
International  Journal  of

Environmental Research

and Public Health

Article

Investigation of the Importance of Climatic Factors in
COVID-19 Worldwide Intensity

Ploutarchos Tzampoglou * and Dimitrios Loukidis *

Department of Civil & Environmental Engineering, University of Cyprus, 1678 Nicosia, Cyprus
* Correspondence: tzampoglou.ploutarchos@ucy.ac.cy (P.T.); loukidis.dimitrios@ucy.ac.cy (D.L.)

Received: 14 September 2020; Accepted: 19 October 2020; Published: 22 October 2020
����������
�������

Abstract: The transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
and the severity of the related disease (COVID-19) are influenced by a large number of factors.
This study aimed to investigate the correlation of COVID-19 case and death rates with possible
causal climatological and sociodemographic factors for the March to May 2020 (first wave) period
in a worldwide scale by statistically processing data for over one hundred countries. The weather
parameters considered herein were air temperature, relative humidity, cumulative precipitation,
and cloud cover, while sociodemographic factors included population density, median age, and
government measures in response to the pandemic. The results of this study indicate that there is a
statistically significant correlation between average atmospheric temperature and the COVID-19 case
and death rates, with chi-square test p-values in the 0.001–0.02 range. Regarding sociodemographic
factors, there is an even stronger dependence of the case and death rates on the population median
age (p = 0.0006–0.0012). Multivariate linear regression analysis using Lasso and the forward stepwise
approach revealed that the median age ranks first in importance among the examined variables,
followed by the temperature and the delays in taking first governmental measures or issuing
stay-at-home orders.
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1. Introduction

At the end of 2019, a new virus causing severe acute respiratory syndrome (SARS-CoV-2) was
reported in Wuhan, China, and, due to its high human-to-human transmissibility [1], it quickly spread
worldwide, resulting in the ongoing COVID-19 pandemic [2]. By the end of May 2020, which roughly
signified the end of the first epidemic wave for most of the countries of the northern hemisphere,
the total number of worldwide confirmed cases of COVID-19 was around six million, while the total
worldwide deaths had reached 0.37 million [3], causing serious problems to the health systems of
many countries.

By a simple examination of the pandemic data so far, one can easily notice the striking disparities
(of orders of magnitude) in the reported confirmed case and death counts between countries (Figure 1).
If certain socioeconomic indexes are considered alone, counterintuitive and irrational trends may
be observed. For example, taking the Human Development Index (an index that includes the gross
national income (GNI) per capita, the life expectancy, and the education level of each country) into
account and comparing it with the total deaths per million of inhabitants (TDM) for the period of
3/2020–5/2020, it seems as if the countries of high development (and thus generally better health
systems) are more susceptible to COVID-19 (Figure 2A). However, if we consider parameters directly
associated with how aged is the population of a given country, e.g., the health index as defined by the
United Nations Development Program (UNDP) or the median age (Figure 2B,C), it becomes obvious
that the trend of Figure 2A can be explained, at least partly, by the fact that the populations of the more
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developed countries have a comparatively larger proportion of aged persons that are, in turn, more
susceptible to develop heavy illness due to the SARS-CoV-2.

Figure 1. Worldwide distribution of (a) COVID-19 cases and (b) COVID-19-related deaths for the
period of 1/3/2020–31/5/2020.
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Figure 2. Variation of the total deaths per million for the period of 1/3/2020–31/5/2020 with (A) Human
Development Index, (B) health index, and (C) median age (data for 167 countries).

The vast ranges of case and death rates observed in Figure 1 could also be partially attributed to
differences in the testing rates arising from the inherent difficulties faced when dealing with a new
highly transmissible pathogen (e.g., access to adequate numbers of test kits and the availability of
qualified laboratories). Nonetheless, large disparities in case and death rates are observed even among
countries with similar economic prosperity, age structure and social characteristics. For example,
in eurozone countries (the governments of which responded alike to the pandemic), the number of
deaths per million of inhabitants in the 3/2020–5/2020 period ranged from 5 to over 800, i.e., two
orders of magnitude difference. Thus, it becomes evident that the pathogen’s spread and impact are
strongly affected by additional factors. These can be weather conditions, the promptness and mix of
governmental response measures, air pollution, the volume of external travel, the frequency of use of
public transportation, or other habitual and cultural/behavioral factors.

The effect of climatic factors on influenza epidemics has long being recognized [4–9]. More recently,
after the onset of the new pandemic, a number of studies have been carried out to investigate the
possible effect of weather on the spread of COVID-19. Some of these studies have focused on specific
regions and countries, such as 122 cities in China [10], Wuhan, China [11], Mainland China [12], Jakarta,
Indonesia [13], India [14,15], Iran [16], Brazil [17], Europe and United States [18], and Russia [19],
while others have examined the effect of weather conditions on the pandemic at a global scale [20–41].
Smit et al. [42], who presented a comprehensive critical review of the relevant literature published in
the first half of 2020, concluded that it is important for studies to include the effects of socio-economic
factors and non-pharmaceutical interventions (such as government response measures) in their analysis.

