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ABSTRACT: Novel functional materials are urgently needed to help combat the major global challenges facing humanity, such as
climate change and resource scarcity. Yet, the traditional experimental materials discovery process is slow and the material space at
our disposal is too vast to effectively explore using intuition-guided experimentation alone. Most experimental materials discovery
programs necessarily focus on exploring the local space of known materials, so we are not fully exploiting the enormous potential
material space, where more novel materials with unique properties may exist. Computation, facilitated by improvements in open-
source software and databases, as well as computer hardware has the potential to significantly accelerate the rational development of
materials, but all too often is only used to postrationalize experimental observations. Thus, the true predictive power of computation,
where theory leads experimentation, is not fully utilized. Here, we discuss the challenges to successful implementation of
computation-driven materials discovery workflows, and then focus on the progress of the field, with a particular emphasis on the

challenges to reaching novel materials.

B INTRODUCTION

The discovery of new materials has the power to transform our
lives. For example, new battery materials have allowed
miniaturized devices with increased power that have
revolutionized the electronics industry. Advanced functional
materials are necessary to address the global challenges
humanity faces, such as resource scarcity with continued
population growth, along with climate change. These
challenges include the drive toward clean energy, targeted
medical therapies, and assistive technologies for improved
quality of life. New materials, including those with improved
properties through novel structures, are needed to help us
meet ambitious targets put forward by the EU Green Deal' and
US Department of Energy.”

Ideally, we would have the ability to specify a set of
properties required in a multifunctional material and then be
able to directly design and realize that material; this is known
as inverse design. For every task, a material needs to be tailored
to meet the necessary criteria, including target properties and,
importantly, the cost and ease of processing into the necessary
device form. To take one example from molecular separations,
it is estimated that molecular separations account for 10—15%
of the world’s energy usage.” Most separations are currently
performed using energy intensive distillation processes;
however, if these separations could be replaced with a
membrane-based process, they could use 90% less energy.’
Important molecular separations include separating different
hydrocarbons from crude oil, uranium from seawater, green-
house gases from dilute emissions, rare-earth metals from ores,
and trace contaminants from water. Each of these tasks will
need a different membrane material, perfectly tailored to a
given operation, and new ones will need to be developed for
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renewable-based separations as we move away from an oil-
based economy.

Traditional materials discovery approaches, Figure 1,
typically have long timeframes (up to 20 years on average)."’
Generally, discovery is guided by the scientist’s experience and
knowledge of a given material class that will suggest, for
example, the addition of a different functional group or
heteroatom, or the substitution of a metal or cation to an
existing material with the goal of improved performance. The
synthesis and characterization of each individual material may
take months to years, and thus a knowledge-guided “trial-and-
error” process is inherently slow. Worse, given not all syntheses
will be successful, and a synthesized material may not produce
the desired properties, there is a natural inclination toward
only small iterations to known materials due to the risk that
larger steps away from known materials are completely
unsuccessful, wasting time and resources.’ Thus, large leaps
forward, for example the discovery of a completely novel
material class with previously unrealized properties, are rare
and generally a product of serendipity rather than design.

The restrictions on our ability to explore new material space
are particularly stark when placed in the context of the size of
the potentially available material space. Considering just drug-
like (small) organic molecules as potential components of
materials, it has been estimated that there are between 10* and
10 hypothetical molecules that could be enumerated through
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Figure 1. Conventional materials discovery workflows. The typical steps in conventional experimental and computational materials discovery
workflows. Specific opportunities to accelerate the conventional discovery process are highlighted, as well as steps in the discovery process

possessing a higher likelihood of exploring novel material space.

different connectivities and substitutions.” In contrast, it is
believed that only a small fraction of these molecules have ever
been synthesized by humans, and of course, very few of these
have been formed into materials and tested for their potential
properties. Moreover, the number of hypothetical molecules
highlighted here only describes the phase space spanned by
purely organic molecules and the introduction of inorganic
elements and materials, for which both the possible elemental
compositions and stoichiometries can be tuned, leading to a
near infinite phase space. This already enormous material
space generated by the combinations of constituent building
blocks is further expanded when variety in composition and
structure is considered; from discrete or continuous topologies
that produce crystalline or amorphous phases to a vast number
of forms including thin films, membranes, fibers, and
multicomponent devices.

Computation has played an increasing role in materials
development over the past decades, aided by substantially
increased computer power. The traditional role of computation
in materials discovery has been to postrationalize experimental
observations—greatly impacting our understanding of the
atomistic origin of material properties and structure-property
relationships. While this understanding has naturally fed into
rational development of improved materials in the laboratory,
ideally computation would be used in a truly predictive manner
to guide synthesis and allow us to access novel material
architectures with optimal properties. With computation, we
do not need to be limited to local material space due to the
risks of failed syntheses, and there is the potential to
computationally screen thousands to millions of hypothetical
materials in the time frame that a single material can be tested
in the laboratory. Thus, predictive computational capabilities
can open the potential to fully exploit the vast potential
material search space.

The past decade has seen an increase in the use of data-
driven techniques, with the application of artificial intelligence
(AD), in particular, machine learning (ML). The increased use
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of ML in materials development has been facilitated by open
science, with open-source algorithms, databases, and improved
computer hardware all playing a role. The use of ML in
understanding and designing materials and best practices have
been reviewed elsewhere."”"> Owing to its ability to identify
subtle trends in high-dimensional data, ML can play a variety
of roles in materials discovery, from accelerating property
prediction by multiple orders of magnitude, to the generation
of novel material structures that might not be suggested by
scientists alone, to automated extraction of literature data and
the optimization of syntheses or properties. However, to date,
there are still limited examples of experimental realization of
predictions resulting from ML. Thus, it could be argued that
presently we do not use computation to its full potential.
Effective and robust computation-guided synthesis would allow
exploration of an enormous search space, and limit the need
for time-consuming experimental testing. Indeed, moving away
from traditional materials development approaches (Figure 1)
is fueled by strengthening ties between experiment and
computation.

