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Abstract

Topological surgery is a mathematical technique used for creating new manifolds out of

known ones. We observe that it occurs in natural phenomena where a sphere of dimension

0 or 1 is selected, forces are applied and the manifold in which they occur changes type. For

example, 1-dimensional surgery happens during chromosomal crossover, DNA recombina-

tion and when cosmic magnetic lines reconnect, while 2-dimensional surgery happens in

the formation of tornadoes, in the phenomenon of Falaco solitons, in drop coalescence and

in the cell mitosis. Inspired by such phenomena, we introduce new theoretical concepts

which enhance topological surgery with the observed forces and dynamics. To do this, we

first extend the formal definition to a continuous process caused by local forces. Next, for

modeling phenomena which do not happen on arcs or surfaces but are 2-dimensional or 3-

dimensional, we fill in the interior space by defining the notion of solid topological surgery.

We further introduce the notion of embedded surgery in S3 for modeling phenomena which

involve more intrinsically the ambient space, such as the appearance of knotting in DNA and

phenomena where the causes and effect of the process lies beyond the initial manifold,

such as the formation of black holes. Finally, we connect these new theoretical concepts

with a dynamical system and we present it as a model for both 2-dimensional 0-surgery and

natural phenomena exhibiting a ‘hole drilling’ behavior. We hope that through this study,

topology and dynamics of many natural phenomena, as well as topological surgery itself,

will be better understood.

1 Introduction

People who wish to analyze nature without using mathematics must settle for a reduced
understanding.

Richard P. Feynman

Topological surgery is a mathematical technique used for changing the homeomorphism type,

or simply the shape, of a manifold, which is a ‘nice’ topological space. This technique creates

new manifolds out of known ones. For example, all orientable surfaces may arise from the
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2-dimensional sphere using surgery. Topological surgery can happen in any dimensions, but

they all share the same features. An n-dimensional topological surgery on an n-manifold M is,

roughly, the topological procedure whereby an appropriate n-manifold with boundary is

removed from M and is replaced by another n-manifold with the same boundary, using a ‘glu-

ing’ homeomorphism along the common boundary, thus creating a new n-manifold χ(M).

The mathematical notions needed for understanding the definition of surgery can be found in

Section 2. References to illustrations of examples of 1- and 2-dimensional surgery can be

found in Sections 3.1, 3.2 and 3.3.

In this paper we observe that topological surgery is exhibited in nature in numerous, diverse

processes of various scales for ensuring new results. Surgery in nature is usually performed on

basic manifolds with or without boundary, that undergo merging and recoupling. Such pro-

cesses are initiated by attracting forces acting on a sphere of dimension 0 (that is, two points)

or 1 (that is, a circle). A large part of this work is dedicated to setting the topological ground

for modeling such phenomena in dimensions 1, 2 and 3. Namely, we introduce new theoretical

concepts which are better adapted to the phenomena and which enhance the formal definition

of surgery. This work extends significantly the preliminary results and early ideas presented in

[1], [2] and [3]. With our enhanced definitions of topological surgery in hand, we pin down

several physical phenomena undergoing surgery. Furthermore, we present a dynamical system

that performs a specific type of surgery. More precisely, the new concepts are:

• The introduction of forces: A sphere of dimension 0 or 1 is selected in space and attract-

ing forces act on it. These dynamics explain the intermediate steps of the formal definition of

surgery and extend it to a continuous process caused by local forces. Note that these intermedi-

ate steps can also be explained by Morse theory but this approach does not involve the forces.

On the other hand, the theoretical forces that we introduce are also observed in the phenom-

ena exhibiting surgery. For example, in dimension 1, during chromosomal crossover the

pairing is caused by mutual attraction of the parts of the chromosomes that are similar or

homologous, as detailed and illustrated in Section 4.1. In dimension 2, the creation of torna-

does is caused by attracting forces between the cloud and the earth (as detailed and illustrated

in Section 5.3), while soap bubble splitting is caused by the surface tension of each bubble

which acts as an attracting force (this is discussed and illustrated in Section 5).

• Solid surgery: The interior of the initial manifold is now filled in. For example, in dimen-

sion 1 this allows to model phenomena happening on surfaces such as the merging of oil slicks.

An oil slick is seen as a disc, which is a continuum of concentric circles together with the cen-

ter. An example in dimension 2 is the process of mitosis, whereby a cell splits into two new

cells (this is discussed and illustrated in Section 5.4). The cell is seen as a 3-ball, that is, a con-

tinuum of concentric spheres together with the central point. Other examples comprise the

formation of waterspouts where we see the formation of the tornado’s cylindrical ‘cork’ (as

described and illustrated in Section 5.3) and the creation of Falaco solitons where the creation

of two discs joined with an ‘invisible’ thread is taking place in a water pool (as detailed and

illustrated in Section 5.3).

• Embedded surgery: All phenomena exhibiting surgery take place in the ambient 3-space.

For this reason we introduce the notion of embedded 1- or 2-dimensional surgery, which

is taking place on an embedding of the initial manifold in 3-space, instead of happening

abstractly. The ambient 3-space leaves room for the initial manifold to assume a more compli-

cated configuration and allows the complementary space of the initial manifold to participate

actively in the process. For example, in dimension 1 during DNA recombination, the initial

DNA molecule which is recombined can also be knotted (see description and illustration in

Section 4.1). In other words, the initial 1-manifold can be a knot (an embedding of the circle)

instead of an abstract circle. Examples in dimension 2 comprise the processes of tornado and
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black hole formation (see Section 5.3 and illustration therein), which are not confined to the

initial manifold, and topological surgery is causing (or is caused by) a change in the whole

space.

• Connection between 1- and 2-dimensional surgeries: As we explain then, the appear-

ance of forces, enhanced with the notions of solid 1- and 2-dimensional surgery, can be all

connected via appropriate (planar, spherical or toroidal) cross-sections. In fact all the above

culminate to the notion of embedded solid 2-dimensional surgery and can be derived from

there.

• Connection with a dynamical system: Finally, we establish a connection between these

new notions applied on 2-dimensional topological surgery and the dynamical system pre-

sented in [4]. We analyze how, with a slight perturbation of parameters, trajectories pass from

spherical to toroidal shape through a ‘hole drilling’ process. We show that our new topological

notions are verified by both the local behavior of the steady state points of the system and the

numerical simulations of its trajectories. This result gives us on the one hand a mathematical

model for 2-dimensional surgery and on the other hand a system that can model natural phe-

nomena exhibiting these types of surgeries.

The paper is organized as follows: In Section 2 we recall the topological notions that will be

used and provide specific examples that will be of great help to readers that are not familiar

with these mathematical notions. In Section 3, we present and discuss the formal definition of

topological surgery. In Section 4, we introduce dynamics to 1-dimensional surgery, we define

solid 1-dimensional surgery and we discuss 1-dimensional natural processes exhibiting these

types of surgeries. In Section 5 we extend these definitions to 2-dimensional surgery and dis-

cuss related 2-dimensional natural processes. We then use these new theoretical concepts in

Section 6 to pin down the relations among topological surgeries of different dimensions. As all

natural phenomena exhibiting surgery (1 or 2-dimensional, solid or usual) take place in the

ambient 3-space, in Section 7 we present the 3-sphere S3 and the duality of its descriptions.

This allows us to define in Section 8 the notion of embedded surgery. Finally, our connection

of solid 2-dimensional surgery with a dynamical system is established in Section 9.

2 Useful mathematical notions

In this section we introduce basic notions related to topological surgery. Reader that are famil-

iar with the formalism of the topic can directly move to the formal definition in Section 3.

2.1 Manifolds

• An n-manifold with boundary is a ‘nice’ topological space with the property that each point

in it has a neighborhood topologically equivalent to the usual n-dimensional Euclidean

spaceRn. In other words an n-manifold resembles locally Rn.

• Similarly, an n-manifold with boundary is ‘nice’ topological space with the property that each

point in it has a neighborhood topologically equivalent either to Rn (if the point lies in the

interior) or Rnþ (if the point lies on the boundary).

2.2 Homeomorphisms

In Section 2.1 by ‘topologically equivalent’ we mean the following: two n-manifolds X and Y
are homeomorphic or topologically equivalent if there exists a homeomorphism between them,

namely a function f: X! Ywith the properties that:
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• f is continuous

• There exists the inverse function f−1: Y! X (equivalently f is 1-1 and onto)

• f−1 is also continuous

Intuitively the homeomorphism f is an elastic deformation of the space X to the space Y,

not involving any self-intersections or any ‘cutting’ and ‘regluing’ (see also Appendix A).

2.3 Properties of manifolds

An n-manifold, M, is said to be:

• connected if it consists of only one piece,

• compact if it can be enclosed in some k-dimensional ball,

• orientable if any oriented frame that moves along any closed path in M returns to a position

that can be transformed to the initial one by a rotation.

The above notions are more rigorously defined in Appendix A.

2.4 n-spheres and n-balls

In each dimension the basic connected, oriented, compact n-manifold without boundary is

the n-sphere, Sn. Also, the basic connected, oriented n-manifold with boundary is the n-ball,

Dn. The boundary of a n-dimensional ball is a n − 1−dimensional sphere, @Dn = Sn−1, n>= 1.

In Fig 1, this relation is shown for n = 1, 2 and 3. As shown in Fig 1(1), the space S0 is the dis-

joint union of two points. By convention, we consider these two one-point spaces to be {+1}

and {−1}: S0 = {+1}
‘

{−1}.

Besides the relation of Sn with Dn+1 described above, the n-sphere Sn is also intrinsically

related to the Euclidian space Rn via the notion of compactification.

2.5 The compactification ofRn

Compactification is the process of making a topological space into a compact space. For each

dimension n, the spaceRn with all points at infinity compactified to one single point is homeo-

morphic to Sn. So, Sn is also called the one-point compactification ofRn. Conversely, a sphere Sn

can be decompactified to the spaceRn by the so-called stereographic projection. For example, for

n = 1 we have that the circle S1 is the one-point compactification of the real lineR1, see Fig 2(1),

while for n = 2 the sphere S2 is the one-point compactification of the planeR2, see Fig 2(2). The

compactification ofR3 is discussed and illustrated in Section 7.1.1 (see Appendix A for details

on the one-point compactification ofRn).

2.6 Product spaces

The product space of two manifolds X and Y is the manifold made from their Cartesian product

X × Y (see also Appendix A). If X, Y are manifolds with boundary, the boundary of product

space X × Y is @(X × Y) = (@X × Y) [ (X × @Y).

For example the next common connected, oriented, compact 2-manifold without boundary

after S2 is the torus, which can be perceived as the boundary of a doughnut, and it is the prod-

uct space S1 × S1. Analogously, a solid torus, which can be perceived as a whole doughnut, is
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the product space S1 ×D2. A solid torus is a 3-manifold with boundary a torus:

@ðS1 � D2Þ ¼ S1 � @D2 ¼ S1 � S1

Other product spaces that we will be using here are: the cylinder S1 ×D1 or D1 × S1 (see

Fig 3), the solid cylinder D2 ×D1 which is homeomorphic to the 3-ball and the spaces of the

type S0 ×Dn, which are the disjoint unions of two n-balls Dn
‘
Dn.

All the above examples of product spaces that are of the form Sp ×Dq can be viewed as q-

thickenings of the p-sphere. For example the 2-thickening of S0 comprises two discs, while the

3-thickening of S0 comprises two 3-balls. It is also worth noting that the product spaces Sp × Dq

and Dp+1 × Sq−1 have the same boundary: @(Sp × Dq) = @(Dp+1 × Sq−1) = Sp × Sq−1(?).

2.7 Embeddings

• An embedding of an n-manifold Nn in an m-manifoldMm is a map f: N ,!M such that its

restriction on the image f(N) is a homeomorphism between N and f(N). The notion of

embedding allows to view spaces inside specific manifolds instead of abstractly. Embeddings

even of simple manifolds can be very complex. For example, the embeddings of the circle S1

in the 3-space R3 are the well-known knots whose topological classification is still an open

problem of low-dimensional topology.