This paper attempts to shed light on the degree of influence of climatic factors, namely temperature,
relative humidity, precipitation, and cloud cover, on the intensity of the COVID-19 epidemic by
examining the data of reported cases and deaths on a worldwide scale for the period of 3/2020–5/2020
(first wave) while simultaneously considering other important factors (social, economic, government
response) that are expected to have a strong effect. First, one-to-one correlations are examined between
the total numbers of deaths or cases (epidemic effects) and probable causal variables. Then, interference
between causal variables is taken into account in order to reveal the actual degree of influence of
the climatic factors in relation to sociodemographic ones and those related to government response.
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The results of this study, which help understand the relationship between the spatial distribution
of the climatic conditions and the severity of COVID-19 on a worldwide scale, could be useful to
decision-making authorities for the assessment of the pandemic risk and the management of the
response measures.

2. Data Collection

The epidemiological data of total cases and total deaths due to COVID-19 in each country were
taken from European Commission (EC) [43], Beltekian et al. [44], and Hale et al. [45] for the period
between 1/3/2020 and 31/5/2020. These were used to calculate case and death rates as the total cases per
million of inhabitants (TCM) and the total deaths per million of inhabitants (TDM) due to COVID-19
using the following formulas:

TCM =
Total number of cases on 31/5/2020 − Total number of cases on 1/3/2020

Country population× 10−6 (1)

TDM =
Total number of deaths on 31/5/2020 − Total number of deaths on 1/3/2020

Country population× 10−6 (2)

Furthermore, data about the median age and the government response measures taken in each
country to reduce the spread of the pandemic—namely the overall stringency index of the government
measures and the dates of officially recorded first cases, the imposition of first measures, and the
imposition of ‘stay-at-home’ order—were gathered from Beltekian et al. [44] and Hale et al. [45],
while data on the Human Development Index (HDI), population, etc., were collected from the Global
Data Lab (GDL) database originating from the United Nation Development Program and referring to
the year 2018 [46].

Weather data, such as the monthly average atmospheric temperature (◦C), monthly average
relative humidity (%), and cumulative precipitation (mm), were collected from the Copernicus Program
database [47] as raster files. These variables were estimated from climate reanalysis ERA-Interim and
ERA5, depending on the source. The fraction of cloud cover, which is the proportion of a grid box
covered by cloud (liquid or ice) and varies between 0 and 1, was taken from the Copernicus Program
for a pressure level of 1000 hpa [48]. Then, the spatial analysis tool of the ArcGIS software (by ESRI)
was employed to derive the spatial average of these variables across the entire territory of each country.
After spatial averaging, the temporal average values were computed for the temperature, relative
humidity, and cloud cover for the March 2020 to May 2020 period. Figure 3 presents maps showing the
distribution of country average values of temperature, humidity, and cumulative precipitation.
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Figure 3. Worldwide distribution of (a) mean temperature, (b) mean relative humidity, and (c)
cumulative precipitation for the period of 1/3/2020–31/5/2020.
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3. Data Analysis

The collected data were divided in three groups of variables (Table 1). These were (i) the causal
variables, i.e., the factors for which it was reasonable to assume that they may have an effect on the
development of the pandemic; (ii) the effect variables, namely the total deaths and total cases per
million of inhabitants; and (iii) the filtering variables, which were used to split and isolate datasets in
order to minimize potential bias.

Table 1. Variables considered in the statistical analysis.

Effect Variables Causal Variables Filtering Variables

Total Deaths per Million (TDM)

Total Cases per Million (TCM)

Climatic
Temperature (◦C)

Relative humidity (%)
Cumulative precipitation (mm)

Cloud cover

Sociodemographic
Population density (persons/km2)

Median age (years)
Percentage of Population over 65 (%)

Government response
Stringency IndexDelay between first case and

first measures (days)
Delay between first case and “stay at home”

order (days)

Human Development Index (HDI)

Median Age (years)

Regarding the filtering variables, due to many differentiations among countries arising from the
difficulties faced during the early stage (first wave) of the pandemic that could affect the reported
epidemiological data and, thus, the TCM and the TDM (e.g., the availability of test kits and equipment,
the extent and intensity of testing campaigns, and consistency in reporting of cases and deaths),
it was decided to not include in the analysis the least developed countries. For this purpose, the
countries were sorted with respect to their Human Development Index (HDI), and those with an
HDI < 0.7 were excluded from further statistical processing. The cut-off value of 0.7 coincides with
the divider considered by the United Nations Development Program (UNDP) between the “high
human development” and “medium human development” classes. This choice left the dataset with
an adequately large number of countries (101 from the 169 for which data were available) and still
contained the full spectrum of TDM values, including all countries with TDM > 100 (Figure 1a).
Given the strong dependence of the TDM on the population age (Figure 1b,c), a second group was
created by isolating the countries with a median age of 35 years and larger. The second group, which
numbered 55 countries, turned out to be a subgroup of the first one, i.e., all countries in it also had an
HDI > 0.7. It should be stressed that both groups covered the full range of climate types, from tropical
to polar.