Current endeavors linking experiment and computation are
being fueled by advances in joint workflows, high-throughput
robotics, experimental automation, and Al Yet, we must
ensure that the advances here translate to accelerated discovery
of novel architectures to realize their full potential. In this
perspective, we discuss the barriers to computational discovery
of novel material space, followed by a discussion of the progress
toward overcoming these barriers that will allow us to achieve
true inverse design of novel architectures via computation,
highlighting several recent examples. Here, we make the
distinction between the three major avenues encompassed by
materials development, (i) identification, where materials are
selected from defined data sets, (ii) design, where small
modifications are made to known chemical architectures, and
(ili) discovery, where truly novel architectures are accessed.
Conventional materials development studies largely follow
either an identification or design approach (or a combination
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of the two). Owing to the diverse topological landscape, as well
as complex synthetic routes, materials discovery is challenging
with the current tools available.

B CHALLENGES FOR COMPUTATION-LED
EXPLORATION OF NOVEL MATERIAL SPACE

Before discussing the challenges to the exploration of novel
material space, it is useful to explore how typical computational
workflows might be used to assist the materials discovery
process, Figure 1. A workflow typically follows several stages:
(i) problem definition, (ii) determination of the chemical/
material space to be explored, (iii) structure prediction, (iv)
exploration of the chemical space with property prediction, and
(v) identification of promising target materials for synthesis.

Within problem definition, the target property and the
materials class of interest are defined. The materials class is
often defined as a specific type, although we might imagine an
ideal future where this is kept as open and broad as possible.
Consider, for example, metal—organic frameworks (MOFs);
the size of the material space for MOFs is, in theory,
enormous, since any metal complex may be combined with any
organic linker within chemical constraints. In practice, the
material space might be defined by selecting a library of
precursors to be enumerated—here, a severe restriction in
chemical space is often introduced, with small libraries on the
order of 10s of precursors selected, since the enumeration still
leads to a larger number of hypothetical materials. Alter-
natively, different material space exploration approaches can be
used where the material components can be modified on-the-
fly, for example through a set of predefined rules. Ideally, one
would want to be able to modify the materials’ structures
continuously to allow optimization of desired properties.

The structure of the material must next be predicted. This
may require a solid-state, three-dimensional prediction of
structure, or, for some data-driven approaches, only the
underlying connectivity of the structure. Thereafter, the
properties of the materials can be calculated from the structural
description. A wide variety of molecular simulation approaches
can be used for both structure and property prediction, from
coarse-grained or atomistic classical mechanics to a quantum
mechanical description, featuring a wide range of associated
computational costs. Alternatively, if a sufficient quantity and
quality of data are available, ML can be used. Naturally, the
accuracy and computational cost strongly influence the size of
the material space that can be explored, ranging from 10s to
millions of hypothetical materials. The size of the material
space will also guide the choice of exploration approach used,
from a brute-force combinatorial approach where all
possibilities (within the defined space) are tested, to the use
of methods such as evolutionary algorithms and Bayesian
optimization to efficiently locate promising materials.

Structure Prediction. The accurate prediction of the
molecular and/or solid-state three-dimensional structure of a
hypothetical material is essential to accurately predicting
material properties and device performance. The significant
challenge that solid-state structure prediction poses, for either
inorganic or organic solids, has been widely discussed,'®”"*
and the difficulty of this prediction is arguably one of the
largest challenges to human or computer-led design of any
chemical system. The solid-state arrangement of a system is a
key driver in that system’s properties. Thus, without the ability
to reliably predict solid-state structure, it is not possible to
screen that material. For example, the solid-state packing of

molecules can impact the diffusion of guest compounds,
influencing their application in sensing. Even small changes to
a system, e.g. switching halogens, can change the solid-state
arrangement and, thus, system properties.

Increasingly, global optimization searches of possible
assemblies have demonstrated the capability of computation
to predict the solid-state structure of materials. Through this,
accurate energetic assessments are conducted with the
expectation that the lowest energy structures should be
experimentally observed.'”” However, the challenge in
computational structure prediction is that accuracy is closely
tied with computational cost, often requiring electronic
structure-based methods for accurate energy assessment of
possible assemblies. Therefore, at least in the short term, it is
not possible to apply these methods to large numbers of
hypothetical materials and thus difficult to branch far into truly
novel material space.

The Challenge of Complexity. While the computational
approaches developed over the years have provided invaluable
atomistic insight into the origin of observed properties beyond
those available from experiment alone, model simplifications
are necessary to accommodate resource availability. The
quantitative accuracy of a computational model stems from
its suitability in describing the system. There are many well-
established reasons why computational models incur er-
rors.”' 7>* For example, errors can arise from size consistency
or size extensivity problems that are intrinsic to the method—
larger systems sometimes embody significant medium- and
long-range interactions (e.g, van der Waals forces, electro-
static, dipolar, and Coulomb interactions) or self-interaction
error that might not be noticeable in small test cases. While
model abstractions improve computational efficiency, these
simplifications often mean we neglect the true complexity of
the material, thereby limiting our ability to fully predict the
properties. More computationally affordable methods are often
empirically or semiempirically derived, and, thus, can lack
transferability to new systems. The latter is a particular issue if
the goal of the simulations is to explore truly novel material
space.

It is important to ensure that the assessment of a potential
material truly considers all the factors that influence device
level performance. Often, optimization of device performance
and material properties are completed as two separate tasks,
necessitated by the complexity of this multivariable optimiza-
tion problem. We refer the reader to reviews of device-level
optimization for solar cells,** field-effect transistors,” thermo-
electrics,”® and batteries.”” While screening bulk “idealized”
materials may be useful to remove materials without suitable
properties, screening only bulk material properties is unlikely
to identify the best materials at a device level. Factors that can
influence device level performance include (i) device assembly,
which often includes a combination of different materials, (ii)
interface between these materials, which can have a dispropor-
tionate influence on performance, (iii) operating conditions for
the application, (iv) method by which the material(s) was
processed into a device, (v) age of the material and its stability,
(vi) defects, and (vii) macroscopic factors such as grain
boundaries and cracking, which can strongly influence, for
example, charge transport behavior in a solar cell device.

