© 2022 THE AUTHORS. ORTHOPAEDIC SURGERY PUBLISHED BY TIANJIN HOSPITAL AND JOHN WILEY & SONS AUSTRALIA, LTD.

REVIEW ARTICLE

Effectiveness of Platelet-Rich Plasma in Anterior Cruciate Ligament Reconstruction: A Systematic Review of Randomized Controlled Trials

Yi Cao, MD Ye-da Wan, PhD 🕩

Radiology Department, Tianjin Hospital, Tianjin City, China

Objective

This study aimed to identify the effectiveness of platelet-rich plasma (PRP) for patients operated with anterior cruciate ligament reconstruction (ACLR).

Databases of PubMed, Embase, and CENTRAL were independently retrieved by two authors, for identifying the eligible randomized controlled trials (RCTs) comparing the clinical and imaging outcomes of ACL reconstructed patients augmented with or without PRP. The Cochrane Collaboration tool was utilized to assess the risk of bias of the included trials. We qualitatively synthesized the outcomes include the image evaluations on the healing of bone tunnels, graft remodeling, donor site healing and tunnel widening, and clinical evaluations on knee stability and function, pain symptom by visual analogue scale (VAS), inflammatory parameters and so on.

A total of 16 RCTs, including 1025 patients, were included for eligibility. Generally, the included studies were of low risk of bias, but the conducting of allocation concealment was not clearly described in many studies. Three imaging techniques, including MRI, CT and ultrasound, were selected in these trials. Significant improvement on graft remodeling, bone tunnel healing, harvest site healing and bone tunnel diameters were demonstrated in one of five (20.0%), three of five (60.0%), two of four (50.0%) and one of five (20.0%) studies respectively, for PRP group. Various clinical outcomes, such as IKDC score, Lysholm score, Tegner score, knee anteroposterior and rotational laxity, range of motion and VAS, could not be improved with PRP application.

The PRP is associated with very limited role in improving knee outcomes following ACLR, and there is no indication for PRP procedures in ACLR at this stage.

Key words: Anterior cruciate ligament; Clinical outcome; Image evaluation; Platelet-rich plasma; Randomized controlled trials

Introduction

A nterior cruciate ligament (ACL) rupture is one of the most common injuries of knee joints, which often reports symptoms including pain, swelling, giving-way, difficulty with athletic performance, and even accelerated degenerative changes on the knee joint.^{1,2} ACL reconstruction (ACLR) with various grafts is generally successful and predictable, on restoring the knee function and stability.³ However, one of the challenges of ACLR is the slow integration in the bone tunnel and ligamentization of intra-articular part of graft, which is one of the factors causing long

rehabilitation period before returning to full physical activity.^{4,5} Additionally, the slow healing process of defect at harvest site has been recognized as a cause of persistent anterior knee pain even after many years.⁶ Although the treatment role of platelets-rich plasma (PRP) remains unclear, it has been provided with the aim of accelerating the maturation of the graft and healing processes of bone tunnel and donor site.⁷ Theoretically, after applying of PRP to the ACLreconstructed patients, a myriad of growth factors (GFs) and proteins would be released to the local environment, which could potentially accelerate the tissue regeneration. Platelets,

Address for correspondence Ye-da Wan, Radiology Department, Tianjin Hospital, No. 406, Jiefang Southern Road, Hexi District, 300211, Tianjin, China. Tel: 022-60910707; Fax: 022-60910707; Email: yd_wan@sina.com

Disclosure: The authors declare that they have no conflict of interest. Received 27 July 2021; accepted 21 March 2022

Orthopaedic Surgery 2022;14:2406-2417 • DOI: 10.1111/os.13279

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

ROLE OF PRP IN ACL RECONSTRUCTION

as one of the best sources of growth factors, could release large amounts of activated microgranules rich in GFs during fibrin clot formation. Among these GFs, many have been proven to be involved in musculoskeletal tissue repair, including platelet-derived growth factor (PDGF), transforming growth factor beta (TGF- β), insulin growth factor (IGF), vascular endothelial growth factor (VEGF), and so on.⁸ These proteins regulate the processes of tissue healing, chemotaxis, proliferation, differentiation, angiogenesis and removal of tissue debris.⁹