The causal variables included climatic and sociodemographic factors, as well as factors related
to the government response to the pandemic. The climatic factors examined herein, namely the
temperature, relative humidity, precipitation, and cloud cover, are generally thought to have a role in
influenza epidemics, a connection investigated in previous studies mentioned in the introduction. It has
been observed that cold weather aggravates the spread of respiratory infections [5,49–51], while clouds
block solar UV light, which decreases the survivability of viruses in the outdoor environment [52,53].
It has long been debated whether absolute humidity or relative humidity should be considered as a
proper driver of the influenza seasonality [6,54,55]. Marr et al. [55] pointed out that, nowadays, it is
possible to explain the mechanism of how relative humidity may influence the transmission of the
influenza virus (i.e., via its role in aerosol droplet size, evaporation, and salt concentration), but a
plausible mechanism explaining how absolute humidity can directly affect droplet size has not yet
been established.
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Regarding social structural characteristics, given the fact that COVID-19 is associated with very
high mortality among the elderly, we considered the median age and the percentage of the population
that is above 65 years old to quantify how aged a society is. Moreover, high population density is also
thought to be a risk factor [56]. It is reasonable to assume that delays in government response are
affecting the outcome of the epidemic [57,58]. We considered two types of delays: the time difference
between the officially recorded first case and (i) the imposition of a “stay-at-home” order and (ii) taking
the “first measures.” According to Hale et al. [45], a stay-at-home order is defined as any of the
following: (a) the recommendation of not leaving the house; (b) the requirement of not leaving the
house except for work, daily exercise, grocery shopping, and ‘essential’ trips; (c) the requirement of
not leaving the house but with the exceptions being much stricter (e.g., allowed to leave the house
only once a week or only one person can leave at a time). The first measures varied in kind from
country to country, although in most cases involved either public information/awareness campaigns,
international travel restrictions, or the cancelling of public events. Finally, the Stringency Index is
a composite measure that is based on nine response indicators, such as school closures, workplace
closures, travel restrictions, and stay-at-home orders [44]. This index was averaged for a longer period
(1/1/2020–31/5/2020) than the climatic factors because it was considered that measures taken even
before the detection of first cases, such as banning travel from countries that exhibited active cases,
reduced the progress of the pandemic during the 1/3/2020–31/5/2020 period.

3.1. Climatic Factors

Figure 4 plots the frequency of TDM classes (low: <10; moderate: 10–100; high: >100) and
TCM classes (low: <100; moderate: 100–1000; high: >1000) for three groups of average atmospheric
temperature T. The ranges of values were selected in such a way that the number of countries in each
group was similar. A strong dependence of both the TDM and the TCM on temperature is apparent,
as the percentage of countries with high death rates (red group) decreases as T increases, while the
percentage of countries with low death rates (green group) increases with T (Figure 4a,c). Similar trends
are observed for TCM (Figure 4b,d). The vast majority of countries with T > 20 ◦C experienced the
pandemic to a substantially lesser degree. The p-values from χ2 tests are also reported in the figures,
with the null hypothesis being that the intensity of the epidemic (quantified by the TDM and the TCM)
is independent from temperature. In all cases, the p-value is clearly less than 0.05 (the null hypothesis
is rejected), suggesting a statistically significant correlation of the intensity of the epidemic with the
temperature, especially in the case of the death rate. A small rise in p-values is noted when isolating
the group of countries with a population median age of >35 years.

Based on Figure 5, it could be argued that there is a correlation of the TDM (and to a much lesser
extent TCM) with the average relative humidity (RH). Nonetheless, the χ2 test p-values are higher in
Figure 5 than in the case of temperature, suggesting a weaker correlation between relative humidity
and intensity of the epidemic. From Figure 5a,c, it appears that the percentage of countries with a
TDM > 100 (red group) is elevated when RH is larger than 60%. However, the group of countries
with a TDM below 10 (green group) does not show a clear decreasing course with increasing RH, as
their frequency is enhanced for RH > 70%. Similar observations can also be made in Figure 5b,d with
respect to TCM. This can be partially attributed to the fact that many countries with an RH > 70% are
located close to the equator or in the southern hemisphere, such as countries in Southeast Asia (e.g.,
Brunei, Indonesia, Malaysia, and Philippines) or around the Caribbean (e.g., Belize, Costa Rica, Cuba,
and Jamaica), as well as New Zealand and Uruguay, and consequently had high temperatures in the
examined time period. This observation suggests that RH does not influence the pandemic above a
certain threshold of temperature. Most importantly, however, the epidemic severity appears to be
strongly intensified if RH is in the 60–80% range provided that T is less than 15 ◦C, as can be better
seen in Figure 6.
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Figure 4. Frequency of total deaths per million (green: low, 0–10; orange: moderate, 10–100; red: high,
>100) and total cases per million (green: low, 0–100; orange: moderate, 100–1000; red: high, >1000) as a
function of the average temperature for countries with an HDI over 0.7 (a,b) and a median age over 35
years (c,d).