Fig 1. (1) A segment D1 is bounded by two points S0 (2) A disc D2 is bounded by a circle S1 (3) A 3-ball

D3 is bounded by a sphere S2.

https://doi.org/10.1371/journal.pone.0183993.g001
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• An embedding of a submanifold Nn ,!Mm is framed if it extends to an embedding

Nn ×Dm−n ,!M.

• A framed n-embedding in M is an embedding of the (m − n)-thickening of the n-sphere,

h: Sn × Dm−n ,!M, with core n-embedding e = h|: Sn = Sn × {0} ,!M. For example, the

framed 1-embeddings in R3 comprise embedded solid tori in the 3-space with core

1-embeddings being knots.

• Let X, Y be two n-manifolds with homeomorphic boundaries @X and @Y (which are (n − 1)

−manifolds). Let also h denote a homeomorphism h: @X! @Y. Then, from X [ Y one can

create a new n-manifold without boundary by ‘gluing’ X and Y along their boundaries. The

Fig 2. (1) S1 ontoR1 (2) S2 ontoR2.

https://doi.org/10.1371/journal.pone.0183993.g002

Fig 3. Two ways of viewing a cylinder.

https://doi.org/10.1371/journal.pone.0183993.g003
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gluing is realized by identifying each point x 2 @X to the point h(x) 2 @Y. The map h is called

gluing homeomorphsim, see Appendix A. One important example is the gluing of two n-discs

along their common boundary which gives rise to the n-sphere, see Fig 4 for n = 1, 2. For

n = 3, the gluing of two 3-balls yielding the 3-sphere S3 is illustrated and discussed in Section

7.1.2. Another interesting example is the gluing of solid tori which also yield the 3-sphere.

This is illustrated and discussed in Section 7.1.3.

As we will see in next section, the notions of embedding and gluing homeomorphism together

with property (?) described in 2.6 are the key ingredients needed to define topological surgery.

It is roughly the procedure of removing an embedding of Sp ×Dq and gluing back Dp+1 × Sq−1

along their common boundary.

3 The formal definition of surgery

We recall the following well-known definition of surgery:

Definition 1 An m-dimensional n-surgery is the topological procedure of creating a

new m-manifoldM0 out of a given m-manifold M by removing a framed n-embedding

h: Sn × Dm−n,!M, and replacing it with Dn+1 × Sm−n−1, using the ‘gluing’ homeomorphism h
along the common boundary Sn × Sm−n−1. Namely, and denoting surgery by χ:

M0 ¼ wðMÞ ¼ M n hðSn � Dm� nÞ[hjSn�Sm� n� 1
ðDnþ1 � Sm� n� 1Þ:

The symbol ‘χ’ of surgery comes from the Greek word ‘w�irourgik��’ (cheirourgiki) whose

term ‘cheir’ means hand. Note that from the definition, we must have n + 1�m. Also, the hor-

izontal bar in the above formula indicates the topological closure of the set underneath.

Further, the dual m-dimensional (m − n − 1)-surgery on M0 removes a dual framed

(m − n − 1)-embedding g: Dn+1 × Sm−n−1 ,!M0 such that gjSn�Sm� n� 1 ¼ h� 1jSn�Sm� n� 1 , and

replaces it with Sn ×Dm−n, using the ‘gluing’ homeomorphism g (or h−1) along the common

boundary Sn × Sm−n−1. That is:

M ¼ w� 1ðM0Þ ¼ M0 n gðDnþ1 � Sm� n� 1Þ[h� 1 jSn�Sm� n� 1
ðSn � Dm� nÞ:

Note that resulting manifold χ(M) may or may not be homeomorphic to M. From the above

definition, it follows that M = χ−1(χ(M)). Preliminary definitions behind the definitions of sur-

gery such as topological spaces, homeomorphisms, embeddings and other related notions are

Fig 4. (1) D1 [h D1 = S1 (2) D2 [h D2 = S2.

https://doi.org/10.1371/journal.pone.0183993.g004
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provided in Section 2 and Appendix A. For further reading, excellent references on the subject

are [5–7]. We shall now apply the above definition to dimensions 1 and 2.

3.1 1-dimensional 0-surgery

We only have one kind of surgery on a 1-manifold M, the 1-dimensional 0-surgerywhere m = 1

and n = 0:

M0 ¼ wðMÞ ¼ M n hðS0 � D1Þ[hjS0�S0
D1 � S0:

The above definition means that two segments S0 × D1 are removed from M and they are

replaced by two different segments D1 × S0 by reconnecting the four boundary points

S0 × S0 in a different way. In Figs 5(a) and 6(a), S0 × S0 = {1, 2, 3, 4}. As one possibility, if

we start with M = S1 and use as h the standard (identity) embedding denoted with hs, we

obtain two circles S1 × S0. Namely, denoting by 1 the identity homeomorphism, we have

hs : S0 � D1 ¼ D1
‘
D1 1

‘
1

�! S0 � D1,!M, see Fig 5(a). However, we can also obtain one

circle S1 if h is an embedding ht that reverses the orientation of one of the two arcs of

S0 × D1. Then in the substitution, joining endpoints 1 to 3 and 2 to 4, the two new arcs

undergo a half-twist, see Fig 6(a). More specifically, if we take D1 = [−1, +1] and

define the homeomorphism ω: D1! D1;t! −t, the embedding used in Fig 6(a) is

ht : S0 � D1 ¼ D1
‘
D1 1

‘
o

�! S0 � D1,!M which rotates one D1 by 180˚. The difference

between the embeddings hs and ht of S0 × D1 can be clearly seen by comparing the four

boundary points 1, 2, 3 and 4 in Figs 5(a) and 6(a).

Fig 5. Formal (a) 1-dimensional 0-surgery (b1) 2-dimensional 0-surgery and (b2) 2-dimensional 1-surgery using the

standard embedding hs.

https://doi.org/10.1371/journal.pone.0183993.g005
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Note that in dimension one, the dual case is also an 1-dimensional 0-surgery. For example,

looking at the reverse process of Fig 5(a), we start with two circles M0 = S1
‘
S1 and, if each

segment of D1 × S0 is embedded in a different circle, the result of the (dual) 1-dimensional

0-surgery is one circle: χ−1(M0) = M = S1.

3.2 2-dimensional 0-surgery

Starting with a 2-manifold M, there are two types of surgery. One type is the 2-dimensional
0-surgery, whereby two discs S0 ×D2 are removed fromM and are replaced in the closure of the

remaining manifold by a cylinder D1 × S1, which gets attached via a homeomorphism along the

common boundary S0 × S1 comprising two copies of S1. The gluing homeomorphism of the

common boundary may twist one or both copies of S1. ForM = S2 the above operation changes

its homeomorphism type from the 2-sphere to that of the torus. View Fig 5(b1) for the standard

embedding hs and Fig 6(b1) for a twisting embedding ht. For example, the homeomorphism μ:

D2! D2; (t1, t2)! (−t1, −t2) induces the 2-dimensional analogue ht of the embedding defined

in the previous example, namely: ht : S0 � D2 ¼ D2
‘
D2 1

‘
m

�! S0 � D2,!M which rotates one

D2 by 180˚. When, now, the cylinder D1 × S1 is glued along the common boundary S0 × S1, the

twisting of this boundary induces the twisting of the cylinder, see Fig 6(b1).

3.3 2-dimensional 1-surgery

The other possibility of 2-dimensional surgery on M is the 2-dimensional 1-surgery: here a cyl-

inder (or annulus) S1 × D1 is removed from M and is replaced in the closure of the remaining

Fig 6. Formal (a) 1-dimensional 0-surgery (b1) 2-dimensional 0-surgery and (b2) 2-dimensional 1-surgery using a twisting

embedding ht.

https://doi.org/10.1371/journal.pone.0183993.g006
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manifold by two discs D2 × S0 attached along the common boundary S1 × S0. For M = S2

the result is two copies of S2, see Fig 5(b2) for the standard embedding hs. Fig 6(b2) illustrates

a twisting embedding ht, where a twisted cylinder is being removed. In that case, taking

D1 = {h: h 2 [−1, 1]} and homeomorphism z:

z : S1 � D1 ! S1 � D1;

z : ðt1; t2; hÞ ! ðt1 cos
ð1 � hÞp

2
� t2 sin

ð1 � hÞp
2

; t1 sin
ð1 � hÞp

2
þ t2 cos

ð1 � hÞp
2

; hÞ

the embedding ht is defined as: ht : S1 � D1!
z S1 � D1,!M. This operation corresponds to fix-

ing the circle S1 bounding the top of the cylinder S1 ×D1, rotating the circle S1 bounding the

bottom of the cylinder by 180˚ and letting the rotation propagate from bottom to top. This

twisting of the cylinder can be seen by comparing the second instance of Fig 5(b2) with the sec-

ond instance of Fig 6(b2), but also by comparing the third instance of Fig 5(b1) with the third

instance of Fig 6(b1).

It follows from Definition 1 that a dual 2-dimensional 0-surgery is a 2-dimensional 1-sur-

gery and vice versa. Hence, Fig 5(b1) shows that a 2-dimensional 0-surgery on a sphere is the

reverse process of a 2-dimensional 1-surgery on a torus. Similarly, as illustrated in Fig 5(b2), a

2-dimensional 1-surgery on a sphere is the reverse process of a 2-dimensional 0-surgery on

two spheres. In the figure the symbol$ depicts surgeries from left to right and their corre-

sponding dual surgeries from right to left.

4 1-dimensional topological surgery

1-dimensional 0-surgery happens in nature, in various scales, in phenomena where 1-dimen-

sional splicing and reconnection occurs. For example, it happens on chromosomes during

meiosis and produces new combinations of genes (see Fig 7), in site-specific DNA recombina-

tion (see Fig 8) whereby nature alters the genetic code of an organism, either by moving a

block of DNA to another position on the molecule or by integrating a block of alien DNA into

a host genome (see [8]), in magnetic reconnection, the phenomenon whereby cosmic

Fig 7. Crossing over of chromosomes during meiosis.

https://doi.org/10.1371/journal.pone.0183993.g007

Fig 8. DNA recombination.

https://doi.org/10.1371/journal.pone.0183993.g008
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magnetic field lines from different magnetic domains are spliced to one another, changing

their patterns of connectivity with respect to the sources (see Fig 9 from [9]) and in the recon-

nection of vortices in classical and quantum fluids (see [10]).

In this section we introduce dynamics which explains the process of 1-dimensional surgery,

define the notion of solid 1-dimensional surgery and examine in more details the aforemen-

tioned natural phenomena.

4.1 Introducing dynamics

The formal definition of 1-dimensional 0-surgery gives a static description of the initial and

the final stage whereas natural phenomena exhibiting 1-dimensional 0-surgery follow a con-

tinuous process. In order to address such phenomena or to understand how 1-dimensional

0-surgery happens, we need a non-static description.

Furthermore, in nature, 1-dimensional 0-surgery often happens locally, on arcs or seg-

ments. That is, the initial manifold is often bigger and we remove from its interior two seg-

ments S0 ×D1. Therefore, we also need dynamics that act locally.

In Fig 10, we introduce dynamics which explain the intermediate steps of the formal defini-

tion and extend surgery to a continuous process caused by local forces. The process starts with

the two points specified on the manifold (in red), on which attracting forces are applied (in

blue). We assume that these forces are created by an attracting center (also in blue). Then, the

two segments S0 ×D1, which are neighborhoods of the two points, get close to one another.

When the specified points (or centers) of two segments reach the attracting center, they touch

and recoupling takes place giving rise to the two final segments D1 × S0, which split apart. As

mentioned in previous section, we have two cases (a) and (b), depending on the homemorph-

ism h.

