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Historically, the body of literature surrounding the insulin-like growth factor type 1 receptor
(IGF1R) has described a largely pro-tumorigenic role in breast cancer cells and in several
transgenic or xenograft mouse models of breast cancer. Interestingly, however, more
recent evidence has emerged that suggests an additional, previously undescribed, tumor
and metastasis suppressive function for IGF1R in both human breast tumors and
mammary oncogenesis in mice. These seemingly conflicting reports can be reconciled
when considering what is currently known about IGF1R function in the context of tissue
development and cancer as it relates to cellular growth, proliferation, and differentiation. In
this mini review, we will summarize the currently existing data with a particular focus on
mouse models that have been developed to study IGF1R function in mammary
development, tumorigenesis, and metastasis in vivo and propose hypotheses for how
both the tumor-promoting and tumor-suppressing schools of thought regarding IGF1R in
these histological contexts are compatible.
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INTRODUCTION

The critical functions of the insulin-like growth factor (IGF)/IGF type 1 receptor (IGF1R) signaling
axis in normal biological development (both systemic and tissue specific) have been extensively
studied in several genetically altered mouse models. In vivo systemic deletion of IGF ligands or their
receptors has resulted in related, but distinct, phenotypes exhibiting varying degrees of
developmental impairment and/or lethality (1, 2). Perinatal lethality following systemic deletion
of Igf1r necessitated the need for subsequent transplantation assays in order to define the role of the
receptor in the mammary gland (3). Work performed with these models laid the foundation for the
field’s current understanding of the importance of IGF1R function during embryogenesis and
development of the mammary gland during puberty.

In addition to earlier studies focused on IGF1R developmental functions, more recent mouse
models have been developed to investigate the receptor’s role in primary tumorigenesis. Consistent
with the status of IGF1R as a receptor tyrosine kinase and its vigorously established function in
promoting cell proliferation and survival, it was identified as a promising target for therapeutic
intervention in human cancer patients. This led to the initiation of a number of clinical trials to
disrupt IGF1R function in human tumors utilizing monoclonal antibody or small-molecule tyrosine
kinase inhibitor-based therapies. Unfortunately, while early results were promising, the eventual
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conclusion from these trials was less than encouraging and, in
some instances, led to worse outcomes denoted by systemic
toxicity or worse patient prognosis [for reviews, see (4–7)].

In this mini review, we summarize the phenotypes of existing
mouse models of modified IGF1R expression in mammary tissue
(Table 1) and discuss observations made using human breast
cancer data. We then attempt to reconcile these observations in
order to shed light on the seemingly contradictory roles for
IGF1R in breast cancer with a focus on mammary gland biology
and tumorigenesis.
IGF1R IN MOUSE MAMMARY GLAND
DEVELOPMENT

A number of techniques and mouse models (Table 1) have been
developed to study the role of IGF1R in mammary gland
development. Due to the immediate postnatal lethal phenotype
exhibited by Igf1r-/- animals, alternative approaches were
necessitated to study how loss of Igf1r influences mammary gland
development (1). To bypass this technical limitation, pioneering
experiments by Bonnette and Hadsell utilized tissue transplantation
of mammary buds from Igf1r-/- embryos into host mice with
mammary fat pads cleared of endogenous epithelium to examine
epithelial growth during both puberty and pregnancy (3). Eight
weeks post-transplantation, the Igf1r-/- transplanted animals had a
significant decrease in the number of developed glands, as well as
macroscopic abnormalities in ductal branching and terminal end
bud (TEB) growth. Despite normal cellular organization of the ducts
and TEBs in these animals, BrdU and TUNEL staining of 4-week
post-transplantation mammary outgrowths revealed a significant
decrease in proliferation and no evidence of cell death in TEB cells,
specifically in the cap cell layer, which is responsible for most ductal
outgrowth during puberty and harbors stem/progenitor populations
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necessary for formation of the ductal tree. This phenotype is
strikingly similar to the developmental phenotype in the Igf1
knockout mouse, where the number of TEBs and ductal
expansion through the mammary fat pad was dramatically
reduced, independently validating these observations (14). In
contrast, mice with a heterozygous knockout of Igf had defects in
alveogenesis during pregnancy, however, the lumens of preexisting
alveoli were occluded with clusters of hyperproliferative epithelial
cells (15). The phenotype observed in the Igf1r-/- transplantation
model was partially rescued during pregnancy, where the pregnant
Igf1r-/- transplanted animals exhibited a larger, hormone-induced
fat pad outgrowth than wildtype transplanted mice relative to their
virgin counterparts (3). This finding may be a result of a
hypothetical decrease in dependence on IGF signaling and an
increase in progesterone and prolactin signaling that takes place
during the early stages of pregnancy and drives cellular proliferation
and differentiation to fill the fat pad in preparation for lactogenesis
(16, 17). Another potential explanation could be compensatory
insulin receptor (INSR) signaling in the absence of Igf1r expression,
supported by the observations that INSR substrates 1 and 2 undergo
significant hormone-mediated changes during pregnancy (18).