Figure 5. Frequency of total deaths per million (green: low, 0–10; orange: moderate, 10–100; red: high,
>100) and total cases per million (green: low, 0–100; orange: moderate, 100–1000; red: high, >1000) as a
function of the relative humidity for countries with an HDI over 0.7 (a,b) and a median age over 35
years (c,d).
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Figure 6. Total deaths per million as a function of the relative humidity and temperature (HDI > 0.7).

It is worth mentioning that studies on influenza [54,59,60] have shown that its transmissivity
does not monotonically depend on RH if T lies between 10 and 25 ◦C, but it exhibits a local decrease
(“valley”) inside the range of 40–60% (in which case the virus particles become unstable) and a local
peak for RH between 60% and 75%. For higher values of RH, the transmissivity decreases sharply,
regardless of the temperature, as aerosol droplets take on water and increase in size, thus settling more
quickly due to gravity [59].

Relative humidity, precipitation, and cloud coverage are climatic factors that are naturally related
to each other. However, unlike RH, cumulative precipitation and cloud cover were found to correlate
rather poorly with both the TDM and the TCM (Figures 7 and 8). The p-values in all cases are high,
indicating that there is no statistically significant correlation.

Figure 7. Frequency of total deaths per million (green: low, 0–10; orange: moderate, 10–100; red: high,
>100) and total cases per million (green: low, 0–100; orange: moderate, 100–1000; red: high, >1000) as a
function of the cumulative precipitation for countries with an HDI over 0.7 (a,b) and a median age over
35 years (c,d).
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Figure 8. Frequency of total deaths per million (green: low, 0–10; orange: moderate, 10–100; red: high,
>100) and total cases per million (green: low, 0–100; orange: moderate, 100–1000; red: high, >1000) as a
function of the cloud cover for countries with an HDI over 0.7 (a,b) and a median age over 35 years (c,d).

3.2. Sociodemographic Factors

The contact numbers and transmission chains are larger in densely populated areas, and, thus,
it would be reasonable to expect that countries with large population density would be more severely
hit by the pandemic. Based on Figure 9, no specific trend can be discerned with respect to population
density. This is also attested by the large p-values, which are in the 0.15–0.4 range. This admittedly
counterintuitive observation is most likely caused by the treatment of data at a countrywide level,
i.e., the population density treated herein was the total population of a country divided by its entire
territorial area. For example, there are certain countries with a high TDM > 100 but with a population
density below 50 inhabitants/km2 (e.g., Brazil, Canada, and Peru). Though these countries occupy
vast areas, large parts of the population are concentrated in densely populated urban centers. A more
detailed spatial analysis at first or second level administrative divisions may more clearly demonstrate
and accentuate the role of population density. Nonetheless, the recent epidemiologic study for
COVID-19 by Hamidi et al. [61], which was done at the level of US counties, also showed weak to no
dependence of the epidemic severity on population density.

Figure 10 indicates that there is a strong correlation between both the TDM and the TCM with the
median age of the population, with the p-values being well-below 0.05. This finding is well-expected,
since the rate of COVID-19 cases is known to be comparatively low among young persons [62].
Given that the death rate, in particular, increases sharply with patient age, Figure 11 shows plots of the
TDM and TCM frequencies as a function of the percentage of the population aged 65 years and older.
In this case, the correlation with the TDM is even stronger than in Figure 10a, while the correlation
with the TCM is weaker but still statistically significant.
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Figure 9. Frequency of total deaths per million (green: low, 0–10; orange: moderate, 10–100; red: high,
>100) and total cases per million (green: low, 0–100; orange: moderate, 100–1000; red: high, >1000) as a
function of the population density for countries with an HDI over 0.7 (a,b) and a median age over 35
years (c,d).

Figure 10. Frequency of (a) total deaths per million (green: low, 0–10; orange: moderate, 10–100; red:
high, >100) and (b) total cases per million (green: low, 0–100; orange: moderate, 100–1000; red: high,
>1000) as a function of the median age for countries with an HDI over 0.7.