Fig 9. The reconnection of cosmic magnetic lines.

https://doi.org/10.1371/journal.pone.0183993.g009

Fig 10. Introducing dynamics to 1-dimensional surgery.

https://doi.org/10.1371/journal.pone.0183993.g010

Extending topological surgery to natural processes and dynamical systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0183993 September 15, 2017 11 / 42

https://doi.org/10.1371/journal.pone.0183993.g009
https://doi.org/10.1371/journal.pone.0183993.g010
https://doi.org/10.1371/journal.pone.0183993


As mentioned in Section 3.1, the dual case is also a 1-dimensional 0-surgery as it removes

segments D1 × S0 and replace them by segments S0 ×D1. This is the reverse process which

starts from the end and is illustrated in Fig 10 as a result of the orange forces and attracting

center which are applied on the ‘complementary’ points.

Remark 1 It is worth mentioning that the intermediate steps of surgery presented in Fig 10

can also be viewed in the context of Morse theory [11]. By using the local form of a Morse

function, we can visualize the process of surgery by varying parameter t of equation x2 − y2 = t.
For t = −1 it is the hyperbola shown in the second instance of Fig 10 where the two segments

get close to one another. For t = 0 it is the two straight lines where the reconnection takes place

as shown in the third instance of Fig 10 while for t = 1 it represents the hyperbola of the two

final segments shown in case (a) of the fourth instance of Fig 10. This sequence can be general-

ized for higher dimensional surgeries as well, however, in this paper we will not use this

approach as we are focusing on the introduction of forces and of the attracting center.

These local dynamics produce different manifolds depending on where the initial neighbor-

hoods are embedded. Taking the known case of the standard embedding hs and M = S1, we

obtain S1 × S0 (for both regular and dual surgery), see Fig 11(a). Furthermore, as shown in

Fig 11(b), we also obtain S1 × S0 even if the attracting center is outside S1. Note that these out-

comes are not different than the ones shown in formal surgery (recall Fig 5(a)) but we can now

see the intermediate instances.

4.2 Explaining 1-dimensional phenomena via dynamics

Looking closer at the aforementioned phenomena, the described dynamics and attracting

forces are present in all cases. Namely, magnetic reconnection (Fig 9) corresponds to a dual

1-dimensional 0-surgery (see Fig 10(b)) where g: D1 × S0 ,!M0 is a dual embedding of the

twisting homeomorphism ht defined in Section 3.1 of Section 3. The tubes are viewed as seg-

ments and correspond to an initial manifold M = S0 × D1 (orM = S1 if they are connected) on

which the local dynamics act on two smaller segments S0 × D1. Namely, the two magnetic flux

tubes have a nonzero parallel net current through them, which leads to attraction of the tubes

(cf. [12]). Between them, a localized diffusion region develops where magnetic field lines may

decouple. Reconnection is accompanied with a sudden release of energy and the magnetic

field lines break and rejoin in a lower energy state.

Fig 11. 1-dimensional surgery on one and two circles.

https://doi.org/10.1371/journal.pone.0183993.g011
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In the case of chromosomal crossover (Fig 7), we have the same dual 1-dimensional 0-sur-

gery as magnetic reconnection (see Fig 10(b)). During this process, the homologous (maternal

and paternal) chromosomes come together and pair, or synapse, during prophase. The pairing

is remarkably precise and is caused by mutual attraction of the parts of the chromosomes that

are similar or homologous. Further, each paired chromosomes divide into two chromatids.

The point where two homologous non-sister chromatids touch and exchange genetic material

is called chiasma. At each chiasma, two of the chromatids have become broken and then

rejoined (cf. [13]). In this process, we consider the initial manifold to be one chromatid from

each chromosome, hence the initial manifold is M = S0 × D1 on which the local dynamics act

on two smaller segments S0 × D1.

For site-specific DNA recombination (see Fig 8), we have a 1-dimensional 0-surgery (see

Fig 10(b)) with a twisted homeomorphism ht as defined in Section 3.1 of Section 3. Here the

initial manifold is a knot which is an embedding of M = S1 in 3-space but this will be detailed

in Section 8. As mentioned in [14], enzymes break and rejoin the DNA strands, hence in this

case the seeming attraction of the two specified points is realized by the enzyme. Note that,

while both are genetic recombinations, there is a difference between chromosomal crossover

and site-specific DNA recombination. Namely, chromosomal crossover involves the homolo-

gous recombination between two similar or identical molecules of DNA and we view the pro-

cess at the chromosome level regardless of the knotting of DNA molecules.

Finally, vortices reconnect following the steps of 1-dimensional 0-surgery with a standard

embedding shown in Fig 10(a). The initial manifold is again M = S0 × D1. As mentioned in

[15], the interaction of the anti-parallel vortices goes from attraction before reconnection, to

repulsion after reconnection.

4.3 Defining solid 1-dimensional surgery

There are phenomena which undergo the process of 1-dimensional 0-surgery but happen on

surfaces, such as tension on membranes or soap films and the merging of oil slicks. In order

to model topologically such phenomena we introduce the notion of solid 1-dimensional 0-sur-

gery. Solid 1-dimensional 0-surgery on the 2-disc D2 is the topological procedure whereby a rib-

bon D1 ×D1 is being removed, such that the closure of the remaining manifold comprises two

discs D2 × S0. The reader is referred to Fig 5(a) where the interior is now supposed to be filled

in. This process is equivalent to performing 1-dimensional 0-surgeries on the whole contin-

uum of concentric circles included in D2. More precisely, and introducing at the same time

dynamics, we define:

Definition 2 We start with the 2-disc of radius 1 with polar layering:

D2 ¼ [0<r�1S1
r [ fPg;

where r the radius of a circle and P the limit point of the circles, that is, the center of the disc.

We specify colinear pairs of antipodal points, all on the same diameter, with neighborhoods of

analogous lengths, on which the same colinear attracting forces act, see Fig 12(1) where these

forces and the corresponding attracting center are shown in blue. Then, in (2), antipodal seg-

ments get closer to one another or, equivalently, closer to the attracting center. Note that here,

the attracting center coincides with the limit point of all concentric circles, which is shown in

green from instance (2) and on. Then, as shown from (3) to (9), we perform 1-dimensional

0-surgery on the whole continuum of concentric circles. The natural order of surgeries is as

follows: first, the center of the segments that are closer to the center of attraction touch, see (4).

After all other points have also reached the center, see (5), decoupling starts from the central

or limit point. We define 1-dimensional 0-surgery on the limit point P to be the two limit
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points of the resulting surgeries. That is, the effect of solid 1-dimensional 0-surgery on a point is
the creation of two new points, see (6). Next, the other segments reconnect, from the inner, see

(7), to the outer ones, see (8), until we have two copies of D2, see (9) and (10). Note that the

proposed order of reconnection, from inner to outer, is the same as the one followed by skin

healing, namely, the regeneration of the epidermis starts with the deepest part and then

migrates upwards.

The above process is the same as first removing the center P from D2, doing the 1-dimen-

sional 0-surgeries and then taking the closure of the resulting space. The resulting manifold is

wðD2Þ :¼ [0<r�1wðS1
r Þ [ wðPÞ;

which comprises two copies of D2.

We also have the reverse process of the above, namely, Solid 1-dimensional 0-surgery on two
discs D2 × S0 is the topological procedure whereby a ribbon D1 ×D1 joining the discs is added,

such that the closure of the remaining manifold comprise one disc D2, as illustrated in Fig 12.

This process is the result of the orange forces and attracting center which are applied on the

‘complementary’ points. This operation is equivalent to performing 1-dimensional 0-surgery

on the whole continuum of concentric circles in D2
‘
D2. We only need to define solid

1-dimensional 0-surgery on two limit points to be the limit point P of the resulting surgeries.

That is, the effect of solid 1-dimensional 0-surgery on two points is their merging into one point.
The above process is the same as first removing the centers from the D2 × S0, doing the

1-dimensional 0-surgeries and then taking the closure of the resulting space. The resulting

manifold is

w� 1ðD2 � S0Þ :¼ [0<r�1w� 1ðS1
r � S

0Þ [ w� 1ðP � S0Þ;

which comprises one copy of D2.

Fig 12. Solid 1-dimensional surgery.

https://doi.org/10.1371/journal.pone.0183993.g012
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5 2-dimensional topological surgery

Both types of 2-dimensional surgeries are present in nature, in various scales, in phenomena

where 2-dimensional merging and recoupling occurs. Natural processes undergoing 2-dimen-
sional 0-surgery comprise, for example, drop coalescence, the formation of tornadoes and

Falaco solitons, gene transfer in bacteria and the formation of black holes (for illustrations see

Section 5.3). On the other hand, phenomena undergoing 2-dimensional 1-surgery comprise

soap bubble splitting (see Fig 13), the biological process of mitosis and fracture as a result of

tension on metal specimen (for illustrations see Section 5.4). In this section we introduce

dynamics which explains the process of 2-dimensional surgery, define the notions of solid

2-dimensional surgery and examine in more details the aforementioned natural phenomena.

Note that except for soap bubble splitting which is a phenomena happening on surfaces, the

other mentioned phenomena involve all three dimensions and are, therefore, analyzed after

the introduction of solid 2-dimensional surgery, in Sections 5.3 and 5.4.

5.1 Introducing dynamics

In order to model topologically phenomena exhibiting 2-dimensional surgery or to under-

stand 2-dimensional surgery through continuity we need, also here, to introduce dynamics. In

Fig 14(a), the 2-dimensional 0-surgery starts with two points, or poles, specified on the mani-

fold (in red) on which attracting forces created by an attracting center are applied (in blue).

Then, the two discs S0 ×D2, neighborhoods of the two poles, approach each other. When the

centers of the two discs touch, recoupling takes place and the discs get transformed into the

final cylinder D1 × S1.

Fig 13. Soap bubble splitting. An example of 2-dimensional 1-surgery.

https://doi.org/10.1371/journal.pone.0183993.g013

Fig 14. Introducing dynamics to 2-dimensional surgery. (a) 2-dimensional surgeries with standard embeddings (b) 2-dimensional surgeries with

twisted embeddings.

https://doi.org/10.1371/journal.pone.0183993.g014
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As mentioned in Example 3.3, the dual case of 2-dimensional 0-surgery is the 2-dimen-

sional 1-surgery and vice versa. This is also shown in Fig 14(a) where the reverse process is the

2-dimensional 1-surgerywhich starts with the cylinder and a specified cyclical region (in red)

on which attracting forces created by an attracting center are applied (in orange). A ‘necking’

occurs in the middle which degenerates into a point and finally tears apart creating two discs

S0 ×D2. As also seen in Fig 14(a), in the case of 2-dimensional 0-surgery, forces (in blue) are

applied on two points, or S0, while in the case of the 2-dimensional 1-surgery, forces (in

orange) are applied on a circle S1.

In Fig 14(b), we have an example of twisted 2-dimensional 0-surgerywhere the two discs

S0 ×D2 are embedded via a twisted homemorphism ht while, in the dual case, the cylinder

D1 × S1 is embedded via a twisted homemorphism gt. Here ht rotates the two discs while gt
rotates the top and bottom of the cylinder by 3π/4 and −3π/4 respectively. More specifically, if

we define the homeomorphism ω1, ω2:D2! D2 to be rotations by 3π/4 and −3π/4 respectively,

then ht is defined as the composition ht : S0 � D2 o1
‘

o2���! S0 � D2!h M. The homeomorphism gt:
D1 × S1!M is defined analogously.

These local dynamics produce different manifolds depending on the initial manifold where

the neighborhoods are embedded. Taking M = S2, the local dynamics of Fig 14(a) are shown in

Fig 15(a) and 15(b) producing the same manifolds seen in formal 2-dimensional surgery

(recall Fig 5(b1) and 5(b2)). Note that, as also seen in 1-dimensional surgery (Fig 11(b)), if the

blue attracting center in Fig 15(a) was outside the sphere and the cylinder was attached on S2

externally, the result would still be a torus.

Looking back at the natural phenomema happening on surfaces, an example is soap bubble

splitting during which a soap bubble splits into two smaller bubbles. This process is the

2-dimensional 1-surgery on M = S2 shown in Fig 15(b). The orange attracting force in this case

is the surface tension of each bubble that pulls molecules into the tightest possible groupings.

