 0.1 units/μl NEB Klenow, 0.01% Tween-20) incubated for 30 minutes at 37°C. We 

then flowed in 100 nM RNase free streptavidin to bind to the 5’ biotinylated primer and 

passivized with a 500 nM biotin wash. To block all potential ssDNA, we annealed an 

unlabeled oligo complementary to the constant stall sequence. We then incubated the 

dsDNA with a transcription initiation mix containing sigma saturated RNAP and three 

nucleotides at 2.5 μM (1x T7A1 reaction buffer [20 mM Tris, 20 mM NaCl, 7 mM MgCl2, 

0.1 mM EDTA, 0.1 % BME, 0.02 mg/ml BSA, 1.5% glycerol], 2.5 μM e ach A TP, GTP a 

nd U TP, 0.015 mg/ml RNAP [Sigma-saturated holoenzyme from Epicentre] and 0.01% 

tween-20) for 30 minutes at 37°C. In this buffer, RNAP initiates onto dsDNA clusters and 

stalls at the first cytosine, generating 26 bases of RNA. Stalled RNAP covers the initiation 

site to inhibit multiple RNAPs from initiating on the same DNA molecule. Excess RNAP 

was washed from solution with 1x T7A1 reaction buffer plus 2.5 μM each ATP, GTP and 

UTP. Finally, 10 mM NTPs (ATP, CTP, GTP, and UTP) in 1x T7A1 reaction buffer were 

added for 30 minutes at 37°C to allow transcription to proceed. After transcription, RNAP 

remained stalled at the 5’ biotinstreptavidin roadblock, generating a stable RNAP mediated 

DNA-RNA tether (Fig. 1a).

MS2 Binding and Dissociation Experiments on the RNA Array

To assay total synthesized RNA, we annealed an Alexa Fluor 647 labeled DNA oligo onto 

the stall sequence that was present in all clusters (Supplementary Fig. 1, 3). Based on 

cluster fluorescence intensities, we observed an RNA synthesis efficiency of approximately 

30-40%. We also annealed an unlabeled MS2_3’block oligo to the constant region between 

the hairpin and the RNAP footprint in order to prevent alternate secondary structures. 

Following annealing, we assayed binding by introducing SNAP-Surface 549-MS2 (TMK 

buffer, 100 μg/mL BSA and 10 μg/mL yeast tRNAs) to the flow cell at 3x increasing 

concentrations starting at 0.046 nM and ending at 900 nM for a total of 10 binding images. 

For each measurement, we waited 1 hour to reach equilibrium. Following binding at 900 nM 

MS2, we observed dissociation by introducing 1.8 μM unlabeled MS2 and continually 

imaging the 120 tiles of the flow cell.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A massively parallel RNA array for quantitative, high-throughput biochemistry
(a) Steps for generating RNA tethered to DNA clusters on a high-throughput DNA 

sequencing flow cell. (b) Structure of the MS2 coat protein homodimer bound to the 19 nt 

hairpin RNA (PDB ID: 2BU1)33. (c) Images of fluorescently labeled MS2 bound to RNA 

clusters at increasing concentrations of protein and at time points following perfusion of 

unlabeled MS2 competitor. Below, fitted sum of Gaussians used to assign fluorescence to 

clusters. Scale bars (white) represent 2.5 μm. (d) Fluorescence decay of MS2 dissociating 

from clusters containing the consensus sequence (-5C) (t1/2=8.39 minutes). (e) Fit binding 

curves to clusters labeled in panel (c). (f) The probability distribution of binding energies 

from all clusters with labeled variants; mean Kd = 2.57 nM, 36.8 nM, and 415 nM for the 

-5C, -5U, and -5A variants, respectively. (g) Correlation between binding energies reported 

in the literature and measured on the RNA array (squares, Carey et al.29, circles, Romaniuk 

et al.32). (Dashed line indicates our affinity measurement cutoff.)
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Figure 2. A quantitative map of MS2 binding across RNA sequence variants
(a) Distribution of observed RNA variants by number of mutations. (b) Clusters measured 

per molecular variant as a function of mutation number. A median of ~11 clusters are 

observed for sequences with ≥4 mutations. Affinities for the consensus sequence come from 

NC=909,385 clusters. (c) Average −ΔΔG of point mutations per position. The −ΔΔG of 

alanine38 substitutions to the MS2 binding surface are shown in parentheses (kBT). Solid 

and dashed lines represent base and phosphate interactions, respectively. (d) Matrix of 

−ΔΔG for single and double mutants of the consensus sequence. Inset contains the matrix of 

−ΔΔG for single and double mutants of the +1G variant. All energies are calculated relative 

to the consensus (-5C) sequence (arrow, −ΔΔG=0), and the number of quality-filtered 

double mutants in each matrix is indicated (M2). (e) Epistasis matrix derived from (d) 
allows de novo reconstruction of the hairpin structure.
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Figure 3. Binding affinity is dependent on primary sequence and secondary RNA structure
(a) Fit parameters for linear regression model showing position-specific contributions. 

Energetic components for all possible base pair combinations are shown below. (b) 
Predicted binding energies of variants with second (M2) and third mutations (M3) in both 

single- and double-stranded regions. Primary (i.e. mean energetic contributions of transitions 

and transversions) (c) and secondary (d) structure contributions to affinity derived from a, 

were mapped onto the hairpin (PDB ID: 1ZDH)40.
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Figure 4. Sequence-specific contributions of association and dissociation rates to binding affinity
(a) Fractional contribution of dissociation rates for 31 single and 289 double mutants with 

measurable affinities and dissociation rates. Positions at the base of the hairpin are 

highlighted. (b) Δlog(koff) and (c) Δlog(kon) at the base of the hairpin. M2 = number of 

qualityfiltered double mutants. (d) Distribution of fractional contributions of association 

(blue, μ=0.57) and dissociation (red, μ=0.43) rates to −ΔΔG for all measured mutants 

(N=3,029).
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Figure 5. Evolutionary landscapes are highly constrained by biophysical requirements
(a) Tesseracts describe traversal probabilities for the complete set (N=24) of mutational 

paths between low and high-affinity variants within 4 mutations. The AUC of the 

cumulative probability of ranked paths measures evolutionary constraint (EAUC), as 

modulated by epistasis (ε). (b) Density of cumulative probabilities for the ranked paths of 

1,997 measured tesseracts. The fraction of the total path probabilities captured per individual 

path is shown as a function of path rank in the inset. The cumulative sum of these individual 

values is integrated to calculate EAUC. (c) Distribution of EAUC scores from observed 

tesseracts (red), tesseracts with uniform path probabilities (blue) and tesseracts with random 

affinities (purple) imply a highlystructured epistatic landscape. The number of variants 

significantly constrained (P < 0.01, Benjamini-Hochberg) is indicated for both models. 

Average evolutionary probability (d) and constraint (e) for paths with changes at each 

position of the hairpin. (f) Intermediate trajectories for base pair A:U→G:C and U:A→G:C 

transitions. (g) Probability ratio of evolutionary paths passing through G:U vs. A:C 

intermediates by base derived from 696 tesseracts with A:U→G:C base pair 

transformations.
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