Thus far, the TDM and the TCM have shown strong correlations with the average temperature
and median age, with similar χ2 test p-values. However, this does not necessarily mean that they are
of similar significance. This is because of the correlation between these two causal variables. The first
wave of COVID-19 unfolded during a period that was late winter and spring for the countries in the
temperate zone of the northern hemisphere. Most of these countries happen also to be the most aged,
while countries closer to the equator and most of the countries in the southern hemisphere have a
relatively small median age. This fact is evident in Figure 12a, which plots the TDM as a function of the
median age for three groups of countries separated based on the average temperature T. It can be seen
that the majority of countries with T < 15 ◦C, which happen to be those most affected by COVID-19
(TDM > 100), have a median age larger than 35 years, while the opposite is true for the countries
with T > 15 ◦C, most of which are located in South America, Africa, Middle East, and Southeast Asia.
Similarly, most of the countries with average relative humidity in the 60–80% range have a median age
larger than 35 years (Figure 12b). The interplay between the causal factors is addressed in Section 4,
where their relative importance is examined using regression.
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Figure 11. Frequency of (a) total deaths per million (green: low, 0–10; orange: moderate, 10–100; red:
high, >100) and (b) total cases per million (green: low, 0–100; orange: moderate, 100–1000; red: high,
>1000) as a function of the percentage of population with an age over 65 years for countries with an
HDI over 0.7.

Figure 12. Total deaths per million as function of the population median age for different ranges of (a)
temperature and (b) relative humidity (HDI > 0.7).
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3.3. Government Response Measures

When considering the Stringency Index (SI) of the government response measures, as defined by
Beltekian et al. [44], the p-values were found to be very high, indicating a weak correlation (Figure 13).
On the contrary, the promptness of the governmental response seems to be instrumental in the
containment of the epidemic. Based on Figure 14, countries that were proactive and responded by
taking preventive measures one or two months before the officially recorded first case in the country
(“negative” delay) experienced the first wave of COVID-19 less severely than countries that started
taking the first measures after the detection of the first case.

When we isolated the countries with a median age >35 years (Figure 14b,c), the data suggested
that the main role of the first governmental measures is to prevent a country from shifting from the
group of moderate TDM and TCM values (orange) to the group with high values (red), while the
frequency of countries that experienced the pandemic mildly is practically unaffected by the time
difference between first measures and first case. Finally, according to Figure 15, the benefits of taking
preventive measures early are rather independent from temperature, as a rising trend in the TDM
with increasing time difference between the first measures and first case is observed in all temperature
groups, especially those with T < 15 ◦C.

As seen in Figure 16, the frequency of countries that experienced the pandemic severely (TDM > 100
and TCM > 1000) increases steadily with increasing time difference between the official record of first
case and the imposition of stay-at-home. With χ2 test p-values generally close or well-below 0.05,
the delay in issuing stay-at-home order is judged as statistically significant in limiting the intensity of
the epidemic. Moreover, with only very few exceptions, countries that did not impose stay-at-home
fall in the groups of moderate (orange) and high (red) death and case rates. On the other hand,
the frequency of countries with low death and case rates (green group) is practically unaffected by a
delay in imposing stay-at-home, even of the order of two months. This may suggest that stay-at-home
is mostly effective in preventing the escalation of the impact from moderate (orange) to high (red) in
countries that are more susceptible to the epidemic due to other factors.

Figure 13. Frequency of total deaths per million (green: low, 0–10; orange: moderate, 10–100; red: high,
>100) and total cases per million (green: low, 0–100; orange: moderate, 100–1000; red: high, >1000) as a
function of the average Stringency Index for countries with an HDI over 0.7 (a,b) and a median age
over 35 years (c,d).
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Figure 14. Frequency of total deaths per million (green: low, 0–10; orange: moderate, 10–100; red: high,
>100) and total cases per million (green: low, 0–100; orange: moderate, 100–1000; red: high, >1000) as a
function of the time difference between first case and first measures for countries with an HDI over 0.7
(a,b) and a median age over 35 years (c,d).

Figure 15. Total deaths per million as function of the time difference between the officially recorded
first case and the first government measures for different temperature groups (HDI > 0.7).
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Figure 16. Frequency of total deaths per million (green: low, 0–10; orange: moderate, 10–100; red: high,
>100) and total cases per million (green: low, 0–100; orange: moderate, 100–1000; red: high, >1000) as a
function of the time difference between first case and the imposition of “stay-at-home” measure for
countries with an HDI over 0.7 (a,b) and a median age over 35 years (c,d).