Fig 15. (a) 2-dimensional 0-surgery on M = S2 and 2-dimensional 1-surgery on M 0 = S0 × S2 (b) 2-dimensional 1-surgery on

M = S2 and 2-dimensional 0-surgery on M 0 = S0 × S2.

https://doi.org/10.1371/journal.pone.0183993.g015
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5.2 Defining solid 2-dimensional surgery

Most natural phenomena undergoing 2-dimensional surgery do not happen on surfaces but

are three-dimensional. Therefore we introduce, also here, the notion of solid 2-dimensional
surgery. There are two types of solid 2-dimensional surgery on the 3-ball, D3, analogous to the

two types of 2-dimensional surgery.

The first one is the solid 2-dimensional 0-surgerywhich is the topological procedure of

removing a solid cylinder homeomorphic to the product set D1 ×D2, h(D1 ×D2) (such that the

part S0 × D2 of its boundary lies in the boundary of D3) and taking the closure of the remaining

manifold D3\h(D1 ×D2), which is a regular (or twisted) solid torus. See Fig 5(b1) where the

interior is supposed to be filled in. The second type is the solid 2-dimensional 1-surgerywhich

is the topological procedure of removing a solid cylinder homeomorphic to the product set

D2 ×D1, h(D2 × D1), (such that the part S1 ×D1 of its boundary lies in the boundary of D3) and

taking the closure of the remaining manifold D3\h(D2 × D1), which is two copies of D3. See

Fig 5(b2) where the interior is supposed to be filled in. Those processes are equivalent to per-

forming 2-dimensional surgeries on the whole continuum of concentric spheres included in

D3. More precisely, and introducing at the same time dynamics, we define:

Definition 3 Start with the 3-ball of radius 1 with polar layering:

D3 ¼ [0<r�1S2
r [ fPg;

where r the radius of a 2-sphere and P the limit point of the spheres, that is, the center of the

ball. Solid 2-dimensional 0-surgery on D3 is the topological procedure shown in Fig 16(a): on all

spheres S2
r colinear pairs of antipodal points are specified, all on the same diameter, on which

the same colinear attracting forces act. The poles have disc neighborhoods of analogous areas.

Then, 2-dimensional 0-surgeries are performed on the whole continuum of the concentric

spheres using the same homeomorphism h. Moreover, 2-dimensional 0-surgery on the limit

Fig 16. Solid 2-dimensional surgery on the 3-ball. (a) 2-dimensional 0-surgery with the standard embedding (b) 2-dimensional 1-surgery with the

standard embedding.

https://doi.org/10.1371/journal.pone.0183993.g016
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point P is defined to be the limit circle of the nested tori resulting from the continuum of

2-dimensional surgeries. That is, the effect of 2-dimensional 0-surgery on a point is the creation
of a circle. The process is characterized on one hand by the 1-dimensional core L of the

removed solid cylinder joining the antipodal points on the outer shell and intersecting each

spherical layer in the two antipodal points and, on the other hand, by the homeomorphism h,

resulting in the whole continuum of layered tori. The process can be viewed as drilling out a

tunnel along L according to h. For a twisted embedding h, this agrees with our intuition that,

for opening a hole, drilling with twisting seems to be the easiest way.

On the other hand, solid 2-dimensional 1-surgery on D3 is the topological procedure where: on

all spheres S2
r nested annular peels of the solid annulus of analogous areas are specified and the

same coplanar attracting forces act on all spheres, see Fig 16(b). Then, 2-dimensional 1-surger-

ies are performed on the whole continuum of the concentric spheres using the same homeo-

morphism h. Moreover, 2-dimensional 1-surgery on the limit point P is defined to be the two

limit points of the nested pairs of 2-spheres resulting from the continuum of 2-dimensional

surgeries. That is, the effect of 2-dimensional 1-surgery on a point is the creation of two new
points. The process is characterized by the 2-dimensional central disc of the solid annulus and

the homeomorphism h, and it can be viewed as squeezing the central disc D or, equivalently,

as pulling apart the upper and lower hemispheres with possible twists if h is a twisted embed-

ding. This agrees with our intuition that for cutting a solid object apart, pulling with twisting
seems to be the easiest way.

For both types, the above process is the same as: first removing the center P from D3, per-

forming the 2-dimensional surgeries and then taking the closure of the resulting space. Namely

we obtain:

wðD3Þ :¼ [0<r�1wðS2
r Þ [ wðPÞ;

which is a solid torus in the case of solid 2-dimensional 0-surgery and two copies of D3 in the

case of solid 2-dimensional 1-surgery.

As seen in Fig 16, we also have the two dual solid 2-dimensional surgeries, which represent

the reverse processes. As already mentioned in in Section 3.3 the dual case of 2-dimensional

0-surgery is the 2-dimensional 1-surgery and vice versa. More precisely:

Definition 4 The dual case of solid 2-dimensional 0-surgery onD3 is the solid 2-dimensional
1-surgery on a solid torus D2 × S1 whereby a solid cylinder D1 ×D2 filling the hole is added,

such that the closure of the resulting manifold comprises one 3-ball D3. This is the reverse pro-

cess shown in Fig 16(a) which results from the orange forces and attracting center. It only

remain to define the solid 2-dimensional 1-surgery on the limit circle to be the limit point P of

the resulting surgeries. That is, the effect of solid 2-dimensional 1-surgery on the core circle is
that it collapses into one point. The above process is the same as first removing the core circle

from D2 × S1, doing the 2-dimensional 1-surgeries on the nested tori, with the same coplanar

acting forces, and then taking the closure of the resulting space. Given that the solid torus can

be written as a union of nested tori together with the core circle:

D2 � S1 ¼ ð[0<r�1S1
r [ f0gÞ � S

1, the resulting manifold is

w� 1ðD2 � S1Þ :¼ [0<r�1w
� 1ðS1

r � S
1Þ [ w� 1ðf0g � S1Þ;

which comprises one copy of D3.

Further, the dual case of solid 2-dimensional 1-surgery on D3 is the solid 2-dimensional
0-surgery on two 3-balls D3 whereby a solid cylinder D2 ×D1 joining the balls is added, such

that the closure of the resulting manifold comprise of one 3-ball D3. This is the reverse process

shown in Fig 16(b) which results from the blue forces and attracting center. We only need to
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define the solid 2-dimensional 0-surgery on two limit points to be the limit point P of the

resulting surgeries. That is, as in solid 1-dimensional surgery, the effect of solid 2-dimensional
0-surgery on two points is their merging into one point. The above process is the same as first

removing the centers from the D3 × S0, doing the 2-dimensional 0-surgeries on the nested

spheres, with the same colinear forces, and then taking the closure of the resulting space. The

resulting manifold is

w� 1ðD3 � S0Þ :¼ [0<r�1w� 1ðS2
r � S

0Þ [ w� 1ðP � S0Þ;

which comprises one copy of D3.

Remark 2 The notions of 2-dimensional (resp. solid 2-dimensional) surgery, can be gener-

alized from S2 (resp. D3) to a surface (resp. a handlebody) of genus g creating a surface (resp. a

handlebody) of genus g + 1.

5.3 Natural phenomena exhibiting solid 2-dimensional 0-surgery

Solid 2-dimensional 0-surgery is often present in natural phenomena where attracting forces

between two poles are present, such as the formation of tornadoes, the formation of Falaco sol-

itons, the formation of black holes, gene transfer in bacteria and drop coalescence. We shall

discuss these phenomena in some detail pinning down their exhibiting of topological surgery.

Regarding tornadoes: except from their shape (see Fig 17) which fits the cylinder D1 × S1

that gets attached in the definition of 2-dimensional 0-surgery, the process by which they are

formed also follows the dynamics introduced in Section 5.2. Namely, if certain meteorological

conditions are met, an attracting force between the cloud and the earth beneath is created and

funnel-shaped clouds start descending toward the ground. Once they reach it, they become

tornadoes. In analogy to solid 2-dimensional 0-surgery, first the poles are chosen, one on the

tip of the cloud and the other on the ground, and they seem to be joined through an invisible

line. Then, starting from the first point, the wind revolves in a helicoidal motion toward the

second point, resembling ‘hole drilling’ along the line until the hole is drilled. Therefore, tor-

nado formation undergoes the process of solid 2-dimensional 0-surgery with a twisted embed-

ding, as in Fig 14(b). The initial manifold can be considered as M = D3 × S0, that is, one 3-ball

on the cloud and one on the ground. Note that in this realization of solid 2-dimensional

Fig 17. (a) Funnel clouds drilling and tornado formation (b) waterspout. An example of solid

2-dimensional 0-surgery.

https://doi.org/10.1371/journal.pone.0183993.g017
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0-surgery, the attracting center coincides with the ground and we only see helicoidal motion

in one direction.

Another natural phenomenon exhibiting solid 2-dimensional 0-surgery is the formation of

Falaco solitons, see Fig 18 (for photos of pairs of Falaco solitons in a swimming pool, see

[16]). Note that the term ‘Falaco Soliton’ appears in 2001 in [17]. Each Falaco Soliton consists

of a pair of locally unstable but globally stabilized contra-rotating identations in the water-air

discontinuity surface of a swimming pool. These pairs of singular surfaces (poles) are con-

nected by means of a stabilizing thread. This thread corresponds to the ‘invisible line’ men-

tioned in the process of tornado formation which is visible in this case. The two poles get

connected and their rotation propagates below the water surface along the joining thread and

the tubular neighborhood around it. This process is a solid 2-dimensional 0-surgery with a

twisted embedding (see Fig 14(b)) where the initial manifold is the water contained in the

volume of the pool where the process happens, which is homeomorphic to a 3-ball, that is

M = D3. Two differences compared to tornadoes are: here the helicoidal motion is present in

both poles and the attracting center is not located on the ground but between the poles, on the

topological thread joining them.

It is also worth mentioning that the creation of Falaco solitons is immediate and does not

allow us to see whether the transitions of the 2-dimensional 0-surgery shown in Fig 14(b) are

followed or not. However, these dynamics are certainly visible during the annihilation of

Falaco solitons. Namely, when the topological thread joining the poles is cut, the tube tears

apart and slowly degenerates to the poles until they both stops spinning and vanish. Therefore,

the continuity of our dynamic model is clearly present during the reverse process which corre-

sponds to a solid 2-dimensional 1-surgery on a pair of Falaco solitons, that is, a solid torus

D2 × S1 degenerating into a still swimming pool D3.

Note that it is conjectured in [16] that the coherent topological features of the Falaco

solitons and, by extension, the process of solid 2-dimensional 0-surgery appear in both

Fig 18. Pairs of Falaco solitons. An example of solid 2-dimensional 0-surgery.

https://doi.org/10.1371/journal.pone.0183993.g018
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macroscopic level (for example in the Wheeler’s wormholes) and microscopic level (for exam-

ple in the spin pairing mechanism in the microscopic Fermi surface). For more details see

[16].

Another phenomenon undergoing solid 2-dimensional 0-surgery is the formation of a

black hole. Most black holes form from the remnants of a large star that dies in a supernova

explosion and have a gravitational field so strong that not even light can escape. In the simula-

tion of a black hole formation (see [18]), the density distribution at the core of a collapsing

massive star is shown. In Fig 19 matter performs solid 2-dimensional 0-surgery as it collapses

into a black hole. Matter collapses at the center of attraction of the initial manifold M = D3 cre-

ating the singularity, that is, the center of the black hole, which is surrounded by the toroidal

accretion disc (shown in white in Fig 19(c)).

Solid 2-dimensional 0-surgery is also found in the mechanism of gene transfer in bacteria.

See Fig 20 (also, for description and instructive illustrations see [19]). The donor cell produces

Fig 19. The formation of a black hole. An example of solid 2-dimensional 0-surgery.

https://doi.org/10.1371/journal.pone.0183993.g019

Fig 20. Gene transfer in bacteria. An example of solid 2-dimensional 0-surgery.

https://doi.org/10.1371/journal.pone.0183993.g020
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a connecting tube called a ‘pilus’ which attaches to the recipient cell, brings the two cells

together and transfers the donor’s DNA. This process is similar to the one shown earlier in

Fig 16(b) as two copies of D3 merge into one, but here the attracting center is located on the

recipient cell. This process is a solid 2-dimensional 0-surgery on two 3-balls M = D3 × S0.