There are two primary biological processes that take place after ACLR, including graft integrity in bone tunnel and ligamentization of the intra-articular part of the graft.^{10,11} The graft healing in the bone tunnels always starts with an acute inflammatory response when the tunnels are filled with blood from the drilled bone wall immediately after ACLR. This process mainly accompanied with edema, recruitment of neutrophils, macrophages and mesenchymalcell, as well as matrix synthesis, in the tendon bone interface. And then, in the chronic phase of the inflammatory response, the monocytes and stem cells initiate angiogenesis and regeneration of hypervascular granulation tissue interface between the graft and bone tunnel. The pattern of change taking place in the body of transplanted tendon is described as ligamentization, which mainly includes the stages of necrosis, swelling, revascularization, fibroblastic invasion and synthesis and maturation of collagen fibers with ligament reformation.¹² Various GFs have participated in the entire process of ACL repairing following reconstruction, especially for PDGF and TGF. PRP has been recognized as a promising applicator of multiple GFs, and used for many indications in several fields of surgery, particularly for repairing of tissue damage and healing of skin and bone defects.¹³⁻¹⁵

Controversial results have been reported in the former literature referring to the potential treatment effect of PRP in ACLR.¹⁶⁻²¹ Several culture studies have proven an increase on cellular component and collagen levels in tendon tissues with the use of PRP.^{16,17} In canine model, Murray et al.¹⁸ found significant improvement on the biomechanical properties of the ACL after applying of collagen-PRP hydrogel in particle ACL rupture. In the study of Xie et al.¹⁹ PRP was shown to be effective on promoting synthesis of extracellular matrix in dog models after ACLR. However, the treatment effect of PRP has mainly been evaluated on biomechanical and histological aspects using animal models. Other studies with a high level of evidence have not confirmed the role of PRP in patients treated with ACLR. Nin et al.²⁰ evaluated the role of additional PDGF in primary ACLR with bonepatellar tendon-bone (BPTB) allograft, and found no discernable clinical or biomechanical effect at 2 years' followup. In a previous systematic review by Hexter et al.²¹ clinical and preclinical studies evaluated biological augmentation of graft healing in ACLR were narratively synthesized, demonstrating mixed clinical outcomes according to the available suboptimal-quality studies. Moreover, as a category of minimally manipulated tissue which is produced from autologous blood, the PRP used in clinical practice have a large inherent variability, due to the variation on the concentrations of platelets and growth factors in the peripheral blood, and the divergent preparation (e.g., the volume of blood, anticoagulant methods, processing systems, the speed and duration of spin cycles, format as liquid/gel, etc.) procedures.²² So, there remains an ambiguous understanding on the biological behavior of PRP in the procedure of ACLR.

In this study, we set out to perform a systematic review based on the evidence from randomized controlled trials (RCTs), with the aim of: (i) reviewing the application of PRP in the procedure of ACLR; (ii) assessing the clinical outcomes, including knee functional and stability evaluations, of ACLR with the application of PRP; and (iii) assessing the imaging outcomes of ACLR after PRP applying, such as healing of bone tunnels, graft remodeling, donor site healing and tunnel widening, basing on MRI, CT or ultrasound.

Materials and Methods

This systematic review was carried out according to the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement, and the Minimum Information for Studies Evaluating Biologics in Orthopaedics (MIBO).^{23,24} The PRISMA checklist and the MIBO checklist for clinical studies evaluating PRP are available in Supporting information Appendix S1 and S2.

Study Eligibility and Selection

Studies would be included for eligibility according to the following criteria: (i) P (participants)-patients diagnosed with symptomatic unstable knee due to ACL rupture; (ii) I (intervention) -ACLR with various tendon grafts plus biological augmentation with PRP; (3) C (comparison) -exclusively ACLR without PRP application or any other bioaugmentation (such as stem cells/ amnion/ hyaluronic acid); (iv) O (outcomes) -- image evaluations (by MRI, CT or ultrasound) or clinical evaluations on the reconstructed knee; and (v) S (study) -rigorously designed RCTs. Studies designed as observational or non-randomized clinical studies, reviews, experimental studies, case reports, case series and letters to editors would be excluded. There is no limitation on the PRP injection sites, including femoral/ tibial tunnels, inside the graft, suprapatellar joint, donor site, or intra-articular injection. The publication language was restricted to English.