4. Multilinear Regression

4.1. Methodology

In the previous section, the epidemic effects were examined by considering each time a single
causal variable, while the issue of possible interplay between certain causal variables was raised.
In this section, we fit a linear equation combining all or groups of the causal variables, namely
temperature, relative humidity, precipitation, cloud cover, population density, median age, government
measures stringency index, delay in imposing first measures, and delay in imposing stay-at-home
order. The percentage of population above 65 years old was not included in the set of variables since it
exhibited a very strong correlation (R2 = 0.83) with the median age. The dependent variable was set to
be the TDM given that it generally exhibited the strongest correlations with the causal variables, as
shown in the previous section, and is less prone to bias caused by the testing numbers. Each causal
variable Xk enters the linear equation in the normalized form of (Xk − Xk,min)/(Xk,max − Xk,min), where
Xk,min and Xk,max are the minimum and maximum values of the variable in the dataset. With this
normalization, all independent variables of the equation vary from 0 to 1. Hence, the linear equation to
be fitted takes the following form:

TDM = C0 + C1
T−Tmin

Tmax−Tmin
+ C2

RH−RHmin
RHmax−RHmin

+ C3
PR−PRmin

PRmax−PRmin
+ C4

CL−CLmin
CLmax−CLmin

+

+C5
PD−PDmin

PDmax−PDmin
+ C6

MA−MAmin
MAmax−MAmin

+ C7
SI−SImin

SImax−SImin
+ C8

FM−FMmin
FMmax−FMmin

+ C9
SH−SHmin

SHmax−SHmin

(3)

where T is the average temperature (◦C), RH is the average relative humidity (%), PR is the cumulative
precipitation (mm), CL is the average cloud cover, PD is the population density (persons/km2), MA is
the population median age, SI is the average stringency index, FM is the delay between first case and
imposition of first measures (days), and SH is the delay between first case and stay-at-home order
(days). To include the countries that did not impose stay-at-home in the regression analysis, their
SH was calculated as the time difference between the officially recorded first case and the end of the
investigated time period, i.e., 31/5/2020.
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It must be stressed here that the purpose of the equation fitting was not to establish a predictive
model but to discern the relative influence of the causal variables and rank them with respect to their
importance. This is achieved herein using two conceptually different approaches: (i) the forward
stepwise regression procedure and (ii) Lasso regression (along with its variation, the elastic net
regression). The forward stepwise regression consists of performing consecutive multivariate linear
regression calculations, starting with a single causal variable and adding in each step one more variable
until the full set of n selected causal variables is exhausted [63,64]. With each step, the sum of squared
errors (SSE) decreases. A measure of the importance of a variable k is the reduction increment in SSE
induced by its inclusion in the equation (∆SSEk). Because ∆SSEk depends on the order with which the
variables are added to the linear model during the stepwise procedure, calculations are performed
for all possible permutations of the causal variables (numbering n! in total) and the average ∆SSEk
is calculated and subsequently used to rank the importance of each variable k. Moreover, it can be
proven that, by normalizing ∆SSEk with the total sum of squares SST, one can obtain the increase in the
coefficient of determination R2 caused by the inclusion of variable k in the equation (∆R2

k). To perform
the calculations, the above procedure was scripted in MATLAB.

Lasso regression [65] introduces in the objective function a penalty term which is the sum of the
absolute values of the linear equation coefficients Ck (k = 1,2, . . . , n) times a user specified multiplier
λ (i.e., λΣ|Ck|). The elastic net regression [66] is a generalized version of Lasso in which the penalty
term is a weighted average of the sum of the absolute values of the coefficients and the sum of their
squares (i.e., λαΣ|Ck| + λ(1 − α)ΣCk

2). If the weight factor α is set equal to 1.0, the regression is the
same as the original Lasso, while as α decreases towards zero, the elastic net method tends to the
ridge regression [67]. Herein, computations were performed for α = 1.0 and α = 0.9. By penalizing
the presence of Ck’s, these methods result in fittings that contain less non-zero coefficients (i.e., fewer
causal variables than originally prescribed are effectively used) as λ is increased. Hence, a ranking of
the importance of the causal variables could be obtained by repeating the regression calculations for a
succession of increasing λ values. For very small λ values (negligible penalty), the fitted Equation (3)
contains all nine causal variables. As λ increases, variables are successively dropped from the equation
(their respective coefficients Ck became zero). The larger the λ for which Ck becomes zero (threshold
value λT), the greater is the importance of the respective variable. The Lasso and elastic net calculations
were performed using the pertinent built-in function in MATLAB.

4.2. Forward Stepwise Regression

The results of the stepwise linear regression approach are shown in Tables 2 and 3 for a selection
of combinations of causal variables. The average values of the increase in R2 due to the inclusion of
each variable in the linear equation (∆R2) from all permutations are given in Table 2, while Table 3
shows the corresponding regression coefficients. Combination A contained all nine variables, and the
number of all possible permutations in this case was 362,880. Combinations B, C, and D excluded the
cloud cover, the SI, and both of them at the same time, respectively, from the equation, because, as
shown the previous section, they manifested the weakest correlation with TDM. Moreover, cloud cover
is naturally correlated to a certain degree with humidity and precipitation. The cloud cover and SI
were left outside the equation along with other variables for the remaining combinations presented in
Tables 2 and 3. Combinations E, G, I, and J contained only one of the three variables that are pertinent
to atmospheric water (humidity, precipitation, and cloud cover). Finally, combinations H, I and J were
set to contain only one variable pertaining to government response measures.
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Table 2. Increase in coefficient of determination (∆R2) due to inclusion of variables in Equation (3).