Synthetic Realization Prediction. Given the significant
efforts in computational materials discovery, including a large
field in high-throughput computational screening, it is not
unreasonable to ask why are there, by comparison, relatively

https://doi.org/10.1021/jacs.2c06833
J. Am. Chem. Soc. 2022, 144, 18730—18743


pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c06833?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of the American Chemical Society

pubs.acs.org/JACS

few experimentally realized materials that originated from
computational predictions? One reason is that a predicted
material, albeit with very promising predicted progerties, does
not come with a “recipe”, or synthetic procedure.”® A materials
synthesis procedure may require multiple stages, for example
the synthesis of the precursors (such as the component organic
molecules) and the synthesis reaction of those components
into the desired material structure or topology, followed by
processing of that material into the desired form for
application, such as a multilayer device, thin film, or fiber.
Each of these stages is typically time-consuming (often
months) and expensive, and there is potential for failure at
each step. For example in our work, even with porous organic
materials designed by a synthetic chemist with the expectation
of synthetic success, only 42% of the reactions were
successful.’ For the synthesis of MOFs, while one could
describe the synthesis as relatively simple, with one-pot mixing
of the component materials, the material synthesis outcome
and properties can vary depending on the conditions such as
solvent choice and temperature, and the optimization of the
phase diagram of the new material is far from trivial.®
Therefore, if computational predictions came with a “recipe”
for how to make the target material, much like a retrosynthesis
of an organic molecule, this would increase the number of
successfully synthesized computationally predicted materials,
and may be especially important for branching out into novel
material space. However, how to achieve this universally is far
from obvious.

Need for Reliability and Trust in Computational
Predictions. Strongly related to the previous points, there is
the need for computational predictions to be trusted and
expected to be reliable by the experimental researchers in the
field. This is going to be particularly necessary to risk the
synthesis of predictions in novel material space that are further
from known materials, where an experimental researcher can
automatically have a high degree of confidence in their
synthesis. It is not unreasonable that there may be a high level
of caution in the synthesis of predictions, in particular, given
the many challenges in the accuracy of predictions that still
face the field and the high financial and time cost in testing
predictions. This hesitancy may go some way to explaining the
relatively low number of experimental realizations of
predictions—relatively few are attempted and those that are,
are often very similar to previously reported materials. It is
notable that many of the examples of experimental realizations
of computationally predicted materials are carried out by
experimental researchers who have a long history of working
with computational researchers, or where the same researcher
halsg ggrried out the prediction and then entered the lab to test
it.””

Limited Data Availability. The digitization of scientific
literature, open access databases, and open-source algorithms
have ushered in a new era of data-driven prediction and
materials development. While there is a lot of excitement
surrounding data-driven techniques in materials discovery,
most successful implementations of these tools happen for
data-rich problems, since data-driven techniques rely on
statistics rather than existing physical equations governing
material properties. Indeed, the success of these statistics-based
analyses and prediction relies on possessing a reliable, diverse,
and large data set. However, unless there is an existing, open-
source, readily available database for a given class of materials,
a data set must be constructed. Whether generating data via

experiment or computation, this is an arduous and limiting
task. Recently, there have been improvements to data set
construction methods, including more efficient computation,
online open source databases, data imputation techniques, and
the implementation of text-mining tools to extract and process
data in published articles and patents.’>*" Yet, there are still
challenges and limitations associated with each of these
methods. Text-mining the scientific literature has attracted a
lot of attention;*> however, inconsistencies in chemical
nomenclature, literature reporting, and synthesis summaries
limit the number of articles from which data may be
obtained.”” Issues further persist for experimental data mining
because of potential inconsistencies in experiment reporting,
and undisclosed environmental factors; for example, a
commonly reported metric in syntheses is temperature;
however, “room temperature” varies with geographic location.
Moving forward there is a clear need for consistent data
reporting schemes and common ontologies.

The Challenge of Extrapolating to Unknown Materi-
als Space. While there are numerous examples of computa-
tional materials development in the literature, they largely fall
under design and identification schemes and stay within the
region of previously explored local material space. Therefore,
identified candidate materials are necessarily limited and
advancements within this arena are concerned more with
optimization of known materials than truly novel materials
discovery. Discovery of truly novel structures, topologies,
motifs—those that exist beyond known material space—within
the typical computational framework is presently evasive and
new approaches are necessary.

At the core, sampling unknown material space is concerned
with generating motifs that have a greater dissimilarity to the
initial material space. Yet, many of the existing data-driven
techniques are robust under only small extrapolations to the
initial training data set. For example, models trained to predict
band gaps of fully inorganic perovskites would perform poorly
for band gap prediction of organic semiconductors. Specific
exploration techniques have been developed and are largely
based on either global optimization methods or generative ML
models. Yet, these are often limited to small (often drug-like)
molecules, and problems surrounding chemical feasibility of
generated systems persist, even before considering synthesiz-
ability. Moreover, owing to issues surrounding chemical
feasibility, the present implementation of generative ML
models favor known chemical space exploration over
extrapolation to the unknown. Intuitively, this makes sense
because it is challenging to model what we do not know; in this
way, the efficient search process oftered by global optimization
approaches is advantageous, allowing us to manage the degree
of extrapolation. Beyond the methods employed, purely
computational endeavors in sampling unknown material
space require robust synthesizability metrics and route
prediction; the best way to accomplish this is through close,
synergistic communication between experiment and theory
directly.