Finally, drop coalescence is the merging of two dispersed drops into one. As gene transfer

in bacteria, this process is also a solid 2-dimensional 0-surgery on two 3-balls M = D3 × S0, see

Fig 16(b). The process of drop coalescence also exhibits the forces of our model. Namely, the

surfaces of two drops must be in contact for coalescence to occur. This surface contact is

dependent on both the van der Waals attraction and the surface repulsion forces between two

drops. When the van der Waals forces cause rupture of the film, the two surface films are able

to fuse together, an event more likely to occur in areas where the surface film is weak. The liq-

uid inside each drop is now in direct contact, and the two drops are able to merge into one.

Remark 3 Although in this Section some natural processes were viewed as a solid 2-dimen-

sional topological surgery on M = D3 × S0, we could also consider the initial manifold as being

a 3-ball surrounding the phenomena and view it as a surgery on M = D3. Concerning the pro-

cess of tornado formation, this approach also has a physical meaning. Namely, as the process is

triggered by the difference in the conditions of the lower and upper atmosphere, the initial

manifold can be considered as the 3-ball containing this air cycle.

5.4 Natural phenomena exhibiting solid 2-dimensional 1-surgery

As already mentioned, the collapsing of the central disc of the sphere caused by the orange

attracting forces in Fig 16(b) can also be caused by pulling apart the upper and lower hemi-

spheres of the 3-ball D3, that is, the causal forces can also be repelling. For example, during

fracture of metal specimens under tensile forces, solid 2-dimensional 1-surgery is caused by

forces that pull apart each end of the specimen. On the other hand, in the biological process of

mitosis, both attracting and repelling forces forces are present.

When the tension applied on metal specimens by tensile forces results in necking and then

fracture, the process exhibits solid 2-dimensional 1-surgery. More precisely, in experiments in

mechanics, tensile forces (or loading) are applied on a cylindrical specimen made of dactyle

material (steel, aluminium, etc.). Up to some critical value of the force the deformation is

homogeneous (the cross-sections have the same area). At the critical value the deformation is

localized within a very small area where the cross-section is reduced drastically, while the sec-

tions of the remaining portions increase slightly. This is the ‘necking phenomenon’. Shortly

after, the specimen is fractured (view [20] for details). In Fig 21 are the the basic steps of the

process: void formation, void coalescence (also known as crack formation), crack propagation,

and failure. Here, the process is not as smooth as our theoretical model and the tensile forces

applied on the specimen are equivalent to repelling forces. The specimen is homeomorphic to

the sphere shown in Fig 16(b) hence the initial manifold isM = D3.

Solid 2-dimensional 1-surgery on M = D3 also happens in the biological process of mitosis,

where a cell splits into two new cells. See Fig 22 (for description and instructive illustrations

see for example [21]). We will see that both aforementioned forces are present here. During

mitosis, the chromosomes, which have already duplicated, condense and attach to fibers that

pull one copy of each chromosome to opposite sides of the cell (this pulling is equivalent to

repelling forces). The cell pinches in the middle and then divides by cytokinesis. The structure

that accomplishes cytokinesis is the contractile ring, a dynamic assembly of filaments and pro-

teins which assembles just beneath the plasma membrane and contracts to constrict the cell

into two (this contraction is equivalent to attracting forces). In the end, two genetically-identi-

cal daughter cells are produced.

Extending topological surgery to natural processes and dynamical systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0183993 September 15, 2017 22 / 42

https://doi.org/10.1371/journal.pone.0183993


Remark 4 It is worth noting that the splitting of the cell into two coincide with the fact that

2-dimensional 1-surgery on a point is the creation of two new points (see Definition 3).

6 Connecting 1- and 2-dimensional surgeries

As illustrated in Fig 23, a 1-dimensional surgery is a planar cross-section of the correspond-

ing 2-dimensional surgery which, in turn, is a spherical/toroidal crossection of the corre-

sponding type of solid 2-dimensional surgery. This is true for both 1 or 0-surgeries (see

Fig 23(a) and 23(b) respectively).

Fig 21. Tension and the necking phenomenon. An example of solid 2-dimensional 1-surgery.

https://doi.org/10.1371/journal.pone.0183993.g021

Fig 22. The process of mitosis. An example of solid 2-dimensional 1-surgery.

https://doi.org/10.1371/journal.pone.0183993.g022
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On the left-hand top and bottom pictures of Fig 23(a) and 23(b) we see the initial and final

stage of solid 2-dimensional surgery. Taking the intersection with the boundary of the 3-ball

D3 we pass to the middle pictures where we see the the initial and final pictures of 2-dimen-

sional surgery. Taking finally the intersection with a meridional plane gives rise to the initial

and final stages of 1-dimensional surgery (rightmost illustrations). The above concerns 0-sur-

geries in Fig 23(a) and 1-surgeries in Fig 23(b).

Furthermore, in Fig 24 we see the relation between solid surgeries in dimensions 2 and 1.

Namely, we see that solid 1-dimensional surgery is a cross-section of solid 2-dimensional sur-

gery via a cutting meridional plane. In particular, we see that solid 2-dimensional 0-surgery on

the central point of the spherical nesting results in the central circle of the toroidal nesting.

This circle has two intersecting points with the plane which are the result of solid 1-dimen-

sional 0-surgery on the central point, see Fig 24(a). On the other hand, both solid 2-dimen-

sional 1-surgery and solid 1-dimensional 0-surgery on the central point creates two points, see

Fig 24(b).

Fig 23. Connecting low-dimensional surgeries. From left to right we pass from solid 2-dimensional to 2-dimensional to 1-dimensional surgery for (a)

0-surgeries and (b) 1-surgeries.

https://doi.org/10.1371/journal.pone.0183993.g023

Fig 24. Connecting solid surgeries. From left to right we pass from solid 2-dimensional to solid 1-dimensional surgery via a

cutting meridional plane.

https://doi.org/10.1371/journal.pone.0183993.g024
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It is worth adding that all types of 1- and 2-dimensional surgeries can be also connected via

appropriate horizontal and vertical rotations in the 3-space as demonstrated in [22].

7 The ambient space S3

All natural phenomena exhibiting surgery (1- or 2-dimensional, solid or usual) take place in

the ambient 3-space. As we will see in the next section, the ambient space can play an impor-

tant role in the process of surgery. By 3-space we mean here the compactification of R3 which

is the 3-sphere S3. This choice, as opposed to R3, takes advantage of the duality of the descrip-

tions of S3. In this section we present the three most common descriptions of S3 in which this

duality is apparent and which will set the ground for defining the notion of embedded surgery

in S3. Beyond that, we also demonstrate how the descriptions are interrelated via solid

2-dimensional 0-surgery which, due to the duality of the dimensions, takes place in both the

initial 3-ball and its complement.

7.1 Descriptions of S3

In dimension 3, the simplest c.c.o. 3-manifolds are: the 3-sphere S3 and the lens spaces L(p, q).

In this paper however, we will focus on S3. We start by recalling its three most common

descriptions:

7.1.1 Via R3. S3 can be viewed as R3 with all points at infinity compactified to one single

point: S3 ¼ R3 [ f1g. See Fig 25(b). R3 can be viewed as an unbounded continuum of nested

2-spheres centered at the origin, together with the point at the origin, see Fig 25(a), and also as

the de-compactification of S3. So, S3 minus the point at the origin and the point at infinity can

be viewed as a continuous nesting of 2-spheres.

7.1.2 Via two 3-balls. S3 can be viewed as the union of two 3-balls: S3 = B3 [ D3, see

Fig 26(a). This second description of S3 is clearly related to the first one, since a (closed) neigh-

borhood of the point at infinity can stand for one of the two 3-balls. Note that, when removing

the point at infinity in Fig 26(a) we can see the concentric spheres of the 3-ball B3 (in red)

wrapping around the concentric spheres of the 3-ball D3, see Fig 26(b). This is another way of

viewing R3 as the de-compactification of S3. This picture is the analogue of the stereographic

projection of S2 on the plane R2, whereby the projections of the concentric circles of the south

hemisphere together with the projections of the concentric circles of the north hemisphere

Fig 25. S3 is the compactification ofR3.

https://doi.org/10.1371/journal.pone.0183993.g025
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form the well-known polar description of R2 with the unbounded continuum of concentric

circles.

7.1.3 Via two solid tori. The third well-known representation of S3 is as the union of two

solid tori, S3 = V1 [ϑ V2, via the torus homeomorphism ϑ along the common boundary.

ϑmaps a meridian of V2 to a longitude of V1 which has linking number zero with the core

curve c of V1. The illustration in Fig 27(a) gives an idea of this splitting of S3. In the figure, the

core curve of V1 is in dashed green. So, the complement of a solid torus V1 in S3 is another

solid torus V2 whose core curve l (in dashed red) may be assumed to pass by the point at infin-

ity. Note that, S3 minus the core curves c and l of V1 and V2 (the green and red curves in Fig

27) can be viewed as a continuum of nested tori. When removing the point at infinity in the

representation of S3 as a union of two solid tori, the core of the solid torus V2 becomes an infi-

nite line l and the nested tori of V2 can now be seen wrapping around the nested tori of V1.

Fig 26. S3 is the result of gluing two 3-balls.

https://doi.org/10.1371/journal.pone.0183993.g026

Fig 27. (a) S3 as a union of two solid tori (b) De-compactificated view.

https://doi.org/10.1371/journal.pone.0183993.g027
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See Fig 27(b). Therefore, R3 can be viewed as an unbounded continuum of nested tori,

together with the core curve c of V1 and the infinite line l. This line l joins pairs of antipodal

points of all concentric spheres of the first description. Note that in the nested spheres descrip-

tion (Fig 25) the line l pierces all spheres while in the nested tori description the line l is the

‘untouched’ limit circle of all tori.

Remark 5 It is worth observing the resemblance of Fig 27(b) with the well-known represen-

tation of the Earth magnetic field. A numerical simulation of the Earth magnetic field via the

Glatzmaier-Roberts geodynamo model was made in [23], see Fig 28. The magnetic field lines

are lying on nested tori and comprise a visualization of the decompactified view of S3 as two

solid tori.

Remark 6 It is also worth mentioning that another way to visualize S3 as two solid tori is

the Hopf fibration, which is a map of S3 into S2. The parallels of S2 correspond to the nested

tori of S3, the north pole of S2 correspond to the core curve l of V2 while the south pole of S2

corresponds to the core curve c of V1. An insightful animation of the Hopf fibration can be

found in [24].

7.2 Connecting the descriptions of S3

7.2.1 Via corking. The connection between the first two descriptions of S3 was already

discussed in previous Section. The third description is a bit harder to connect with the first

Fig 28. The Earth magnetic field as a decompactified view of S3 as two solid tori.

https://doi.org/10.1371/journal.pone.0183993.g028
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two. We shall do this here. A way to see this connection is the following. Consider the descrip-

tion of S3 as the union of two 3-balls, B3 and D3 (Fig 26). Combining with the third description

of S3 (Fig 27) we notice that both 3-balls are pierced by the core curve l of the solid torus V2.

Therefore, D3 can be viewed as the solid torus V1 to which a solid cylinder D1 ×D2 is attached

via the homeomorphism ϑ:

D3 ¼ V1[WðD1 � D2Þ:

This solid cylinder is part of the solid torus V2, a ‘cork’ filling the hole of V1. Its core curve is

an arc L, part of the core curve l of V2. View Fig 29. The second ball B3 (Fig 26) can be viewed

as the remaining of V2 after removing the ‘cork’ D1 ×D2:

B3 ¼ V2nWðD1 � D2Þ:

In other words the solid torus V2 is cut into two solid cylinders, one comprising the ‘cork’ of

V1 and the other comprising the 3-ball B3.