Variable
Combination

A B C D E F G H I J

Temperature 0.041 0.042 0.039 0.041 0.042 0.037 0.042 0.045 0.046 0.047
Relative humidity 0.009 0.010 0.007 0.008 0.010 0.007 0.008 0.008 0.007

Precipitation 0.004 0.004 0.004 0.003 0.002 0.004 0.003
Cloud cover 0.003 0.003

Population density 0.012 0.012 0.014 0.013 0.015 0.014 0.013 0.013 0.016
Median age 0.066 0.067 0.064 0.064 0.067 0.069 0.065 0.067 0.068 0.076

Stringency index 0.014 0.014
Delay in first measures 0.045 0.045 0.040 0.040 0.041 0.042 0.041 0.047 0.048
Delay in stay-at-home 0.034 0.034 0.027 0.027 0.027 0.026 0.027 0.034

Table 3. Calculated values of regression coefficients.

Variable Coefficient
Combination

A B C D E F G H I J

Temperature C1 −108.9 −88.9 −86.7 −89.7 −93.8 −60.6 −86.8 −103.9 −99.1 −90.9
Relative humidity C2 82.2 79.1 34.8 34.9 62.7 46.1 34.7 54.2 40.6

Precipitation C3 13.4 −17.9 11.3 16.3 45.0 −14.8 28.1
Cloud cover C4 −43.5 6.6

Population density C5 48.8 47.5 72.9 73.3 80.3 70.3 70.3 64.9 78.9
Median age C6 113.8 120.2 109.2 108.1 112.6 125.7 106.4 110.1 107.1 127.7

Stringency index C7 261.0 246.9
Delay in first measures C8 174.2 167.7 128.5 129.2 130.9 133.9 127.5 156.0 153.6
Delay in stay-at-home C9 158.8 157.3 94.7 94.4 94.3 91.4 95.5 122.1

Intercept C0 −267.7 −270.4 −52.7 −50.4 −35.3 −78.2 −54.1 −31.5 −37.5 −3.9

In all combinations, the variable with the largest ∆R2 is clearly the median age (Table 2). The delay
in imposition of first measures and the average temperature come second and third interchangeably
depending on the combination, producing practically the same ∆R2 values, while the delay in
stay-at-home ranks fourth (Figure 17). The variables related to atmospheric water appear to be of
small to negligible importance, with the relative humidity being the most significant among the
three. The very week correlation of TDM with cumulative precipitation and cloud cover is also
manifested in the sign of the corresponding regression coefficients (C3 and C4), which, in certain
combinations, turn out to be negative. It should be noted though that the actual significance of
the relative humidity could be larger, given that it most likely has a non-monotonic effect on viral
transmissibility, as discussed in Section 3.1, and that a linear regression inherently cannot capture
non-monotonic dependencies. The same could be argued for the precipitation and cloud cover, given
that these variables are interrelated with relative humidity.

As expected, the resulting coefficient for the temperature (C1) is negative in all combinations
(Table 3), i.e., the TDM decreases with increasing average atmospheric temperature. The same would be
anticipated for the coefficient for the SI (C7). However, C7 turns out to be consistently positive, implying
that the TDM increases with the overall strictness of the government response. This counterintuitive
result is probably because the SI is not purely a causal variable and can be actually considered an effect
of the observed case and death rates. For example, if the epidemic in a given country escalates beyond
control and overwhelms the health system, it is understandable that the government will ramp up the
response and impose increasingly stricter measures in order to regain control.

The delay in issuing a stay-at-home order can also be argued to be a mixed cause/effect variable,
i.e., that the delay is, to a certain extent, the outcome of how the epidemic is unfolding in a given
country. For example, a state may choose not to impose stay-at-home measures at all if the case or
death rates remain low due to other factors, or they may choose to impose stay-at-home measures late
when certain thresholds are eventually exceeded. In case the delay in issuing a stay-at-home order was
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more an effect of the death rates rather than the cause, then it would correlate negatively with the TDM
and the corresponding regression coefficient (C9) would be negative. As seen in Table 3, the resulting
C9 values are always positive and the corresponding ∆R2 values are not negligible, suggesting that the
stay-at-home measure is a factor instrumental in preventing escalation of the epidemic.

Figure 17. Rank of importance of causal variables based on stepwise regression.

This study relied on considering spatial averages across the entire territory of a country. It can
be argued that such treatment may have been a source of bias in the analysis, especially in the case
of large countries, as well as countries that span a wide latitude range in the temperate and arctic
zones, in which case the differences in temperature (and possibly in other weather variables) are
naturally large. Figure 18 shows the stepwise regression results for combination C when the six largest
countries (Australia, Brazil, Canada, China, Russia, and USA) and two countries spanning a wide
range of latitudes (Argentina and Chile) are removed from the dataset. It can be seen that exclusion of
these countries has only a small effect on ∆R2, and the ranking remains the same as in the case of the
complete dataset.