To further define how IGF1R signaling influences mammary
gland development during pregnancy, Sun et al. developed a model
denoted as WAP-dnIGF1R (8). In this mouse model, the whey acid
protein (WAP) promoter controls expression of a dominant-
negative human IGF1R that is activated during mid-pregnancy at
the onset of lactogenesis. These mice exhibited decreased alveolar
outgrowth accompanied by a decrease in proliferation and no
change in apoptosis (similar to the Igf1r-/- transplantation studies)
suggesting the absence of required growth signals, i.e. IGF1 and
IGF2 acting through the IGF1R. Additionally, these glands had
alveolar differentiation as well as myoepithelial defects including a
less elongated cellular morphology and a decrease in myoepithelial
cell number as determined by reduced keratin (Krt)14 expression
(8). Consistent with these in vivo observations indicating that IGF1/
June 2022 | Volume 13 | Article 911079
TABLE 1 | Summary of the mouse models used to study the function of IGF1R in development and tumorigenesis.

Models of IGF1R Function in the Mammary Gland

Genotype Biological
Context

IGF1R Status Phenotype Effect on Tumor
Phenotype

Reference

Igf1r-/- systemic KO Development Deleted Embryonic lethal, 45% normal birthweight, delayed bone/skin
development

N/A (1)

Igf1r+/+, Igf1r+/-, Igf1r-/-

transplantation
Development Deleted Limited branch outgrowth and TEB formation during puberty N/A (3)

WAP-dnIGF1R Pregnancy Inhibited; mutated
receptor

Decreased branching outgrowth, delayed alveolar density/
differentiation during pregnancy

N/A (8)

MMTV-dnIGF1R Development Inhibited; mutated
receptor

Decreased post-pubertal branching, increased luminal progenitor
and basal populations

N/A (9)

MMTV-CD8a-IGF1R Tumorigenesis Constitutively
activated

Induced tumorigenesis, increased luminal progenitor population Promoting (10)

MTB-IGF1R Tumorigenesis Overexpressed Induced tumorigenesis Promoting (11)
Eef1a1-Kras*/WAP-Cre/

Igf1rfl/fl
Tumorigenesis Deleted Increased tumor latency Promoting (12)

MMTV-Wnt1/dnIGF1R Tumorigenesis Inhibited; mutated
receptor

Increased luminal progenitor and basal populations, decreased
latency, increased metastasis

Suppressing (9)

MMTV-Wnt1/K8-CreERT/
Igf1rfl/fl

Tumorigenesis Deleted Increased luminal progenitor and basal populations, decreased
latency, increased metastasis

Suppressing (13)
N/A, Not Applicable.
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IGF1R signaling functions in mammary epithelial cell
differentiation, Merlo et al. showed that HC11 cells, an
immortalized and undifferentiated mouse mammary epithelial cell
line, can be induced to differentiate and activate milk protein gene
casein (Csn)2 expression in vitro using media containing prolactin,
dexamethasone, and IGF1 (19, 20). These studies solidified the
importance of IGF1R in normal mammary gland differentiation in
addition to TEB cap cell proliferation during puberty.