Challenges with Inverse Design. Inverse design, where
one starts from a list of desired properties and works backward
to the necessary material and material components, is typically
considered the “holy grail” of materials discovery. It would be
efficient compared to the need to screen thousands to millions
of materials and, in an ideal world, would not be limited to
existent material space, and thus able to identify optimal target
materials from the entire novel material search space. However,
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Figure 2. Structural prediction of novel (a) organic and (b) inorganic materials. (a) Crystal structure prediction to predict new porous materials.
(i) The lattice energy landscape (top) and energy—structure—function map (bottom) of the molecular crystals of (ii) T2, highlighting the (iii)
polymorphic behavior, leading to the experimental discovery of the highly porous T2-y phase. Adapted with permission from ref 48. Copyright
2017 John Wiley & Sons, Inc. https://creativecommons.org/licenses/by/4.0/. (b) Ab initio Random Structure Searching (AIRSS) to explore
complex cathode materials. The search (i) found both the experimentally known phases of LiFeSO,F (ii, iii) and identified new low energy
polymorphs, some of which had favorable properties. Adapted from ref 20, APL Materials 2021, 9, 121111, with the permission of AIP Publishing.

Jansen and Schon argued that rational development of
materials is a fallacy, because the thermodynamic viability of
a material must be considered as part of the discovery
process.”* They argue it is irrelevant if a hypothetical material
has optimal properties if it is thermodynamically (or
kinetically) unstable and as such could never be synthesized
or operate in a given application. Instead, they put forward the
necessity of screening processes that first assess the
thermodynamic viability of hypothetical material candidates,
only taking forward to property screening those materials that
are energetically viable. Despite advances in hardware and
computation software, computational stability assessment for
hypothetical materials is extremely challenging,**° often
relying on calculations of formation enthalpies with electronic
structure methods. The energy landscape for a single material
alone is often complex. Thus, from an inverse design
perspective, selecting the optimal material candidate from a
material space is highly computationally intensive and

challenging.
H PROGRESS IN COMPUTATIONAL DISCOVERY

Despite the hurdles that the above barriers present to realizing
the full potential of computation-led novel materials discovery,
these are exciting, active areas of research within the
community. Here, we highlight the state-of-the art in materials
discovery initiatives that will allow computation to assist in the
discovery of more diverse and novel materials.

Advantages of Data-Driven Computational Discov-
ery. There is enormous potential in the use of Al and data-
driven techniques to overcome existent barriers to discovery
through completely alternative approaches that elucidate subtle
trends in high-dimensional data. This is being facilitated by
open-source algorithms, for example, those for deep learning.
Arguably, (materials) chemistry is behind other disciplines in
the use of Al due to the lacking quantity and quality of data
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required for ML existing in machine-readable forms. This is
particularly pertinent when many of the most interesting or
useful instances in chemistry are “rare” and the exception to
the rule. Low data quantity is often addressed by
supplementing data sets with computational data, where
generation has been facilitated by advancements in hardware
and high-throughput computational methods and software.””**
Notably, models trained on computational data exacerbate
potential errors associated with the required assumptions, e.g.
basis set superposition error within DFT.” Although it could
be possible to assume important relative relationships are
sufficiently preserved, which enables these methods to guide
experimental efforts. Further, we lack the “dark” data on
experimental failures that algorithms need to include in their
training. However, there have been enormous initiatives in the
materials community to overcome this challenge, such as the
Materials Project,40 Materials Genome Initiative,"”** and
Novel Materials Discovery (NOMAD),* among others, ™%
and there is increasing awareness of the importance of open-
source data and use of electronic laboratory notebooks. Below,
we discuss the potential for data-driven approaches for specific
tasks.

Structure Prediction. Sufficiently accurate structure
prediction is a key step in reliable prediction of material
properties.47 Recent advancements in computational structure
prediction methods have significantly improved the efficiency
and accuracy of what still remains a costly procedure that
requires specialists skills and typically weeks of calculations.
Crystal structure prediction (CSP) is a powerful technique that
predicts solid-state structure from knowledge only of the
individual components. There are separate approaches for
organic (molecular) systems and inorganic systems, and these
fields have largely diverged.

For organic molecules, the procedure generally involves
sampling a large number of different crystal packings and then
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assessing their relative energies, under the assumption that
experimentally observable structures will lie within a few kJ
mol™" of the global minimum. This allows for the creation of
energy—structure—function relationships,48 guiding experimen-
tal discovery of targeted properties. For example, CSP was
used to guide synthetic efforts to rigid molecular motifs likely
to produce experimentally accessible and highly porous
polymorphs from only knowledge of the molecular structure,
Figure 2a."” While not all the molecules studied in this work
were new, the computational results highlighted that one could
find a novel packing with novel properties, predicting the
existence of an ultralow-density solid. This underlines the
potential for computation to lead discovery beyond what can
be achieved by experiment alone.

While structure prediction for inorganic materials benefits
from stronger directional interactions compared to their
organic counterparts, computationally led inorganic materials
discovery still requires thorough sampling of possible phase
space and accurate energetic ranking of low-energy phases.*”*’
These methods have helped accelerate materials discovery, for
example finding low-energy polymorphs of complex cathode
materials with more favorable properties,” Figure 2b. Knowing
that a particular polymorph is low-energy does not, however,
mean it is trivial to access in the laboratory.