Figure 18. Effect of excluding large countries on the importance rank of causal variables resulting from
stepwise regression.



Int. J. Environ. Res. Public Health 2020, 17, 7730 19 of 25

4.3. Lasso and Elastic Net Regression

Figure 19 shows the variation of the coefficients Ck with increasing λ (“trace plots”) from the
application of Lasso regression (α = 1.0) and elastic net regression with α = 0.9, considering all nine
causal variables of Equation (3). The λ values at which the curves reach the horizontal axis (Ck = 0)
are the threshold λT values, which are plotted in Figure 20 (normalized with respect to the λT for the
median age). It can be observed that for α = 1.0 (Figure 19a), the curves dip more abruptly towards
the horizontal axis and reach generally different λT values than in the case of α = 0.9 (Figure 19b).
Nonetheless, the inferred ranking of the importance of the variables is the same for both α values, with
the exception of the stringency index and the cloud cover that switch places (Figure 20).

Figure 19. Trace plots of coefficients from: (a) Lasso regression and (b) elastic net regression.

The rankings from the Lasso regression and elastic net regression generally agree with that from
the forward stepwise regression. As in the case of the stepwise regression results (Table 2 and Figure 17),
the median age turns out to be by far the most important variable, while the variables related to
atmospheric water (RH, precipitation, and cloud cover) are clearly less significant compared to the
government response measures (Figure 20). Furthermore, based on the Lasso results, the temperature,
the delay in taking the first measures, and the delay in imposing stay-at-home order were found to be
of almost equal importance, with the temperature being only slightly ahead. The differences among
them are accentuated if α = 0.9. Figure 19 shows that the coefficient for the SI always remains positive
(i.e., the severity of the epidemic increases with an increasing SI), an ambiguous outcome that, as
discussed in the previous paragraph, probably stems from the fact that the stringency index is partially
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an effect variable. It should be stressed here that excluding the SI from Equation (3) did not change the
ranking sequence seen in Figure 20.

Figure 20. Rank of importance of causal variables based on Lasso and elastic net regression.

Finally, Lasso regression calculations were repeated excluding Argentina, Australia, Brazil,
Canada, China, Chile, Russia, and USA in order to obtain results for a dataset in which the effect of
spatial averaging across vast territories and wide range of latitudes was smaller. As seen in Figure 21,
the exclusion of these countries caused insignificant changes in the λT, with the exception of that
corresponding to the temperature, the role of which appears elevated. Despite this, the ranking of the
variables remains the same as in the case of the complete dataset.

Figure 21. Effect of excluding large countries on the importance ranking of causal variables based on
Lasso regression.
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5. Conclusions

Due to its high human-to-human transmissibility, COVID-19 quickly spread worldwide. However,
discrepancies of orders of magnitudes have been observed among the countries in terms of case and
death rates. To discern the role which climatic factors play in the local epidemic intensity in conjunction
with sociodemographic factors and government response measures, atmospheric data were processed
in Geographic Information System (GIS) and statistically analyzed for the period of the first wave of
the pandemic.

Based on the results of the present study, among the climatic variables, the average temperature
showed a strong correlation with both death and case rates. Its influence appears to be of at least
equal importance to the promptness of the governmental response. Relative humidity was found
to have a noticeable influence that was not easily discerned, probably due to its non-monotonic
character. Nonetheless, the age structure of the population clearly emerged as the most important risk
factor. On the contrary, our analysis found that population density correlated rather weakly with the
epidemic intensity.

With respect governments’ response to COVID-19, the time difference between the first case
detection in a given country and the imposition of first measures (which mainly consist of public
information/awareness campaigns, international travel restrictions, and the cancelling of public events)
appears to be instrumental in keeping case and death rates at moderate levels (less than 100 deaths and
1000 cases per million inhabitants). The present analysis suggests that the time difference between the
occurrence of the first case and the issue of stay-at-home order also has a significant effect in preventing
the escalation from moderate to high case and death rates but to a lesser degree compared to the
promptness of first measures.

As final remark, it must be kept in mind that in this study, the data were treated by taking
countrywide spatial averages, which had a data-smoothing effect. Future investigations relying on a
more detailed, regional discretization may more clearly elucidate the role of weather on COVID-19.
The temporal averaging during the span of three months may also have obscured the actual degree of
the dependence of the epidemic intensity on the climatic factors. For example, the initial cold period
of March 2020 (colder than the average for the entire March–May period) in countries located in the
temperate zone of the northern hemisphere may have seeded large numbers of early infections that
then persisted as temperatures rose in April and May to cause lower reproduction numbers R. In this
case, high COVID-19 case and death rates would be paired with artificially (due to averaging) larger
temperature values. Such skewing is expected to be almost absent in the case of countries in which the
weather variation during this three-month period was small, such as those that are located closer to
the equator.
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