Much of the subsequent studies and models developed to
expand on the role of IGF1R in mammary gland biology were
performed in the context of mammary carcinogenesis and,
consequently, will be introduced and discussed partly in this
section on IGF1R in mammary gland development and
elaborated on in the next section. The first such model in
order of publication was the MMTV-CD8a-IGF1R mouse (10).
This line utilizes the mouse mammary tumor virus (MMTV)
promoter that is highly active in mammary epithelial cells to
express a constitutively active CD8a-IGF1R chimeric protein.
The biochemical nature of the CD8a extracellular domain results
in homodimerization after expression due to its affinity to form
intramolecular disulfide linkages (10, 21). Homodimerization of
the chimeric protein induces transphosphorylation and
constitutive activation of the intracellular IGF1Rb subunits.
Whole mount staining of these glands during pubertal growth
demonstrated an obvious phenotype of reduced TEB and fat pad
outgrowth, defective ductal branching, and hyperproliferation of
epithelial cells within the lumen of the ducts. As a result, the
glands were morphologically dense and hyperplastic, resulting in
tumorigenesis at about 8 weeks of age (10).

The MMTV-CD8a-IGF1R model addresses the role of
constitutively active IGF1R in mammary gland development
but may not recapitulate overexpression of IGF1R that would
rely on endogenously expressed ligand activation. The MTB-
IGF1R mouse is a mammary epithelium specific doxycycline-
inducible IGF1R overexpression model that was created to
investigate this gap in knowledge (11). Interestingly, this group
found a similar developmental phenotype to the CD8a-IGF1R
mice where ductal outgrowth was ablated and the tissue was
densely clustered, hyperplastic, and hyperproliferative. This
increase in proliferation was subsequently shown to be
controlled by expression of cyclin D1 (22). As with the CD8a-
IGF1R model, the hyperplasia eventually developed into palpable
mammary tumors with an average latency of 71-78 days (11).

We also generated additional mouse lines to explore IGF1R
function in both mammary gland development and
tumorigenesis. The results of these studies yielded the MMTV-
dnIGF1R line that expresses the same kinase-dead IGF1R mutant
as the WAP animals referenced above (9). As with the gain of
function models, this line with reduced IGF1R signaling makes
use of the MMTV promoter that is activated in all mammary
epithelial cells early in development. Post-pubertal glands
expressing the dnIGF1R lacked extensive tertiary ductal
alveolar budding at late pubertal stages after multiple estrous
cycles, consistent with the Igf1r-/- transplantation studies
showing reduced alveolar differentiation during pregnancy.
Flow cytometry analyses of the MMTV-dnIGF1R post-pubertal
Frontiers in Endocrinology | www.frontiersin.org 3
glands revealed enriched luminal (Lin-CD24+CD29low) and
luminal progenitor (Lin-CD24+CD29lowCD61+) and decreased
myoepithelial (Lin-CD24+CD29high) cell populations (9).
IGF1R IN MOUSE MAMMARY
TUMORIGENESIS

Tumor Promoting Functions
A common conclusion of numerous published reports
investigating IGF/IGF1R function in mammary tumorigenesis
in vivo is that dysregulation of this pathway is sufficient to either
induce tumorigenesis or to modulate the primary tumor
phenotype (for summary, see Table 1). In the CD8a-IGF1R
model, the authors described the primary tumors as highly
proliferative and histologically homogeneous with areas of
apparent necrosis (10). The high proliferation phenotype
allowed the authors to culture primary cells and create
xenograft models to determine the efficacy of IGF1R inhibitors
on tumor cell growth. In this case, inhibition of IGF1R was
sufficient to decrease proliferation, suggesting IGF1R as a
potential target for chemotherapeutics (10). Farabaugh and
colleagues continued to characterize this model and performed
flow cytometry to investigate potential changes in epithelial
lineages (23). Their findings revealed an increase in the basal
population (Lin-CD24+CD29highCD61+) in the preneoplastic
glands; however, this population was absent in CD8a-IGF1R
tumors where, instead, the luminal progenitor population (Lin-

CD24+CD29lowCD61+) was increased (23). Furthermore, when
these tumors were dissociated and subjected to in vitro
differentiation assays, the resulting tumorspheres more closely
resembled myoepithelial-like colonies, distinguished from their
luminal counterparts by morphological analysis. This is
consistent with the observations that luminal progenitors
retain the capacity to differentiate into basal cells and further
suggests an influence of IGF1R activation on mammary
epithelial cell differentiation (24).