As evidenced by the blind structure prediction tests that are
held every few years, what has been a “game-changer” for the
accuracy of CSP is the use of electronic structure methods with
high-quality descriptions of intermolecular interactions.”">”
However, using these methods to assess the energies of
potentially hundreds of polymorphs per molecule is very
computationally demanding, limiting the use of CSP in high-
throughput screening workflows. It is even more computa-
tionally expensive to apply CSP to more complex systems, such
as flexible molecules, multicomponent crystals, or systems
where Z' > 1 or large unit cells. However, the introduction of
molecular complexity has the potential to discover more exotic
phases in novel material space. The constant development of
structure prediction techniques and compute power means
more will be possible in the future, but it will remain
challenging in the short term for CSP to explore large amounts
of material space. In the meantime, we suggest simpler coarse-
grained methods as a more accessible route to explore broader
strokes of phase space, discovering regions for further
exploration—both experimentally and with higher levels of
theory—as well as developing design rules. Alternatively, ML
force fields are a promising approach to improve the
tractability of ab initio calculations via incorporation with
classical force field methods.>*** Indeed, ML force fields have
been successfully applied, for example, in elucidating
amorphous carbon structures™ and phases of sodium under
pressure.*

Structure prediction is also used in other amorphous
systems. For example, polymerization algorithms, via sequen-
tial bond forming and annealing steps, can reliably reproduce
the structure of amorphous organic polymers in mem-
branes.””>® The amorphous structure prediction field is behind
that of crystalline structure prediction and lacks the databases
of thousands—millions of structures that would benefit
identification and data-driven prediction, although work to
build these is underway.>”

The energetic viability of predicted structures is an
important consideration. In a recent example, the synthesiz-
ability of crystalline materials represented by their atomic

structure was predicted using deep learning.’” In this example,
Davariashtiyani et al. present a synthesizability prediction
model that is generalizable across materials classes assuming
synthesis data availability. There have also been attempts to
predict the thermodynamic limit of crystalline materials
relative to a proposed “stability limit” based upon the energy
of the amorphous material.’" Confident, reliable prediction of
synthetically viable material structures through an energetic
assessment of the possibilities will be a key step toward
accessing novel material space, such as complex exotic phases
or novel motifs. Increased reliability of structure prediction
methods will likely have a direct and positive impact on the
confidence of synthetic material chemists in attempted
syntheses. The structure prediction field could best benefit
novel materials discovery by decreasing the computational cost
of energetic assessment of the hypothetical phases, such that
the approach can be more routinely used in high-throughput
materials discovery pipelines.

Synthesis Route Prediction. Novel materials predicted
by computation are only viable if they are experimentally
realizable; thus, each predicted material would ideally be
accompanied by a computationally predicted synthesis route.
Yet, we are faced with an expansive reaction space to traverse,
and different methods are necessary for different materials
classes. For organic molecules, the primary component of
organic materials, there has been extensive effort in computer-
aided synthesis planning methods.””*> These retrosynthetic
planning methods are either template-based, where novel
synthetic routes are predicted from existing databases of
reactions,”* or template-free, which do not rely on existing
reaction templates and rely on data-driven techniques.””°® The
latter approach has obvious advantages for the prediction of
novel systems, by not relying on prediction based upon existing
knowledge. While these methods are still under development
to reach the sophistication of an experienced human organic
chemist, the equivalent planners for novel material synthesis
are needed.

Materials synthesis is typically far more complex than
organic molecular synthesis, necessitating consideration of the
precursor synthesis and conditions, in addition to the synthesis
of the material itself, and there are limited examples in the
literature for solid-state synthetic reaction route prediction.
The accuracy of data-driven synthetic route prediction
depends on the available synthetic data for the material of
interest, and experimental data availability is highly field-
dependent. In fields where there is a lack of existing synthetic
information, databases of reaction templates can be con-
structed. One way to build these databases is via text-mining of
the scientific literature and patents, which often relies on
natural language processing (NLP) algorithms.’”*’ NLP
methods were recently used to extract syntheses and
macroscopic field trends from published articles concerning
zeolites.”” Here, Jensen et al. were able to successfully use the
extracted synthesis data to elucidate the high-dimensional
relationship between synthesis and product topology via a
framework density prediction model. This work demonstrates
a step toward novel zeolite topology discovery via synthesis
data analysis and possesses a workflow featuring literature
extraction, regression modeling, and structure prediction,
Figure 3. Unfortunately, published synthetic methods are not
consistent and highly variable. Recently, there has been a push
toward establishing ontologies for reporting material synthesis
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Figure 3. Representation of zeolite data engineering: (a) extraction
and combination of synthesis data to (b) model and (c) predict
framework density based upon synthesis route. Several tools were
used for literature extraction, including (i) NLP, (ii) HTML table
parsing, and (jii) compositional ratios from Regular Expressions
(regex). Adapted with permission from ref 67. Copyright 2019
American Chemical Society.

(and properties) that would increase the machine readability of
methods sections.*

Beyond route prediction, experimental conditions such as
temperature, pressure, and solvent directly impact yield and
product identity. Thus, conditions are an indispensable aspect
of route prediction and there have been successful demon-
strations of data-driven og)timization of experimental con-
ditions for given reactions,”” including target reaction proper-
ties, such as reaction yield,ég’70 temperature and chemical
context models,”" and solvent selection.”””* In one material-
specific example, data-driven techniques were used to optimize
reaction conditions for the MOF HKUST-1.® Here, Moosavi et
al. specifically incorporated “failed” experimental data to
decrease bias’* and used genetic algorithms and ML to
optimize synthesis strategies in a generalizable workflow that
was transferable between different inorganic components.

The synthetic routes and proposed optimal experimental
conditions identified via these methods are only as good as the
existing data allow. Verification of the predictions is necessary
for improved performance—this is especially true for
predicting synthetic routes and conditions for novel materials,
and even more challenging. Improvement of these methods is
enabled by a close, synergistic relationship with experiment.
Optimization of synthetic route prediction algorithms could be
achieved in an active learning, closed-loop, experimental-
theoretical process, made efficient by implementation of high-
throughput, autonomous robotic platforms; this is discussed
further in the following sections.

Property prediction. Properties associated with a given
material structure may be obtained either from direct
simulation or via data-driven methods. For the majority of
the properties of inorganic materials, we rely on comparatively
computationally expensive electronic structure calculations.
Advancements in computational hardware, software, and
methods are enabling electronic structure calculations to be
carried out on both larger systems and on larger scales—
increases in system size and number have the potential to
continue to dramatically expand the size of the material space
being explored.