Remark 7 If we remove a whole neighborhood B3 of the point at infinity and focus on the

remaining 3-ball D3, the line l of the previous picture is truncated to the arc L and the solid cyl-

inder V2 is truncated to the ‘cork’ of D3.

7.2.2 Via surgery. We will now examine how we can pass from the two-ball description to

the two-tori description of S3 via solid 2-dimensional 0-surgery. We start with two points that

have a distance L between them. Let M = D3 be the solid ball having arc L as a diameter. We

define this 3-ball as the ‘truncated’ space on which we will focus. When the center of D3

becomes attracting, forces are induced on the two points of D3 and solid 2-dimensional 0-sur-

gery is initiated. The complement space is the other solid ball B3 containing the point at infin-

ity, recall Fig 26. This joining arc L is seen as part of a simple closed curve l passing by the

point at infinity. In Fig 30(1) this is shown in S3 while Fig 30 (1′) shows the corresponding

decompactified view in R3.

In Fig 30(2), we see the ‘drilling’ along L as a result of the attracting forces. This is exactly

the same process as in Fig 16 if we restrict it to D3. But since we are in S3, the complement

space B3 participates in the process and, in fact, it is also undergoing solid 2-dimensional

0-surgery. In Fig 30(3), we can see that, as surgery transforms the solid ball D3 into the solid

torus V1, B3 is transformed into V2. That is, the nesting of concentric spheres of D3 (respec-

tively B3) is transformed into the nesting of concentric tori in the interior of V1 (respectively

V2). This is a double surgery with one attracting center which is inside the first 3-ball D3 (in

grey) and outside the second 3-ball B3 (in red). By Definition 3, the point at the origin (in

Fig 29. Passing from (a) S3 as two solid tori to (b) S3 as two balls.

https://doi.org/10.1371/journal.pone.0183993.g029
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green) turns into the core curve c of V1 (in green). Fig 30(3) is exactly the decompactified view

of S3 as two solid tori as shown in Fig 27(b) while Fig 30 (3′) is the corresponding view in S3 as

shown in Fig 27(1).

Fig 30 shows that one can pass from the second description of S3 to the third by performing

solid 2-dimensional 0-surgery (with the standard embedding homeomorphism) along the arc

L of D3. It is worth mentioning that this connection between the descriptions of S3 and solid

2-dimensional 0-surgery is a dynamic way to visualize the connection established in Section

7.2.1.

8 Embedding surgery in S3

In this section we define the notion of embedded surgery in 3-space. As we will see, when

embedded surgery occurs, depending on the dimension of the manifold, the ambient space

either leaves ‘room’ for the initial manifold to assume a more complicated configuration or it

participates more actively in the process.

8.1 Defining embedded m-dimensional n-surgery

We will now concretely define the notion of embedded m-dimensional n-surgery in some

sphere Sd and we will then focus on the case d = 3.

Definition 5 An embedded m-dimensional n-surgery is am-dimensional n-surgery where

the initial manifold is an m-embedding e:M ,! Sd, d�m of some m-manifold M. Namely,

according to Definition 1:

M0 ¼ wðeðMÞÞ ¼ eðMÞ n hðSn � Dm� nÞ[hjSn�Sm� n� 1
Dnþ1 � Sm� n� 1:

From now on we fix d = 3. Embedding surgery allows to view it as a process happening in

3-space instead of abstractly. In the case of embedded 1-dimensional 0-surgery on a circle

M = S1, the ambient space gives enough ‘room’ for the initial 1-manifold to become any type of

knot. Hence, embedding allows the initial manifold to assume a more complicated homeomor-
phic configuration. This will be analyzed further in Section 8.2.

Passing now to 2-dimensional surgeries, let us first note that embedded 2-dimensional sur-

gery is often used a theoretical tool in various proofs in low dimensional topology. Further, an

embedding of a sphere M = S2 in S3 presents no knotting because knots require embeddings of

codimension 2. However, in this case the ambient space plays a different role. Namely, embed-

ding 2-dimension surgeries allows the complementary space of the initial manifold to participate

Fig 30. Passing from the two balls description to the two solid tori description of S3 via solid 2-dimensional 0-surgery.

https://doi.org/10.1371/journal.pone.0183993.g030
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actively in the process. Indeed, while some natural phenomena undergoing surgery can be

viewed as ‘local’, in the sense that they can be considered independently from the surrounding

space, some others are intrinsically related to the surrounding space. This relation can be both

causal, in the sense that the ambient space is involved in the triggering of the forces causing

surgery, and consequential, in the sense that the forces causing surgery, can have an impact on

the ambient space in which they take place. This will be analyzed in Sections 8.3 and 8.4.

8.2 Embedded 1-dimensional 0-surgery and related phenomena

We will now get back to site-specific DNA recombination (see Section 4.2), in order to better

define this type of surgery. As seen in this process (recall Fig 8) the initial manifold of 1-dimen-

sional 0-surgery can be a knot, in other words, an embedding of the circle M = S1 in 3-space.

We therefore introduce the notion of embedded 1-dimensional 0-surgerywhereby the initial

manifold M is embedded in the 3-space. This notion allows the topological modeling of phe-

nomena with more complicated initial 1-manifolds. As mentioned, for our purposes, we will

consider S3 as our standard 3-space. For details on the descriptions of S3, see Section 7.1. Since

a knot is by definition an embedding of M = S1 in S3 or R3, in this case embedded 1-dimen-

sional surgery is the so-called knot surgery. It is worth mentioning that there are infinitely

many knot types and that 1-dimensional surgery on a knot may change the knot type or even

result in a two-component link. A good introductory book on knot theory is [25] among many

other.

Looking back to the process of DNA recombination which exhibits embedded 1-dimen-

sional 0-surgery, a DNA knot is the self-entanglement of a single circular DNA molecule.

With the help of certain enzymes, site-specific recombination can transform supercoiled circu-

lar DNA into a knot or link. The first electron microscope picture of knotted DNA was pre-

sented in [26]. In this experimental study, we see how genetically engineered circular DNA

molecules can form DNA knots and links through the action of a certain recombination

enzyme. A similar picture is presented in Fig 8, where site-specific recombination of a DNA

molecule produces the Hopf link.

Another theoretical example of knot surgery comprises the knot or link diagrams involved

in the skein relations satisfied by knot polynomials, such as the Jones polynomial [27] and the

Kauffman bracket polynomial [28]. For example, the illustration in Fig 31 represents a so-

called ‘Conway triple’, that is, three knot or link diagrams L+, L− and L0 which are identical

everywhere except in the region of a crossing and the polynomials of these three links satisfy a

given linear relation.

Remark 8 In analogy to embedded 1-dimensional 0-surgery, we also have the notion of

embedded solid 1-dimensional 0-surgery. As S1 is the boundary of D2, any knot is the bound-

ary of a, so-called, Seifert surface, so embedded solid 1-dimensional 0-surgery could be

extended to a Seifert surface.

Fig 31. One can pass from one of these three links to another via knot surgery.

https://doi.org/10.1371/journal.pone.0183993.g031
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8.3 Embedded solid 2-dimensional 0-surgery and related phenomena

In Section 7.2.2 we showed how we can pass from the two-ball description to the two-tori

description of S3. Although we had not yet defined it at that point, the process we described is,

of course, an embedded solid 2-dimensional 0-surgery in S3 on an initial manifold M = D3. It

is worth mentioning that all natural processes undergoing embedded solid 2-dimensional

0-surgery on an initial manifold M = D3 can be also viewed in this context. For example, if one

looks at the formation of black holes and examines it as an independent event in space, this

process shows a decompactified view of the passage from a two 3-ball description of S3, that is,

the core of the star and the surrounding space, to a two torus description, that is, the accretion

disc surrounding the black hole (shown in white in the third instance of Fig 19) and the sur-

rounding space. In this Section, we will see how some natural phenomena undergoing solid

2-dimensional 0-surgery exhibit the causal or consequential relation to the ambient space

mentioned in Section 8.1 and are therefore better described by considering them as embedded

in S3.

For example, during the formation of tornados, recall Fig 17(a), the process of solid

2-dimensional 0-surgery is triggered by the difference in the conditions of the lower and upper

atmosphere. Although the air cycle lies in the complement space of the initial manifold

M = D3 × S0, it is involved in the creation of funnel-shaped clouds that will join the two spheri-

cal neighborhood (one in the cloud and one in the ground). Therefore the cause of the phenom-
enon extends beyond its initial manifold and surgery is the outcome of global changes.

We will now discuss phenomena where the outcome of the surgery process propagates beyond
the final manifold. A first example are waterspouts. After their formation, the tornado’s cylin-

drical ‘cork’, that is, the solid cylinder homeomorphic to the product set D1 ×D2, has altered

the whole surface of the sea (recall Fig 17(b)). In other words, the spiral pattern on the water

surface extends beyond the initial spherical neighborhood of the sea, which is represented by

one of the two 3-balls of the initial manifold.

As another example, during the formation of black holes, the strong gravitational forces

have altered the space surrounding the initial star and the singularity is created outside the

final solid torus. In all these phenomena, the process of surgery alters matter outside the mani-

fold in which it occurs. In other words, the effect of the forces causing surgery propagates to

the complement space, thus causing a more global change in 3-space.

Remark 9 Looking back at Fig 30, it is worth pinning down the following duality of embed-

ded solid 2-dimensional 0-surgery forM = D3: the attraction of two points lying on the bound-

ary of segment L by the center of D3 can be equivalently viewed in the complement space as

the repulsion of these points by the center of B3 (that is, the point at infinity) on the boundary

of curve (or line, if viewed in R3) l − L.

8.4 Embedded solid 2-dimensional 1-surgery and related phenomena

We will now discuss the process of embedded solid 2-dimensional 1-surgery in S3 in the same

way we did for the embedded solid 2-dimensional 0-surgery in S3, recall Fig 30. Taking again

M = D3 as the initial manifold, embedded solid 2-dimensional 1-surgery is illustrated in Fig 32.

The process begins with disc D in the 3-ball D3 on which colinear attracting forces act, see

instances (1) and (10) for the decompactified view. In (3), the initial 3-ball D3 is split in two

new 3-balls D3
1

and D3
2
. By Definition 3, the point at the origin (in green) evolves into the two

centers of D3
1

and D3
2

(in green). This is exactly the same process as in Fig 16 if we restrict it to

D3, but since we are in S3, the complement space B3 is also undergoing, by symmetry, solid

2-dimensional 1-surgery. Again, this is a double surgery with one attracting center which is

inside the first 3-ball (in yellow) and outside the second 3-ball (in red). This process squeezes

Extending topological surgery to natural processes and dynamical systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0183993 September 15, 2017 31 / 42

https://doi.org/10.1371/journal.pone.0183993


the central discD ofD3 while the central disc d of B3 engulfs discD and becomes the separating

plane d [ D.

As seen in instance (3) of Fig 32, the process alters the existing complement space B3 to B3
1

and creates a new space B3
2

which can be considered as the ‘void’ between D3
1

and D3
2
. By view-

ing the process in this way, we pass from a two 3-balls description of S3 to another one, that is,

from S3 = B3 [ D3 to S3 ¼ ðD3
1
[ B3

2
[ D3

2
Þ [ B3

1
.

Remark 10 The duality described in 2-dimensional 0-surgery is also present in 2-dimen-

sional 1-surgery. Namely, the attracting forces from the circular boundary of the central disc

D to the center of D3 can be equivalently viewed in the complement space as repelling forces

from the center of B3 (that is, the point at infinity) to the boundary of the central disc d, which

coincides with the boundary of D.

All natural phenomena undergoing embedded solid 2-dimensional 1-surgery take place in

the ambient 3-space. However, we do not have many examples of such phenomena which

demonstrate the causal or consequential effects discussed in Section 8.1. Yet one could, for

example, imagine taking a solid material specimen that has started necking and immerse it in

some liquid until its pressure causes fracture to the specimen. In this case the complement

space is the liquid and it triggers the process of surgery.