Perhaps not surprisingly, theMTB-IGF1R overexpressionmodel
showed a similar histological tumor phenotype to the CD8a-IGF1R
model. Two tumor pathologies were described where smaller
tumors histologically presented as solid sheets of cells with sparse
extracellular space, similar to CD8a-IGF1R tumors, and larger
tumors were more vacuous and likened to the phenotype of Wnt-
driven mammary tumors (11). More recently, work in the MTB-
IGF1R model revealed that expression of the microRNA cluster
miR-200b/200a/429 suppresses tumor initiation driven by IGF1R
overexpression although the intricacies of the mechanism remain
unclear (25). Another, previously unmentioned, mouse mammary
tumor model is the Eef1a1-Kras*/WAP-Cre/Igf1rfl/fl mouse line.
This mouse line contains a mutated Kras gene including a
premature stop codon, flanked by loxP sites for Cre recombinase
recognition, under the control of a translational elongation factor
promoter, Eef1a1, that is ubiquitously expressed in all cell types.
Constitutive activation of Kras is controlled through tissue specific
expression of Cre recombinase in order to remove the premature
stop codon, resulting in constitutive Kras activation in a tissue of
June 2022 | Volume 13 | Article 911079
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interest and subsequent tumor formation. Utilizing the WAP-Cre
allowed the authors to study tumorigenesis specifically in pregnant
mice. Tumors arising in these animals exhibit a basal-like gene
expression signature in addition to upregulation of Igf1r expression,
determined bymicroarray analysis, which led the authors to identify
IGF1R as a viable therapeutic target. This model was developed as a
proof-of-concept with the goal of inhibiting tumorigenesis in
Eef1a1-Kras*/WAP-Cre animals. Conditional deletion of Igf1r
significantly increased tumor latency in pregnant mice,
reaffirming the status of IGF1R as an oncogene (12). These
models provided strong in vivo evidence to support the
conclusions that IGF1R is indeed pro-tumorigenic and has a
particular role in promoting tumor cell proliferation.

Tumor Suppressing Functions
In contrast to the above studies, other transgenic mouse lines exist
that provide evidence supporting tumor and metastasis suppressive
functions for the IGF1R (Table 1). We have generated novel
transgenic mouse lines that alter either IGF1R function or
expression in the context of Wnt1-driven tumorigenesis.
Previously, we crossed the aforementioned MMTV-dnIGF1R line
with the widely studied MMTV-Wnt1 mammary tumor model, to
generate a double transgenic animal, MMTV-Wnt1/dnIGF1R, to
investigate the role of IGF1R signaling in a basal-like mouse model
of breast carcinogenesis. Attenuating IGF1R signaling in this model
resulted in a dramatic phenotype characterized by decreased tumor
latency, increased tumor multiplicity, and a significant increase in
lung metastasis in an otherwise low (<15%) metastatic tumor
model, an observation that is unreported in the IGF1R
overexpression models. These tumors have enhanced basal cell
(Lin-CD24+CD29high) and luminal progenitor (Lin-

CD24+CD29lowCD61+) populations, suggesting inhibition of
IGF1R interferes with differentiation or maintenance of a
differentiated state (9). In addition to changes in cell population
heterogeneity, these tumors have increased matrix
metalloproteinase-secreting monocyte infiltration, collagen
staining, as well as decreased epithelial adhesion originating from
changes in cadherin expression (13, 26). Working with the MMTV-
Wnt1/dnIGF1R animal model led to the question of cell lineage
contribution to tumor initiation and metastasis. This resulted in the
development of a novel system with a lineage-specific deletion of
Igf1r in the context of Wnt-driven mammary gland tumorigenesis.
The MMTV-Wnt1/K8-CreERT/Igf1rfl/fl line allows for investigation
into the role of IGF1R specifically in the luminal lineage and to
determine its effect on tumor phenotype. Similar to the dnIGF1R
expressing Wnt tumors, luminal specific deletion of IGF1R resulted
in lower tumor latency and increased metastasis compared to
control animals (13). Work to fully characterize this model is
still ongoing.
IGF1R IN HUMAN BREAST CANCER