Three databases, including PubMed, Embase and the Cochrane Central Register of Controlled Trials (CENTRAL), were systematically retrieved by two independent reviewers, from the inception to October 2021. The detailed searching strategies are presented in Supporting information Appendix S3. Other potential articles were hand searched after screening the references lists of the included studies. The initially retrieved studies were put together for duplicate checking. After excluding the duplicated studies, the titles/ abstracts and full-texts of the remained records were

screened successively for final eligibility, by two individual reviewers.

Data Extraction and Risk of Bias Assessment

Data was extracted by two reviewers independently, and entered into a pre-built Microsoft Excel spreadsheet, including the following items: (i) study details-lead author's name, publication year, study period, follow-up information and funding source; (ii) participants details-number of patients, number of dropped patients, percentage of male, and mean age; (iii) intervention information-application of PRP, preparation protocol of PRP, site, time point and volume of PRP application, graft type for ACLR, and fixation methods both in femoral and tibial sides; and (iv) outcomes information-image evaluations on the healing of bone tunnels, graft remodeling, donor site healing and tunnel widening, and clinical evaluations on knee stability and function, pain symptom by visual analogue scale (VAS), inflammatory parameters and so on. Cross-checking on the collected data by the two reviewers was performed to detect potential disagreements, which would be resolved by a third senior reviewer. All of the recorded data were displayed in tables or narratively synthesized.

The risk of bias assessment of the included studies were conducted by two researchers independently using the Cochrane Collaboration tool.²⁵ This tool is specially designed for assessing the risk of the following biases for RCTs: randomization sequence generation, allocation concealment, blinding of both participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting and other bias. Each item is set as unclear, low risk of bias or high risk of bias.

Results

Study Selection

Figure 1 shows the flow chart of study searching and selecting. The initial retrieval in the databases yielded a total of 446 potential records, and seven additional records were identified through manual search. A total of 103 duplicates were excluded, leaving 350 titles/abstracts for further screening. Then, only 68 records remained for full-text assessing, among which 52 articles were not relevant to the inclusion criteria. Finally, a total of 16 RCTs^{20,26–40} were eligible for our systematic review.

Characteristics of the Included Studies

Summary of the characteristics of eligible studies is displayed in Table 1. A total of 1025 patients, with a mean age between 22.7–37.2 years were involved in the primary trials. Of these, 577 patients (56.3%) were assigned in the treatment group with PRP, while 448 (43.7%) patients in the control group. Fourteen studies reported the percentage of male patients, including a total of 633 (75.2%) male and 209 (24.8%) female. In total, 85 patients were lost to the final follow-up. Two-arm studies predominated among the primary trials,

Fig. 1 PRISMA flowchart for the searching and selecting of studies.

while there were only two four-arm^{26,30} and one three-arm²⁸ study. In 11 of the trials,^{20,26,28–31,34–36,39,40} the PRP products were applied to the femoral tunnel, tibial tunnel, and inside the graft alone or with different combinations, at the end of the operation or intra-operation. In the trial of Silva *et al.*²⁶ they injected PRP in the femoral tunnel and intra-articular at the end of surgery as well as 2 and 4 weeks post-operatively, for one of the treatment group. In four of the studies,^{27,32,33,37} PRP was applied to the harvest site of BPTB autograft intraoperative or at the end of operation. Seijas *et al.*³⁸ percutaneously injected PRP into the suprapatellar joint for their patients. Different volumes of PRP were used in each site as reported in 12 studies.^{26,29,30,32–40}

Regarding the graft types selected for ACLR, fourstrand HT autograft was used in eight studies, ^{29–31,34–36,39,40} while BPTB autograft, double-bundle HT autograft and PT allograft were used in five, ^{27,32,33,37,38} one²⁶ and two^{20,28} studies respectively. The internal fixation methods in the femoral and tibial tunnels were reported in 14 studies.^{20,26,28–31,33–40} The cross-pin, EndoButton device, and interference screw were used for femoral tunnel fixation in 10,^{20,28–31,33,35,36,39,40} two^{26,34} and two^{37,38} studies respectively, while interference screw was used for all of the tibial tunnel fixation. Detailed rehabilitation protocols were available in 11 studies.^{20,26–30,33–36,38} Knee bracing (or plaster splint in one study³⁸) was applied for early immobilization in four studies,^{20,26,28,36} and accelerated rehabilitation protocols were applied without using of knee braces in the other six studies.^{27,29,30,33–35} The summary