However, the increasing ability to use data-driven
approaches to predict the properties of novel materials is
arguably the biggest “game changer” in the area of property
prediction. Large data sets of material structures and their
properties can be used to train supervised ML models, often
via GPUs (graphics processing units), to predict those
properties. Replacing direct simulation with an ML model
accelerates prediction by orders of magnitude, translating to
orders of magnitude larger material space being explorable,
greatly increasing the potential discovery of novel materials.
While data-driven approaches will allow effectively complete
interpolation of local materials space, there remains danger in
extrapolating the model far from where it has been trained.
But, careful application of the models, for instance in selecting
the next materials to directly test via either experiment or
direct simulation during the exploration process, can reduce
this danger.

The expanded use of data-driven methods is founded upon
the existence of reliable data sets, and these are becoming
increasingly available in the materials field resulting from both
the drive to increase open-source (experimental and computa-
tional) data and the increase in computer power and thus the
ability to conduct large scale generation of computational data
for training data sets. Establishment of protocols for the
reporting of materials properties is also important to ensure
machine-readable formats.” For example, the adsorption file
format is a new standardized file format that is both human-
and machine-readable and was recently proposed for reporting
adsorption data in porous materials.”” Additional recommen-
dations for the standardization and formatting of computa-
tional data have also been suggested;”” this object-oriented
structure would promote the utility of community contribu-
tions. Indeed, standardized reporting formats and data
structures are imperative to the accelerated discovery of
novel compounds because they eliminate the necessary, but
time-intensive, data collation step in computational materials
discovery workflows.

Property prediction facilitated by data-driven methods
undoubtedly has the potential to significantly accelerate the
discovery of novel materials featuring desired properties. One
example is the use of data-driven methods to accelerate the
discovery of hybrid organic—inorganic perovskites (HOIPs).”®
Here, Lu et al. trained an ML model to predict the band gaps
of known perovskites and later apply the model to unexplored
hybrid perovskites, identifying six stable lead-free perovskites,
Figure 4. The property prediction model in this case
circumvented additional, costly band gap calculations that
would otherwise be necessary to assess the performance of the
unexplored materials. However, this is still an example of
materials design, as opposed to novel materials discovery,
which necessitates sampling outside of known material space.

Sampling in Unknown Material Space. At their essence,
novel materials discovery initiatives require improved methods
to sample unknown material space. If one does not know what
this material space even looks like, then it is hard to strategize
the enumeration and exploration of that space. Present
examples of exploration in unknown chemical space in the
literature are sparse and mostly feature molecular systems,
owing to their simple construction and synthetic routes.
Indeed, extrapolation to unknown chemical space gets more
complex as you move from molecules to materials because of
the increased degrees of freedom. In one recent example in the
materials literature, a new multiobjective, regression-based
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Figure 4. (a) Chemical space: A data set of HOIPs was
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accuracy for five cross-validation split of the data. (c) Validation and
implementation: Comparison between ML-predicted and DFT-
calculated results of six selected HOIPs. Reprinted with permission
from ref 78. Copyright 2018 Springer Nature. https://
creativecommons.org/licenses/by/4.0/.

screening process to identify high-performing material
candidates that exist in sparsely populated material space was
presented.”” The basis of this method is the novel loss
functions that enable the model to favor compounds
possessing greater chemical dissimilarity to the original data
set. While this is a screening approach, modifications to this
workflow, wherein generative models are introduced, may
show promise in the discovery of novel materials. Here, we
discuss developments that can allow novel material space to be
accessed through global optimization strategies and generative
ML models.

(i) Global optimization strategies. The utility of global
optimization strategies lies in their efficient exploration of
material space and ability to perform multivariable optimiza-
tion. Ideally, we would want to implement methods to allow

effective exploration of novel materials space. Optimization
approaches include basin hopping methods, quasi-random
search methods, and evolutionary algorithms (EAs). Specifi-
cally, in quasi-random structure search and basin hopping
approaches, existing computational tools can be augmented to
access novel structures. For example, quasi-random structure
search methods have been employed to discover novel crystal
phases,” in an intuitive expansion of CSP. Alternatively, within
an application of the basin hopping method, initial velocities
for molecular dynamics calculations were tuned to encourage
more diverse paths.®'

EAs simulate biological evolution events by implementing
mutation, crossover, and selection in the model®**™** and,
depending on the implementation, have great potential to
explore novel material space; Figure 5 outlines an implemen-
tation of EA for porous organic cage design. However, if the
EA uses a library based on known fragments and no additional
steps where these potentially get modified, then there is no
potential for exploring novel material space. Augmentation of
these optimization methods are necessary to realize their full
utility in novel materials discovery. For example, coupling EAs
with generative ML models for fragment library generation
would enable moving to unknown material space.

(ii) Generative models. Increasing data set size and
availability have propelled the use of data-driven techniques
in sampling unknown chemical space via generative ML
algorithms. In general, these models work by decomposing
materials and associated properties to a continuous vector
representation. This latent space, learned from the training
data, is then sampled to generate new chemical systems, or you
can train models to generate data that are similar to the
training data. While powerful, these models are often prone to
generating invalid chemical motifs and are limited by the
diversity of the initial training data set. Types of generative
models include variational autoencoders (VAEs) and gen-
erative adversarial networks (GANs). VAEs encode materials
(via a neural network) to a latent space, where properties are
represented as probabilistic distributions. The latent space is
sampled and processed by a decoder (neural network) to yield
novel candidates and compositions, Figure 6. Conversely,
GAN s identify subtle trends and patterns in training data and
exploit these learned patterns to generate artificial data that is
similar to the training data set; this is accomplished by
concurrently training two neural networks, (i) a discriminator,
which determines the validity of the generated data, and (ii) a
generator, which generates new data points from noise. Beyond
VAEs and GANs, we have previously generated new molecules
with target optoelectronic properties using a recurrent neural
network, trained to produce SMILES strings of organic
molecules, in conjunction with transfer learning.”> While
generative methods have seen some success in the
literature,">*” utility is limited by their ability to generate
chemically feasible and unique (novel) structures.