Finally, the annihilation of Falaco solitons is also a case of embedded solid 2-dimensional

1-surgery. The topological thread can be cut by many factors but in all cases these are related

to the complement space.

9 A dynamical system modeling embedded solid 2-dimensional

0-surgery

So far, inspired by natural processes undergoing surgery, we have extended the formal defini-

tion of topological surgery by introducing new notions such as forces, solid surgery and

embedded surgery. However, in our schematic models, time and dynamics were not intro-

duced by equations. In this section we connect topological surgery, enhanced with these

notions, with a dynamical system. We will see that, with a small change in parameters, the tra-

jectories of its solutions are performing embedded solid 2-dimensional 0-surgery. Therefore,

this dynamical system constitutes a specific set of equations modeling natural phenomena

undergoing embedded solid 2-dimensional 0-surgery. More specifically, we will see that the

change of parameters of the system affects the eigenvectors and induces a flow along a segment

joining two steady state points. This segment corresponds to the segment L introduced in Sec-

tion 7 and the induced flow represents the attracting forces shown in Fig 16(a). Finally, we will

Fig 32. Embedded solid 2-dimensional 1-surgery.

https://doi.org/10.1371/journal.pone.0183993.g032
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see how our topological definition of solid 2-dimensional 0-surgery presented in Section 5.2 is

verified by our numerical simulations and, in particular, that surgery on a steady point

becomes a limit cycle.

In [29], the reader can find a more detailed analysis of the connection between the dynam-

ical system and embedded solid 2-dimensional 0-surgery, with more numerical simulations

and figures, and with a special focus on natural phenomena that can be modeled through this

system, with emphasis on tornado formation.

9.1 The dynamical system and its steady state points

In [4], N.Samardzija and L.Greller study the behavior of the following dynamical system (S)

that generalizes the classical Lotka–Volterra problem [30, 31] into three dimensions:

dX
dt
¼ X � XY þ CX2 � AZX2

dY
dt
¼ � Y þ XY

dZ
dt
¼ � BZ þ AZX2

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

A;B;C > 0 ðSÞ

In subsequent work [32], the authors present a slightly different model, provide additional

numerical simulations and deepen the qualitative analysis done in [4]. Since both models coin-

cide in the parametric region we are interested in, we will use the original model and notation

and will briefly present some key features of the analyses done in [4] and [32].

The system (S) is a two-predator and one-prey model, where the predators Y, Z do not

interact directly with one another but compete for prey X. As X, Y, Z are populations, only the

positive solutions are considered in this analysis. It is worth mentioning that, apart from a pop-

ulation model, (S) may also serve as a biological model and a chemical model, for more details

see [4].

The parameters A, B, C are analyzed in order to determine the bifurcation properties of the

system, that is, to study the changes in the qualitative or topological structure of the family of

differential equations (S). As parameters A, B, C affect the dynamics of constituents X, Y, Z,

the authors were able to determine conditions for which the ecosystem of the three species

results in steady, periodic or chaotic behavior. More precisely, the authors derive five steady

state solutions for the system but only the three positive ones are taken into consideration.

These points are:

S1 ¼

0

0

0

0

B
@

1

C
A; S2 ¼

1

1þ C

0

0

B
@

1

C
A; S3 ¼

ffiffiffiffiffiffiffiffiffi
B=A

p

0

1þ C
ffiffiffiffiffiffiffiffiffi
B=A

p

ffiffiffiffiffiffi
AB
p

0

B
B
B
B
@

1

C
C
C
C
A

It is worth reminding here that a steady state (or singular) point of a dynamical system is a

solution that does not change with time.

9.2 Local behavior and numerical simulations

Let, now, J(Si) be the Jacobian of (S) evaluated at Si for i = 1, 2, 3 and let the sets Γ{J(Si)} and

W{J(Si)} to be, respectively, the eigenvalues and the corresponding associated eigenvectors of
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J(Si). These are as follows:

GfJðS1Þg ¼ f1; � 1; � Bg; WfJðS1Þg ¼

1

0
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Using the sets of eigenvalues and eigenvectors presented above, the authors characterize

in [4, 32] the local behavior of the dynamical system around these three points using the

Hartman-Grobman (or linearization) Theorem. Since 1 > 0 and −1, −B< 0, S1 is a saddle

point for all values of parameters A, B, C. However, the behavior around S2 and S3 changes

as parameters A, B, C are varied. The authors show that the various stability conditions can

be determined by only two parameters: C and B/A. It is also shown in [4] that stable solu-

tions are generated left of and including the line B/A = 1 while chaotic/periodic regions

appear on the right of the line B/A = 1. We are interested in the behavior of (S) as it passes

from stable to chaotic/periodic regions. Therefore we will focus and analyze the local

behavior around S2 and S3 and present numerical simulations for: stable region (a) where

B/A = 1 and ð1=8B � 1Þ
ffiffiffiffiffiffiffiffiffi
A=B

p
< C � 2ð1þ

ffiffiffi
2
p
Þ and chaotic/periodic region (b) where

B/A> 1 and ð1=8B � 1Þ
ffiffiffiffiffiffiffiffiffi
A=B

p
< C � 2ð1þ

ffiffiffi
2
p
Þ.

• Region (a)

Setting B/A = 1 and equating the right side of (S) to zero, one finds as solution the one-

dimensional singular manifold:

L ¼ fðX;Y;ZÞ; X ¼ 1;Z ¼ ð1þ C � YÞ=Ag

that passes through the points S2 and S3. Since all points on L are steady state points, there is

no motion along it. For ð1=8B � 1Þ
ffiffiffiffiffiffiffiffiffi
A=B

p
< C � 2ð1þ

ffiffiffi
2
p
Þ, S2 is an unstable center while S3

is a stable center (for a complete analysis of all parametric regions see [4]). This means that if

λ1, λ2, λ3 denote the eigenvalues of either S2 or S3 with λ1 2 R and λ2, λ3 2 C, then λ1 = 0 and

Re(λ2) = Re(λ3)> 0 for S2 while λ1 = 0 and Re(λ2) = Re(λ3)< 0 for S3. Moreover, the point
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(X, Y, Z) = (1, 1, C/A) is the center of L. The line segment X = 1, 0< Y< 1 and (1 + C)/A< Z
< C/A supports attracting type singularities (and includes S3) while the line segment defined

by X = 1, 1< Y< 1 + C and 0< Z< C/A supports unstable singularities (and includes S2), for

details see [32]. More precisely, each attracting point corresponds to an antipodal repelling

point, the only exception being the center of L which can be viewed as the spheroid of 0-diam-

eter. The local behavior of (S) around S2 and S3 in this region together with line L are shown

in Fig 33(a). A trajectory (or solution) initiated near L in the repelling segment expands until it

gets trapped by the attracting segment, forming the upper and lower hemisphere of a distinct

sphere. Hence, a nest of spherical shells surrounding line L is formed, see Fig 34(a). Moreover,

the nest fills the entire positive space with stable solutions.

• Region (b)

For B/A> 1 and ð1=8B � 1Þ
ffiffiffiffiffiffiffiffiffi
A=B

p
< C � 2ð1þ

ffiffiffi
2
p
Þ, S2 is an inward unstable vortex and

S3 is an outward stable vortex. This means that in both cases they must satisfy the conditions

Fig 33. Local behavior. Flow induced along L by changing parameter space from (a) B/A = 1 to (b) B/A > 1.

Indices 1,2 and 3 indicate the first, second and third component in W(J(S2)) and W(J(S3)).

https://doi.org/10.1371/journal.pone.0183993.g033

Fig 34. Embedded solid 2-dimensional 0-surgery by changing parameter space from (a) B/A = 1 to (b) B/A > 1.

https://doi.org/10.1371/journal.pone.0183993.g034
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λ1 2 R and λ2, λ3 2 C with l3 ¼ l
�

2
, the conjugate of λ2. The eigenvalues of S2 must further sat-

isfy λ1 < 0 and Re(λ2) = Re(λ3)> 0, while the eigenvalues of S3 must further satisfy λ1 > 0 and

Re(λ2) = Re(λ3)< 0. The local behaviors around S2 and S3 for this parametric region are shown

in Fig 33(b). It is worth mentioning that Fig 33(b) reproduces Fig 1 of [4] with a change of the

axes so that the local behaviors of S2 and S3 visually correspond to the local behaviors of the tra-

jectories in Fig 34(b) around the north and the south pole.

Note now that the point S2 as well as the eigenvectors corresponding to its two complex

eigenvalues, all lie in the xy–plane. On the other hand, the point S3 and also the eigenvectors

corresponding to its two complex eigenvalues all lie in the xz–plane. The flow along line L pro-

duced by the actions of these eigenvectors forces trajectories initiated near S2 to wrap around L
and move toward S3 in a motion reminiscent of hole drilling. The connecting manifold L is

also called the ‘slow manifold’ in [4] due to the fact that trajectories move slower when passing

near it. As trajectories reach S3, the eigenvector corresponding to the real eigenvalue of S3

breaks out of the xz–plane and redirects the flow toward S2. As shown in Fig 34(a) and 34(b),

as B/A = 1 moves to B/A> 1, this process transforms each spherical shell to a toroidal shell.

The solutions scroll down the toroidal surfaces until a limit cycle (shown in green in Fig 34(b))

is reached. It is worth pointing out that this limit cycle is a torus of 0-diameter and corresponds

to the sphere of 0-diameter, namely, the central steady point of L also shown in green in

Fig 34(a).

However, as the authors elaborate in [32], while for B/A = 1 the entire positive space is filled

with nested spheres, when B/A> 1, only spheres up to a certain volume become tori. More

specifically, quoting the authors: “to preserve uniqueness of solutions, the connections through

the slow manifold L are made in a way that higher volume shells require slower, or higher reso-

lution, trajectories within the bundle”. As they further explain, to connect all shells through L,

(S) would need to possess an infinite resolution. As this is never the case, the solutions evolv-

ing on shells of higher volume are ‘choked’ by the slow manifold. This generates solution inde-

termination, which forces higher volume shells to rapidly collapse or dissipate. The behavior

stabilizes when trajectories enter the region where the choking becomes weak and weak chaos

appears. As shown in both [4] and [32], the outermost shell of the toroidal nesting is a fractal

torus. Note that in Fig 34(b) we do not show the fractal torus because we are interested in the

interior of the fractal torus which supports a topology stratified with toroidal surfaces. Hence,

all trajectories are deliberately initiated in its interior where no chaos is present.

It is worth pointing out that Fig 34 reproduces the numerical simulations done in [32].

More precisely, Fig 34(a) represents solutions of (S) for A = B = C = 3 and trajectories initiated

at points [1, 1.59, 0.81], [1, 1.3, 0.89], [1, 1.18; 0.95], [1, 1.08, 0.98] and [1, 1, 1]. Fig 34(b) repre-

sents solutions of (S) for A = 2.9851, B = C = 3 and trajectories initiated at points [1.1075, 1,

1], [1, 1, 0.95], [1, 1, 0.9] and [1, 1, 1].

As already mentioned, as B/A = 1 changes to B/A> 1, S2 changes from an unstable

center to an inward unstable vortex and S3 changes from a stable center to an outward

stable vortex. It is worth reminding that this change in local behavior is true not only for

the specific parametrical region simulated in Fig 34, but applies to all cases satisfying

ð1=8B � 1Þ
ffiffiffiffiffiffiffiffiffi
A=B

p
< C � 2ð1þ

ffiffiffi
2
p
Þ. For details we refer the reader to Tables II and III in

[4] that recapitulate the extensive diagrammatic analysis done therein.

Finally, it is worth observing the changing of the local behavior around S2 and S3 in our

numerical simulations. In Fig 34(a), for B/A = 1 we have:

GfJðS2Þg ¼ f0:0000; 1:500 � 1:3229i; 1:500þ 1:3229ig;GfJðS3Þg ¼ f0:0000; � 1:000þ 4:8780i; � 1:000 � 4:878ig

while in Fig 34(b), for B/A> 1, both centers change to vortices (inward unstable and outward
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stable) through the birth of the first eigenvalue shown in bold (negative and positive respec-

tively):

GfJðS2Þg ¼ f� 0:0149; 1:500 � 1:3229i; 1:500þ 1:3229ig;GfJðS3Þg ¼ f0:0025; � 1:000þ 4:8780i; � 1:000 � 4:878ig

Remark 11 The use of different numerical methods may affect the shape of the attractor.