ROLE OF PRP IN ACL RECONSTRUCTION

Implementation Impleme	ife (s) poins if e (s) i of 1.5 ML in each FT 97.2 ± 6.8 d (wup periods (s) 1.5 ML in each FT 97.2 ± 6.8 d at the end of (s4-117 d) augery (s4-117 d) augery 1.0 (s4-117 d) (s4-117 d) (s4-11	Injection site (s) and time points = FT (end of surgery) FT (end of surgery) = 2 & 4 w post-op) FT (end of surgery) = C = C Donor site (end of surgery) = C = C = C = C = C = C = C = C = C = C	<pre>dean age (years) 26.8 ± 5.3 (overall) 22.7 ± 3.5 22.9 ± 4.3 22.9 ± 4.3 26.1 (15-59) 26.1 (14-57) 7.4 (16-50) 32.6 ± 12.3 37.2 ± 8.4 30.0 (15-57) (overall)</pre>	Male% Mean age (years) 95.0 (overall) 26.8 ± 5.3 95.0 (overall) (overall) NA 22.7 ± 3.5 76.0 26.1 (15-59) 86.0 26.1 (14-57) 86.0 27.4 (16-50) 64.0 32.6 ± 12.3 60.0 37.2 ± 8.4 60.0 37.2 ± 8.4 85.0 (overall) 30.0 (15-57) (overall) 30.0 (15-57)	Drop out Male% Mean age (years) 0 95.0 (overall) 26.8 ± 5.3 0 95.0 (overall) (overall) 0 95.0 (overall) (overall) 0 26.3 ± 5.3 (overall) 0 8.4 ± 3.5 (overall) 0 NA 22.7 ± 3.5 0 0 76.0 26.1 (15-59) 0 86.0 27.4 (16-50) 10 86.0 27.4 (16-50) 11 87.0 (overall) 37.2 ± 8.4 8 in total 85.0 (overall) 30.0 (15-57) (overall) 30.0 (15-57) (overall)	No. No. No. Man age (years) 10 0 95.0 (overall) 268 ± 5.3 10 0 95.0 (overall) 268 ± 5.3 10 0 95.0 (overall) 268 ± 5.3 10 0 0 95.0 (overall) 268 ± 5.3 10 0 0 95.0 (overall) 268 ± 5.3 10 0 0 20.1 (stress) 261 ± 5.3 20 0 NA 22.7 ± 3.5 22.9 ± 4.3 20 0 80.0 26.1 (stress) 26.1 (stress) 50 0 86.0 26.1 (stress) 26.1 (stress) 21 4 60.0 32.6 ± 12.3 32.6 ± 12.3 25 5 64.0 32.6 ± 12.3 26.5 ± 8.4 25 8 in total 85.0 (overall) 30.0 (stress) 28.5 ± 2.5 ± 3.4 27 28 30.0 (stress) 30.0 (stress) 28.5 ± 3.5 ± 3.4	No. No. No. Man age (yaars) Treatment group of pls. Dop out Man age (yaars) PRP 10 0 95.0 (overall) 26.8 ± 5.3 PRP 10 0 95.0 (overall) 26.8 ± 5.3 PRP 10 0 95.0 (overall) 26.8 ± 5.3 PRP 10 0 76.0 20.1 ± 5.3 PRP gel 10 0 Na 25.1 ± 3.5 PRP gel 20 0 Na 22.7 ± 3.5 PRP gel 20 0 76.0 26.1 (15-59) PRP 50 0 76.0 26.1 (15-59) PRP 50 0 76.0 26.1 (15-59) PRP 50 0 76.0 26.1 (15-59) PRP 20 0 37.2 ± 8.4 37.2 ± 8.4 PRP 25 4 60.0 37.2 ± 8.4 PRP 26* 2 26.1 (15-59) 37.2 ± 8.4 PRP 26*