Early studies investigating IGF1R expression in human breast
cancer patients produced conflicting reports as to the prognostic
value of IGF1R expression in patient samples (27–29). This was
Frontiers in Endocrinology | www.frontiersin.org 4
likely due to the varied methodologies employed in each study to
determine expression, which was usually limited to
immunohistochemical analysis of a small, finite number of
relevant markers. In addition, the studies had relatively small
sample sizes and lacked other relevant information, such as tumor
molecular subtype. Microarray technology to evaluate gene
expression in human breast cancer samples allowed researchers
to identify gene expression profiles that characterized several
genetically distinct tumor subtypes denoted as normal-like,
luminal-A, luminal-B, HER2+, and triple-negative/basal-like (30,
31). In one of the earliest and largest (n = 2871) reports applying
these criteria in conjunction with IGF1R expression data from
human breast cancer patients, Yerushalmi et al. found a significant
positive correlation between high IGF1R expression (IHC Allred
score ≥ 7) and breast-cancer-specific survival (BCSS) in patients
with luminal-B tumors. Conversely, high IGF1R expression was
elsewhere associated with worse BCSS in patients with HER2/
ERBB2-enriched tumors (32). Around the same time, other
groups reported a strong positive correlation between IGF1R
expression and patients harboring luminal type tumors and with
BCSS (33–36). Additionally, a subsequent meta-analysis including
data from these publications amongst others (10 studies, 5,406
patients) reiterated the findings that IGF1R expression levels
positively correlated with overall survival and BCSS in hormone
receptor positive tumors, but negatively correlated with survival in
triple negative tumors (37). Taken together, these observations
support the hypothesis that the role of IGF1R in the primary
tumor phenotype is highly context dependent.

The relatively recent development of free, internet-based
genomics tools to help facilitate advancement in cancer
research has been become an invaluable resource. One such
tool is the cBioPortal which functions to consolidate the ever-
increasing number of publicly available human cancer datasets
into one, easily searchable, user-friendly application (38, 39). To
date, one such analysis through cBioPortal has been published
employing The Cancer Genome Atlas (TCGA) RNA-sequencing
breast cancer subset to further delineate correlations between
IGF and insulin signaling molecule expression and PAM50
tumor molecular subtype (40–42). The major finding of this
analysis, that included a number of molecules involved in these
pathways was that IGF-related molecules are enriched on the
transcriptional level in normal-like, luminal-A, and luminal-B
tumors, and decreased in HER2+ and basal-like tumors,
consistent with previous reports. Interestingly, INSR signaling
has frequently been discussed as a possible compensatory
mechanism for tumor cells when IGF1R is inhibited; however,
these data suggest a positive correlation between IGF1R
expression and INSR expression in human tumors. We
performed a similar analysis for IGF1R expression using a
different human breast cancer dataset, the Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC) database, with a focus on correlations between
IGF1R expression and PAM50 subtype, as well as probability of
survival (43, 44). This analysis further confirmed a positive
association with IGF1R expression and hormone receptor
positive tumors and a negative correlation with triple-negative
June 2022 | Volume 13 | Article 911079
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tumors. Importantly, high IGF1R expression was associated with
a better probability of survival, regardless of hormone receptor
status (26).