For example, as mentioned in [32], higher resolution produces a larger fractal torus and a finer

connecting manifold. However, the ‘hole drilling’ process and the creation of a toroidal nesting

is always a common feature.

9.3 Connecting the dynamical system with embedded solid

2-dimensional 0-surgery

In this section, we will focus on the process of embedded solid 2-dimensional 0-surgery on a

3-ball D3 viewed as a continuum of concentric spheres together with their common center:

D3 ¼ [0<r�1S2
r [ fPg. Recall from Section 5.2 that the process is defined as the union of

2-dimensional 0-surgeries on the whole continuum of concentric spheres S2
r and on the limit

point P. For each spherical layer, the process starts with attracting forces acting between

S0 ×D2, i.e two points, or poles, centers of two discs. In natural phenomena undergoing solid

2-dimensional 0-surgery, such as tornadoes (recall Fig 17) or Falaco solitons (recall Fig 18),

these forces often induce a helicoidal motion from one pole to the other along the line L join-

ing them.

Having presented the dynamical system (S) in Section 9.1 and its local behavior in Section

9.2, its connection with embedded solid 2-dimensional 0-surgery on a 3-ball is now straight-

forward. To be precise, surgery is performed on the manifold formed by the trajectories of (S).

Indeed, as seen in Fig 34(a) and 34(b), with a slight perturbation of parameters, trajectories

pass from spherical to toroidal shape through a ‘hole drilling’ process along a slow manifold L
which pierces all concentric spheres. The spherical and toroidal nestings in Figs 16(a) and 34

are analogous. The attracting forces acting between the two poles shown in blue in the first

instance of Fig 16(a) are realized by the flow along L (also shown in blue in Fig 33(b)). When

B/A> 1, the action of the eigenvectors is an attracting force between S2 and S3 acting along L,

which drills each spherical shell and transforms it to a toroidal shell.

Furthermore, in order to introduce solid 2-dimensional 0-surgery on D3 as a new topologi-

cal notion, we had to define that 2-dimensional 0-surgery on a point is the creation of a circle.

The same behavior is seen in (S). Namely, surgery on the limit point P, which is a steady state

point, creates the limit cycle which is the limit of the tori nesting. As mentioned in [32], this

type of bifurcation is a ‘Hopf bifurcation’, so we can say that we see surgery creating a Hopf

bifurcation.

Hence, instead of viewing surgery as an abstract topological process, we may now view it as

a property of a dynamical system. Moreover, natural phenomena exhibiting 2-dimensional

topological surgery through a ‘hole-drilling’ process, such as the creation of Falaco solitons,

the formation of tornadoes, of whirls, of wormholes, etc, may be modeled mathematically by

the dynamical system (S). For more details, see also [22]. This system enhances the schematic

topological model presented in Fig 16(a) with analytical formulation of the underlying dynam-

ics. Indeed, if we link the three time-dependent quantities X, Y, Z to physical parameters of

related phenomena undergoing 2-dimensional 0-surgery, system (S) can provide time fore-

casts for these phenomena.

Remark 12 It is worth pointing out that (S) is also connected with the 3-sphere S3. We can

view the spherical nesting of Fig 34(a) as the 3-ball D3 shown in Fig 30(1) and 30(1′). Surgery
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on its central point creates the limit cycle which is the core curve c of V1 shown in Fig 30(3)

and 30(3′). If we extend the spherical shells of Fig 34 to all of R3 and assume that the entire nest

resolves to a toroidal nest, then the slow manifold L becomes the infinite line l. In the two-ball

description of S3, l pierces all spheres, recall Fig 30(1′), while in the two-tori description, it is

the core curve of V2 or the ‘untouched’ limit circle of all tori, recall Fig 30(3) and 30(3′).
Remark 13 In [16] R.M. Kiehn studies how the Navier-Stokes equations admit bifurcations

to Falaco solitons. In other words, the author looks at another dynamical system modeling this

natural phenomenon which, as we showed in Section 5.3, exhibits solid 2-dimensional 0-sur-

gery. To quote the author: “It is a system that is globally stabilized by the presence of the con-

necting 1-dimensional string” and “The result is extraordinary for it demonstrates a global

stabilization is possible for a system with one contracting direction and two expanding direc-

tions coupled with rotation”. It is also worth quoting Langford [33] which states that computer

simulations indicate that “the trajectories can be confined internally to a sphere-like surface,

and that Falaco Soliton minimal surfaces are visually formed at the North and South pole”.

One possible future research direction would be to investigate the similarities between this sys-

tem and (S) in relation to surgery.

10 Conclusions

Topological surgery occurs in numerous natural phenomena of various scales where a sphere

of dimension 0 or 1 is selected and attracting forces are applied. Examples of such phenomena

comprise: chromosomal crossover, magnetic reconnection, mitosis, gene transfer, the creation

of Falaco solitons, the formation of whirls and tornadoes, magnetic fields and the formation of

black holes.

In this paper we explained these natural processes via topological surgery. To do this we

first enhanced the usual static description of topological surgery of dimensions 1 and 2 by

introducing dynamics, by means of attracting forces. We then filled in the interior spaces in 1-

and 2-dimensional surgery, introducing the notions of solid 1- and 2-dimensional surgery.

This way more natural phenomena can fit with these topologies. Further, we introduced the

notion of embedded surgery, which leaves room for the initial manifold to assume a more

complicated configuration and describes how the complementary space of the initial manifold

participates in the process. Thus, instead of considering surgery as a formal and static topological
process, it can now be viewed as an intrinsic and dynamic property of many natural phenomena.

Apart from the examples studied in this paper, there are several other phenomena exhibit-

ing surgery, and our topological models indicate where to look for the forces causing surgery

and what deformations should be observed in the local submanifolds involved. Also, our

modeling of the changes occurring in the complement space during embedded surgery pro-

vides a ‘global’ explanation of the phenomenon, which can be of great physical significance.

Similarly, our descriptions of the duality of forces in embedded surgery could potentially lead

to new physical explanations. For instance, it would interesting to investigate from the physical

point of view, whether the forces collapsing a star to a black hole could be equally viewed as

repelling forces from the ‘point at infinity’.

Equally important, all these new notions resulted in pinning down the connection of solid

2-dimensional 0-surgery with a dynamical system. This connection gives us on the one hand a
mathematical model for 2-dimensional surgery and, on the other hand, a dynamical system
modeling natural phenomena exhibiting 2-dimensional topological surgery through a ‘hole-dril-
ling’ process. The provided dynamical system presents significant common features with our

schematic topological model of 2-dimensional 0-surgery, in the sense that eigenvectors act as

the attracting forces, trajectories lie on the boundaries of the manifolds undergoing surgery
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and surgery on the steady state point (which is the central point of the spherical nesting) cre-

ates a limit cycle (which is central circle of the toroidal nesting). Furthermore, this system

enhances our modeling as it can provide time forecasts for these phenomena.

This subject together with the search of other dynamical systems realizing other types of

surgery will be the subject of future work. Another possible future research direction includes

using the proposed dynamical system as a base for establishing a more general theoretical con-

nection between topological surgery and bifurcation theory. Currently we are working with

Louis H.Kauffman on generalizing the notions presented in this paper to 3-dimensional sur-

gery and higher dimensional natural processes. A first step toward this generalization can be

found in [22].

We hope that through this study, topology and dynamics of natural phenomena, as well as

topological surgery itself, will be better understood and that our connections will serve as

ground for many more insightful observations.

A Appendix: Mathematical notions

Topological spaces

1. A topological space is a set X with a distinguished family τ of subsets possessing the fol-

lowing properties:

• the empty set and the whole set X belong to τ

• the intersection of a finite number of elements of τ belongs to τ

• the union of any subfamily of elements of τ belongs to τ

The family τ is said to be the topology on X. Any set belonging to τ is called open. A neigh-
borhood of a point x 2 X is any open set containing x. Any set whose complement is open

is called closed. The minimal closed set (with respect to inclusion) containing a given set

A� X is called the closure of A and is denoted by �A. The maximal open set contained in a

given set A� X is called the interior of A and is denoted by Int(A).

2. If (X, τ) is a topological space, a base of the space X is a subfamily τ0 � τ such that any ele-

ment of τ can be represented as the union of elements of τ0. In other words, τ0 is a family

of open sets such that any open set of X can be represented as the union of sets from this

family. In the case when at least one base of X is countable, we say that X is a space with

countable base.

3. If X × Y is the Cartesian product of the topological spaces X and Y (regarded as sets),

then X × Y becomes a topological space (called the product of the spaces X and Y) if we

declare open all the products of open sets in X and in Y and all possible unions of these

products.

Manifolds

4. A topological space is said to be a Hausdorff space if any two distinct points of the space

have nonintersecting neighborhoods.

5. A Hausdorff space Mn with countable base is said to be an n-dimensional topological
manifold if any point x 2Mn has a neighborhood homeomorphic toRn or to Rnþ, where

Rnþ ¼ fðx1; :::; xnÞ j xi 2 R; x1 � 0g. For example, a surface is a 2-dimensional manifold.
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6. The set of all points x 2Mn that have no neigbourhoods homeomorphic to Rn is called

the boundary of the manifold Mn and is denoted by @Mn. When @Mn = ;, we say thatMn

is amanifold without boundary. It is easy to verify that if the boundary of a manifold Mn is

nonempty, then it is an (n − 1)-dimensional manifold.

Properties of manifolds

7. A topological space is called connected if it cannot be presented as a union of two nonin-

tersecting nonempty sets each of which is simultaneously open and closed.

8. A topological space X is called compact if any open covering of X (i.e any collection of

open sets of X whose union is X) has a finite subcovering.

9. An atlas {(Uα, φα)} of a smooth manifold is called orienting if the Jacobians of all the

maps φβ � φα−1, where Uβ \ Uα 6¼ ;, are positive. A manifold possessing an orienting atlas

is called orientable. If an orienting atlas of the manifold M is chosen, we say that an orien-

tation is given on M (for details see for example [5]).

The standard topology of Rn and its one-point compactification

10. In general, to define the topology τ, it suffices to indicate a base of the space. For the

spaceRn ¼ fðx1; :::; xnÞ j xi 2 Rg, the standard topology is given by the base

Ua;� ¼ fx 2 Rn jj x � a j< �g, where a 2 Rn and � > 0. We can additionally require

that all the coordinates of the point a, as well as the number �, be rational; in this case we

obtain a countable base.

11. To the set Rn let us add the element1 and introduce in Rn [ f1g the topology

whose base is the base of Rn to which we have added the family of sets

U1;R ¼ fx 2 Rn jj x j> Rg [ f1g. The topological space thus obtained is called the

one-point compactification of Rn; it can be shown that this space is homeomorphic to

the n−dimensional sphere Sn ¼ fx 2 Rnþ1 jj x j¼ 1g.

Homeomorphisms and gluings

12. The map of one topological space into another is called continuous if the preimage of any

open set is open. A map f: X! Y is said to be a homeomorphism if it is bijective and both f
and f−1 are continuous; the spaces X and Y are then called homeomorphic or topologically
equivalent.

13. An injective continuous map between topological spaces f: X ,! Y is called an embedding
if f is an homeomorphism between X and f(X).

14. Suppose X and Y are topological spaces without common elements, A is a subset of X,

and f: X! Y is a continuous map. In the set X [ Y, let us introduce the relation a* f(a).

The resulting quotient space (X [ Y)/* is denoted by X [f Y; the procedure of construct-

ing this space is called gluing or attaching Y to X along the map f.

The above definitions were taken from [5]. For more details, the reader is referred to [5, 6, 34].
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