T Mexic augeon aug	1 of 1.5 ML in each FT - Mean: 2 model: 1.5 ML in each FT - 97.2 ± 6.8 d at the end of (84-117 d) at the end of (84-117 d) 1 model: 1	88 ± 5.3 − (overall) = "urgeny) FT & IA (overall) = "urgeny) FT & IA (end of surgeny) = 2.8 4 w post-op) FT (end of surgeny) = 2.14 = 3.5 = 0 on site (end of surgeny) = 1.(14-57) = 0 of surgeny) = 1.(14-57) = 0 or site (end of surgeny) = 0 or surgeny) = 1.(14-57) = 0 or site (end of surgeny) = 1.(14-57) = 0 or site (end of surgeny) = 1.(14-57) = 0 or site (end of surgeny) = 0 or surgeny) = 1.(14-57) = 0 or site (end of surgeny) = 1	9 3,5 5 6 6 6 7	95.0 (overall) 24 NA 2 76.0 26 80.0 26 86.0 26 86.0 23 85.0 23 85.0 33 85.0 33 85.0 33	0 95.0 (overall) 2 0 0 0 1 2 0 0 0 1 2 0 26 0 76.0 26 0 86.0 26 1 4 60.0 3 8 in total 85.0 (overall) 30 31	10 0 95.0 (overall) 2 10 0 95.0 (overall) 2 10 0 0 95.0 (overall) 2 20 0 0 2 2 20 0 0 3 2 20 0 0 3 2 50 0 86.0 26 2 25 5 64.0 3 3 26* 0 86.0 33 3 26* 26 64.0 33 3 26* 5 64.0 33 3 26* 38.0 (overall) 30 3 3 27* 8.1n total 85.0 (overall) 30 3 27* 3 3 3 3	Control 10 0 95.0 (overall) 2 PRP 10 0 95.0 (overall) 2 PRP gel 10 0 95.0 (overall) 2 PRP gel 10 0 95.0 (overall) 2 PRP gel 20 0 NA 2 Control 20 0 NA 2 PRP gel 20 0 76.0 26 PRP 50 0 80.0 27.4 PRP 50 0 86.0 27.4 PRP 25 4 60.0 33 PRP 26* 86.0 27.4 30 PRP 26* 86.0 33 30 PRP 26* 86.0 33 30 PRP 26* 86.0 33 30 PRP 26* 810.100 30 30 PRP 27* 810.100 30 30
T & Mu Magnetic August August 2.4.4. (end of suges) 2.4.4. (and of suges) 3.2.4.4. (and of suges) 3.2.4.4. (b) (b) (b) (b) (b) (b) (b) (b) (b) (b)	sugery sugery () () () () () () () () () ()	FT & IA FT & IA end of surgery, 2 & 4 W postopic 2 & 4 W 15-57) T & inside the 2 = 4.4 F1, TT & inside erall) 15-57) F1, TT & inside erall) F1.2.3 - - erall) E12.3 ± 8.4 F1.7 T & inside erall erall F1.3 ± 8.4 F1.4 (intra-op) op) ± 4.4 fintra-op)	22.7 22.9 26.1 (7.4 (16 1 (7.4 (16 3) 32.6 33.6 33.0 (0 (NA 22.7 22.9 76.0 26.1 (86.0 26.1 (16 86.0 27.4 (16 86.0 27.4 (16 86.0 37.2 64.0 37.2 64.0 37.2 64.0 37.2 64.0 37.2 66.0 37.2 (orenall) (orenall) (0	0 0 NA 22.7 0 NA 22.9 0 76.0 25.1 (0 86.0 25.1 (2.6.1 (2.7.1 (2.6.1 (2.7.1 (2.6.1 (2.6.1 (2.7.1 (2.6.1 (2.6.1 (2.7.1 (2.6.1 (2.7.1 (2.6.1 (2.7.1 (2.6.1 (2.6.1 (2.7.1 (2.6.1 (2.7.1 (2.6.1 (2.7.1 (2.	10 0 10 0 10 0 20 0 NA 22.7 20 0 NA 22.9 20 0 86.0 26.1(50 0 86.0 26.1(50 0 86.0 27.4(16 50 0 86.0 27.4(16 51 86.0 37.2 25 4 60.0 37.2 26 28.0 27.4 (10 26.1) 27 8 In total 85.0 (overall) 30.0(28 28	PRP 10 0 PRP gel 10 0 PRP gel 10 0 PRP gel 20 0 NA Control 20 0 22.3 PRP gel 20 0 NA 22.4 PRP gel 20 0 76.0 26.4 PRP 50 0 86.0 26.4 PRP 50 0 86.0 27.4 PRP 50 0 86.0 27.4 PRP 25 5 64.0 37.6 PRP 25 2 4 60.0 37.2 PRP 26" 2 5 64.0 37.2 PRP 26" 8 85.0 0 90.0 PRP 26" 8 90.0 90.0 90.0