Here, we extend these analyses by using cBioPortal to further
explore the human data in both TCGA (TCGA Firehose Legacy)
and METABRIC databases. Narrowing the available patient set
to only include tumors which express higher than average IGF1R
Frontiers in Endocrinology | www.frontiersin.org 5
(z-score > 1) and lower than average IGF1R (z-score < -1), we see
a shift in the PAM50 subtypes where IGF1Rhigh tumors are more
commonly luminal-A and luminal-B and IGF1Rlow tumors are
classified more commonly as basal, ERBB2+/HER2+, or claudin-
low (Figure 1A). Additionally, in both the METABRIC and
TCGA subsets, there are lower levels of hormone receptor
expression in the IGF1Rlow cohort compared to IGF1Rhigh as
A B

D

E

F

C

FIGURE 1 | Clinical characteristic and gene expression analysis of IGF1Rhigh and IGF1Rlow human breast tumors from the Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) databases. Cohorts were generated by classifying patients by either high (z-score > 1,
METABRIC n = 300, TCGA n = 128) or low (z-score < -1, METABRIC n = 415, TCGA n = 153) expression of IGF1R, while average patients (-1 < z-score < 1) were
excluded. (A) PAM50 classification of patient tumors and hormone receptor expression status. (B) Lymph node positivity. (C) Gene expression microarray data for
ESR1, PGR, GATA3, and CCND1. (D) Hormone receptor status in the TCGA cohorts. (E) Mutation count. (F) Gene (left) and protein (right) expression data for ESR1,
PGR, GATA3, and CCND1. Statistical analyses were generated by cBioPortal and are student t-tests, where significance was defined as p < 0.05. N/A, Not Available.
June 2022 | Volume 13 | Article 911079
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well as a correlation with HER2+ tumor classification
(Figures 1A, C, D, F), similar to the findings of Farabaugh et
al. (41). Interestingly, lymph node positivity, a readout of early-
stage metastasis, is ~20% higher in the METABRIC IGF1Rlow

group, providing a human correlation between low IGF1R levels
and metastasis, consistent with our previous observations in the
MMTV-Wnt1/dnIGF1R model [Figure 1B (9)]. In the TCGA
dataset, these observations are consistent and extend beyond the
level of transcription with the protein expression data that is also
available for each tumor sample (Figure 1F, right). Mutational
load was another clinical characteristic that was altered between
the groups with IGF1Rlow patients having a higher mutational
burden (Figure 1E). Expression of CCND1 in both datasets is
increased in the IGF1Rhigh groups and recapitulates the findings
from the MTB-IGF1R model that tumorigenesis resulting from
IGF1R overexpression is cyclin D1-driven [Figures 1C, F (22)].
Furthermore, expression of IGF1R is also positively correlated
with GATA3, a well characterized promoter of luminal lineage
differentiation and whose loss of expression is associated with
enrichment of the luminal progenitor population [Figures 1C, F
(45, 46)].
DISCUSSION

The field’s understanding of the role of IGF1R in breast cancer
has continued to evolve over decades of study. Early work
summarized above convincingly justified the classification of
IGF1R as an oncogene with potent value as a therapeutic
target in human patients. More recently, though, following the
failure of the many clinical trials initiated with the goal of
inhibiting IGF1R in human patients, and recent data
illustrating the effect of inhibiting IGF1R on enhancement of
metastasis, it has become clear that the receptor’s role in
tumorigenesis is more nuanced and complicated than
previously thought. This is also reflected in the literature by a
number of studies that attempt to identify different mechanisms
of compensation induced by IGF1R inhibition and the efficacy of
a dual inhibitory approach with drugs such as cisplatin,
trastuzumab, and others (47–51). Conversely, in some
contexts, it may be beneficial to subsequently target the IGF
pathway in situations where upregulation or activation is
observed secondary to administration of therapy (52).
Importantly, however, the mechanistic questions still remain as
to how both driving and blocking IGF signaling via IGF1R result
in a tumor promoting phenotype.