As with global optimization methods, generative models are
trained on existing materials, which inherently restricts their
ability to sample unknown chemical space. However, some
techniques have been presented to avoid overfitting, which
promotes novelty in the ensuing predictions.”** For example,
enhanced novelty was achieved for small molecules via a
recurrent neural network-based autoencoder trained to
reconstruct molecular representations;89 Bilsland et al. further
demonstrate that novelty is improved by purposefully
incorporating invalid and known, undesirable SMILES into
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network). Reproduced from ref 87 with permission from the Royal
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the model. In an alternative approach to mitigate bias by
including “negative” examples, a VAE was recently used to
generate a large, diverse, synthetic data set of balanced
chemical reactions for subsequent ML training models.”’ Using
this technique, 7,000,000 novel reactions were generated from
a model trained on only 7,000; indeed, the generated reactions
feature a more diverse set of molecules than was present in the
training set. It is important to note that within the context of
generative models, “novelty” refers to whether a generated
structure is present in the training data set—not whether the
generated structure is truly known. Thus, to assess the true
“novelty” of a candidate with respect to known chemical space,
similarity metrics comparing candidates to material systems
outside the training set must be implemented. Indeed, progress
in model development and materials representations will fuel
progress across materials discovery. In a recent example, a
GAN was trained on full material representations consisting of
atomic and energetic information on known zeolites and used
to generate crystalline porous materials. Through additional
parameters, users are able to tune the target property of the
generated structure within a desired range.91 Yet, the GAN
presented in this study is still problematic with respect to
“novelty” because it is trained specifically to generate tensors
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similar to those it was trained on. This is novelty within the
zeolite material class in its own right (constrained novelty).

While model and representation selection is a problem-
specific task, methods may be linked with material
representation. For example, reticular materials, which are
constructed from molecular building blocks, benefit from
molecular discovery advancements since they may be treated
as fragrnents in EAs**”*” or readily encoded to a latent
space.”” A VAE was recently used to generate reticular
materials trained on supramolecular species;94 here, notably,
the designed material search space encoded to the latent space
was constructed to exclude new topologies as a way to
promote experimental realizability. With necessary advance-
ments to structure and energetic stability prediction, as well as
synthesis route prediction, these precautions may not be
necessary and exploration beyond known material space may
be promoted. Table S1 summarizes the presented examples of
materials discovery.

While an integral part of theory-driven computational
materials discovery, it is not enough to predict novel motifs.
They must also be realizable. There are three major metrics
that must be used to assess the viability of novel structures
obtained from sampling unknown chemical space: (i) structure
feasibility, the structure must reasonably follow known
chemical rules, (ii) formation energy, a valuable indicator of
material stability, and (iii) realizability, we must be able to
experimentally synthesize the predicted material.”> The
recognized need to quantify these metrics has resulted in a
series of published, predictive models, including MatLearn,” a
web-based predictive formation energy model specifically
designed for utility by noncomputationalists to guide discovery
initiatives toward regions of chemical space exhibiting higher
degrees of thermodynamic accessibility. This approach is
specific to inorganic compounds, yet we can envision a logical
extension to other material classes. The necessary predictive
models for assessing novel structure validity motivate close
communication between experiment and theory to improve
accuracy of realizability metrics.
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Close Synergy of Experiment and Theory. These are
exciting times both for experimental materials discovery, with
the increasing usability and decreasing cost of automation
platforms and robotics enabling larger scale screening, and for
computation, with data-driven approaches accelerating prop-
erty prediction and opening new exploration avenues. We
would suggest that these methods can be used most powerfully
when combined rather than in isolation.”” While issues with
the experimental realization of computational predictions
remain, one might also imagine approaches attempting to
explore as wide a material space as possible on an automation
platform, and only when a preliminary “hit” of a material is
found experimentally will the material’s properties be
predicted. Thereafter, only the most promising materials will
be fully characterized in the laboratory. An increasing number
of experimental chemists and materials scientists have a high
degree of computational literacy, including coding, which is
often necessary for interfacing with automated platforms, as
well as processing and analyzing large quantities of data
autonomously. This allows smooth transitions between
different tasks for the close synergy of experiment and theory,
in addition to building trust on both sides—a key point
highlighted earlier in this perspective.

While computation can guide the search space for high-
throughput experimental screening,”® screening can also
generate larger data sets for ML, where there can be more
certainty on the consistency of the synthesis and measurement
procedure. These data will be invaluable for both property
prediction and synthesis route and condition prediction. It is
not trivial to automate the majority of material synthesis or
characterization tasks. Indeed, for many tasks it is implausible
that this will ever be possible, specifically cases where large-
scale, expensive characterization hardware is required.
Automation platforms are typically setup for a specific
project/workflow and are arguably best tasked to optimize a
known phase space. For example, which combination of
components optimizes a property, rather than be able to truly
explore material space. The latter is an inherent limitation
based on availability and automated provision of chemical
starting materials to the robotic platform, in addition to the
work required to setup, test, and validate the platform. While
this process has recently been fully realized for inorganic
supramolecular systems,”” photocatalyst mixtures,”® and
organic synthesis,”” it is not necessarily feasible for all other
systems owing to more complex synthetic procedures, delicate
experimental steps, etc. Ultimately, this means that with high-
throughput experimentation alone, it is unlikely that novel
materials architectures will be discovered. Next, we discuss
methods to strengthen communication between experiment
and theory: (i) reinforcement learning techniques and (ii)
closed-loop discovery workflows.