Timepoints: BPB N N Timepoints: N autogrid N N Surgery - - Threpoints: 1 Frailoget Floring autogrid Surgery - - Timepoints: 1 Frailoget Floring autogrid Surgery - - Timepoints: 1 Frailoget Floring autogrid Surgery - - - Timepoints: 4 Floring autogrid 10.049 Surgery - - - - - - - Surgery - - - - - - - - Surgery - - - - - - - - - Surgery - - - - - - - - - Surgery -)) e (end NA Timepoints:12 m gent) - Timepoints:12 m gent) - Timepoints:14, 10 d. 3 m, (intra- b) - Timepoints:4- 10 d. 3 m, 6 m, 12 m 6 m, 12 m 6 m, 12 m 6 m, 12 m 10 d. 3 m, 6 m, 12 m 6 m, 12 m 10 d. 3 m, 6 m, 12 m 10 d. 3 m, 10 d. 2 m, 10 d. 3 m, 10 d. 2 m, 10 d. 3 m, 10 d. 2 m, 10 d. 3 m, 10 d. 12 m, 10 d. 12 m & 10 m, 11 m	Postop) F1 (end of sugery) = - - 4.3 Donor site (end of surgery) -57) TT & inside the graft (intra- op) - 2.3 - - - - 57) F1 & inside (intra-op) (intra-op) - 2.3 - - - - - - - - - - - - - - - - - - -	22.7±: 22.9±.145 26.1 (14-56 7.4 (16-56 7.4 (16-56 7.2±: 37.2±: 37.2±: 30.0 (15- 00ver	NA 22.7±: 22.9±: 76.0 26.1(15 80.0 26.1(145-56 86.0 27.4(16-56 64.0 27.2±1 60.0 37.2±1 60.0 37.2±1 60.0 37.2±1 60.0 37.2±1	0 NA 22.7±: 0 NA 22.7±: 22.9±: 0 76.0 26.1(15- 0 86.0 27.4(16-5(5 64.0 27.4(16-5(16-5(16-5(16-5(8)) 37.2±: 8in total 85.0 (overal) 30.0 (15-	10 0 NA 22.7±: 20 0 NA 22.9±: 20 0 76.0 26.1 (15. 50 0 86.0 26.1 (16.55. 50 0 86.0 27.4 (16.55. 25 5 64.0 37.2±: 26* 4 60.0 37.2±: 26* 85.0 (overall) 30.0 (15.25) 26* 26* 32.6±:	PRP gel 10 0 NA 22.7 ±: Control 20 0 NA 22.7 ±: PRP gel 20 0 NA 22.7 ±: Control 50 0 76.0 26.1 (15-50) PRP 50 0 86.0 26.1 (14-50) PRP 50 0 86.0 27.4 (16-50) PRP 50 0 86.0 27.4 (16-50) PRP 50 0 86.0 27.4 (16-50) Control 25 5 64.0 32.6 ± 1 PRP 25 4 60.0 37.2 ± 1 PRP 26" 81n total 85.0 (overall) 30.0 (15-50)