Constitutive activation or overexpression of IGF1R is
sufficient to induce tumorigenesis characterized by tumors with
an increased luminal progenitor population (11, 23). Previous
work from our lab utilizing the MMTV-Wnt1/dnIGF1R mouse
tumor model also observed a similar increase in the tumor
luminal progenitor population (9). This seemingly
contradictory observation could potentially be explained when
considering the different biological processes in which IGF1R
plays a role, context (or cell type/stage) specificity, and the
unlikely compatibility of data from many of the models
Frontiers in Endocrinology | www.frontiersin.org 6
outlined above. In the case of the MMTV-CD8a-IGF1R model,
it is feasible to hypothesize that constitutive activation of IGF1R
is driving proliferation of the luminal progenitors at the
adolescent stage prior to the onset of puberty, since this is the
developmental stage during which the MMTV-LTR activates
(53). This is further supported by the data demonstrating that
these mice have stunted ductal outgrowth accompanied by
hyperproliferation of epithelial cells within the lumens of the
rudimentary ductal tree, as well as similar developmental defects
also observed in the MTB-IGF1R overexpression model. This
suggests that the cell-of-origin for the CD8-IGF1R tumors is
possibly a luminal progenitor cell whose proliferation may be
driven early in development through IGF1R signaling.

On the other hand, the shift seen in the luminal progenitor
population of the MMTV-Wnt1/dnIGF1R model could be
attributed to both the fact that the tumors are formed as a
result of Wnt1 overexpression [which could potentially drive
progenitor cell expansion (54)] and the strongly supported role
of IGF1R in luminal lineage differentiation. Early work in the
MMTV-Wnt1model has shown that these tumors express both
Krt6 and Sca1, markers for mammary progenitor cells that are
not expressed in tumors arising from MMTV-Neu or MMTV-
PyMT animal, suggesting a role of progenitors in initiation of
Wnt-driven tumors (54). Tumors resulting from the MMTV-
Wnt1 mouse tumor model are phenotypically basal-like, and
historically, basal-like tumors were hypothesized to originate
from a transformed myoepithelial progenitor cell (55).
However, Molyneux et al. demonstrated that basal-like
tumors resulting from BRCA1 mutations are derived from
luminal progenitors, and not myoepithelial cells (24, 56).
Similar to the MMTV-Wnt1 mouse, tumors containing
BRCA1 mutations have a significant population of luminal
progenitors. Additionally, BRCA1 plays a role in the DNA
damage response, a process that IGF1R has also been shown to
positively regulate, suggesting inhibition of BRCA1 could
potentially result in a similar phenotype as inhibition of
IGF1R [Figure 1E (47, 57, 58)]. This mechanism could
hypothetically be influenced by a decrease in IGF1R signaling
resulting in a block of luminal lineage differentiation while
concomitantly hampering the DNA damage response, driving
accumulation of luminal progenitors, and increasing the
statistical odds of tumor initiation in this population as a
result of an increase in mutational burden, especially in the
context of Wnt1-driven proliferation.

Another important piece of data unique to the MMTV-Wnt1/
dnIGF1R model was an observed shift in insulin receptor isoform
expression. The gene expression ratio of INSR-A to INSR-B is
significantly higher in these tumors and is of importance due to the
high affinity of IGF2 for INSR-A, identifying one potential
mechanism of resistance to IGF1R inhibition (9). Critically, a
similar correlation was seen in human participants of at least one
unsuccessful IGF1R-targeting clinical trial where patients, regardless
of treatment group, with higher expression levels of INSR-A or
INSR-B had significantly shorter progression-free survival (59).
These observations serve to further support the translational
relevance of the MMTV-Wnt1/dnIGF1R model to human disease.
June 2022 | Volume 13 | Article 911079
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An important distinction between the overexpression/
constitutive activation and inhibition models is the fact that
tumors arising from inhibition of IGF1R are metastatic, while the
existence of metastases in the former has not been reported (9).
This is particularly of interest considering metastasis is the
overwhelming cause of death in cancer patients (60). A recent
study of breast cancer patients published in 2017 revealed a
correlation between metastasis and low levels of IGF1R in
isolated circulating tumor cells, further supporting the
metastatic phenotype seen in our model and the human
METABRIC data [Figure 1B (61)]. In conclusion, the studies
summarized in this mini review highlight the clinical relevance of
contextual IGF1R expression during breast cancer tumorigenesis
and emphasize the need for further research in order to more
thoroughly define the mechanisms distinguishing IGF1Rhigh and
IGF1Rlow tumors with the ultimate goal being more targeted and
effective therapeutic strategies for patients.
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