(i) Reinforcement learning. The necessary synergy of
experiment and theory may be best facilitated by data-driven
tools, such as reinforcement learning techniques, which benefit
from a reward-based feedback loop with a ML model directing
the next experimental action/selection. These models, which
do not require large amounts of initial data, are ultimately
concerned with what to do next considering the current
knowledge. The ensuing cycle rewards positive behaviors and
punishes negative behaviors to achieve an optimal solution.
Within the context of materials discovery, decisions leading to
experimental “hits” are positive behaviors, while experimental
“failures” are negative behaviors. This type of exploratory tool
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is especially useful to explore large materials spaces”'% or

optimize chemical reactions,'’’ demonstrating its utility and
potential integration at multiple levels of the discovery process.
Specifically within the context of novel materials discovery,
these tools have been used to identify optimal defect
configurations in 2D materials,"®> as well as phase diagram
construction.'”

Reinforcement learning is positioned to strengthen the
synergistic relationship between experiment and theory that is
necessary for novel materials discovery. The development of
robust, predictive computational models relies on theory’s
ability to adequately replicate/represent reality—this is
inherently a feedback loop problem that would benefit from
constant rewards-based communication with experiment.
Thus, reinforcement learning often is the backbone of
closed-loop, experiment-theory discovery processes.

(ii) Closed-loop discovery. Closed-loop discovery is a
seamless example of the close integration of experiment and
theory. In such discovery processes, an initial set of
experiments is tested on an automated platform, followed by
automated analysis of the outcome (for our purposes the
materials’ properties) and subsequent use of an optimization
algorithm to select the next set of experiments, Figure 7, with
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Figure 7. A closed-loop materials discovery workflow consists of four
major parts, where ML-driven suggestions are fed into an automated
experimental platform for subsequent synthesis, characterization, and
measurement.

the goal of improving material performance. This process is
then iterated until the convergence criteria are met in a
workflow suited to active learning algorithms. Active learning
algorithms identify the next set of experiments based on
regions of space that are poorly understood; the model is
improved in an iterative process. Recently, a form of active
learning autonomously directed real-time X-ray diffraction
measurement experiments toward discovering novel phase-
change memory materials.'>* Here, promising next candidates
to measure were selected from a materials database featuring
both experimental and computational data using a physics-
informed active learning model. As presented, this is an
optimization problem. However, with intuitive expansions to
this workflow, such as autonomous synthesis and generative
models, materials discovery may be realized.

The selection of algorithm and implementation in closed-
loop discovery will be key to exploring more novel material
space. First, the initial set of experiments can be selected by an
algorithm so as to cover the most chemically diverse materials
within the possible options. Then, the algorithm that selects
the next set of experiments to conduct generally has two tasks,
to (i) build a model that predicts the property of a material and
(ii) seek to optimize the property of new materials tested. In
particular, Bayesian optimization is frequently used. This
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technique is a global optimization strategy promoting directed
search to optimize an unknown function, in our case a material
property. This is accomplished via a surrogate model that
predicts a materials property as a function of its position in
material space. Candidate selection is directed by a function
that seeks a balance of exploitation, improving the material
performance, and exploration, ensuring effective global
optimization is achieved rather than just optimizing the local
search space.'”> By modifying the hyperparameters, the degree
of exploitation vs exploration can be shifted so as to favor
exploration, which has a greater potential to return novel
structures.

A recent example of closed-loop discovery via an automated
robotic platform comes from Burger et al, where they
developed a mobile robot to test photocatalysts for hydrogen
production from water.”® The robot performed 688 experi-
ments over 8 days to explore a ten-variable search space,
achieving six times more active formulations than those tested
in the first step through via Bayesian optimization. This is
extremely impressive, although it initially takes a significant
amount of time to set up the mobile chemist to perform the
necessary tasks; it is adaptable to other types of tasks and
would be more adaptable than a single automated platform.
The difficulties in using these approaches for global materials
space exploration, mentioned above, remain.

B CONCLUSIONS AND OUTLOOK

It is a challenge to truly achieve novel materials discovery rather
than exploring local regions of material space. Yet, this does
not detract from the fact that both materials design and
identification approaches have significantly accelerated theory-
driven materials development by identifying promising
candidates. Novel materials discovery is an understandably
challenging task; this is further compounded by the fact that it
is unclear whether known laws persist in unknown materials
space—for example, consider hydrocarbons with extraordi-
narily long C—C bonds. Conventional chemical rules dictate a
C—C bond is 1.54 A, yet compounds exhibiting increasingly
longer C—C bonds have been presented,'°*'"” with the record
being 1.93 A.'” Since theory is derived from our existing
understanding of chemical behavior, it is incredibly challenging
to computationally explore outside beyond this and still
maintain some degree of chemical feasibility. Should the
record-holding C—C bond compound have been computa-
tionally predicted first, it would likely have been met by
skepticism. Perhaps through a close, synergistic relationship
between experiment and theory, we may eventually be able to
construct models that allow us to predict truly novel materials
of this nature with confidence that they can be experimentally
realized.

In order to reach unknown materials space, we must start
with what is known, and while quantifying the size of a
chemical space is useful, there are far more materials thought
to be stable than atoms in the solar system. Presently, we have
the tools to enumerate known chemical space, as we know it—
and we are just beginning to see the emergence of tools to
efficiently search this vast space. These developments,
including data-driven techniques, high-throughput computa-
tional and experimental techniques, and robotic systems, could
significantly decrease the materials discovery time. While the
advances made in these areas are of significant note, there is
still room for optimization and improvement of both

theoretical and experimental methods and protocols. Indeed,
the dream of a generalized, fully automated materials synthesis
robotic platform has yet to be realized, in part because of the
complexity of materials synthetic protocols; more novel
materials may require more complex synthesis routes that are
not presently available at automated platform scale.

Ultimately, efforts in materials discovery initiatives must be
focused on improving several areas: (i) high-throughput
experimental materials synthesis platforms, (ii) increasing the
efficiency of solid-state material property calculation, (iii)
synthetic accessibility scores and synthetic route predictions,
and (iv) improved methods for exploring beyond known
chemical space. Accomplishing many of these tasks will require
dedicated teamwork between experimental and computational
scientists. This relies heavily on trust between the two
communities and is necessary to develop robust predictive
computational models, moving the field into a new era of novel
materials discovery.
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