$ \begin{array}{ccccccc} & & & & & & & & & & & & & & & &$	3 (end NA 3 (end NA gery) - Je the NA Je the NA 10 (intra- 6 m, 12 m 3) - 11 1 m! F1: 300) 1 m! F1: 301 1 m! F1: 46 the 5 m! between 6 m 2 m, 5 m, 6 m gat - 1 m! F1 2 m, 5 m, 6 m 90) 1 m! F1 6 the NA 2 m, 5 m, 6 m 90) 1 m! F1 1 m! F1 1 m! F1 6 the NA 2 m, 5 m, 6 m 9 m) 9 m, 12 m 8 9 m 1 m. F1 1 m! F1 1 m. F1 1 m! F1 1 m! F1 1 m! F1 1 m! F1 1 m! F1 1 m! F1 1 m! F1 <t< td=""><td> 3.5 4.3 Donor site (end e-59) of surgery) -57) Tf & inside the graft (intra- 0) 8.4 FI. TT & inside (intra-op) 12.3 - 14.7 Å inside graft (intra- 0) 12.3 - 8.4 FI. TT & inside graft (intra- 0) </td><td>22.7 ± 22.9 ± 22.9 ± 14.5 26.1 (14.5 26.1 (14.6 -5.1 (14.6 -5.1 (14.4 (165.1 (14.4 (16.5 ± 32.6 ± 332.6 ± 337.2 ± 337.2 ± 337.2 ± 337.2 ± (ove</td><td>NA 22.7 ± 22.9 ± 22.9 ± 22.9 ± 22.9 ± 22.9 ± 14.6 5 0.0 26.1 (14.6 5 86.0 27.4 (16.5 6 4.0 27.4 (16.5 6 4.0 27.4 (16.5 6 0.0 37.2 ± 60.0 37.2 ± 60.0 37.2 ± 85.0 (0verall) 30.0 (15 85.0 (16.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10</td><td>0 NA 22.7 ± 0 76.0 26.1 (15 0 80.0 26.1 (14-5 0 86.0 27.4 (15-5 5 64.0 27.4 (15-5 6 37.2 ± 37.2 ± 8 in total 85.0 (overall) 30.0 (15</td><td>20 0 NA 22.7± 20 0 14 22.9± 50 0 76.0 26.1(45 50 0 80.0 26.1(41 50 0 86.0 26.4(41 25 5 64.0 27.4(45- 25 4 60.0 37.2± 27* 81n total 85.0 (overall) 30.0 (45 26* 26* 26* 26.4± 25 5 64.0 37.2± 27* 81n total 85.0 (overall) 30.0 (45 26* 27* 26* (000 26* 27* 85.0 (overall) 30.0 (45</td><td>Control 20 0 NA 22.7± PRP gel 20 0 NA 22.9± Control 50 0 76.0 26.1(14) PRP 50 0 80.0 26.1(14) PRP 50 0 86.0 26.1(14) Control 25 5 64.0 26.1(14) PRP gel 25 5 64.0 27.4(16-5) Control 25 5 64.0 37.2 ± PRP 25 4 60.0 37.2 ± PRP 26* 26* 37.2 ± 30.0(15) PRP 26* 26* 0 37.2 ± PRP 26* 8 85.0 (overall) 30.0 (15) PRP 26* 26* 0 37.2 ± PRP 26* 26* 0 37.2 ± PRP 26* 26* 0 37.2 ±</td></t<>	 3.5 4.3 Donor site (end e-59) of surgery) -57) Tf & inside the graft (intra- 0) 8.4 FI. TT & inside (intra-op) 12.3 - 14.7 Å inside graft (intra- 0) 12.3 - 8.4 FI. TT & inside graft (intra- 0) 	22.7 ± 22.9 ± 22.9 ± 14.5 26.1 (14.5 26.1 (14.6 -5.1 (14.6 -5.1 (14.4 (165.1 (14.4 (16.5 ± 32.6 ± 332.6 ± 337.2 ± 337.2 ± 337.2 ± 337.2 ± (ove	NA 22.7 ± 22.9 ± 22.9 ± 22.9 ± 22.9 ± 22.9 ± 14.6 5 0.0 26.1 (14.6 5 86.0 27.4 (16.5 6 4.0 27.4 (16.5 6 4.0 27.4 (16.5 6 0.0 37.2 ± 60.0 37.2 ± 60.0 37.2 ± 85.0 (0verall) 30.0 (15 85.0 (16.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10	0 NA 22.7 ± 0 76.0 26.1 (15 0 80.0 26.1 (14-5 0 86.0 27.4 (15-5 5 64.0 27.4 (15-5 6 37.2 ± 37.2 ± 8 in total 85.0 (overall) 30.0 (15	20 0 NA 22.7± 20 0 14 22.9± 50 0 76.0 26.1(45 50 0 80.0 26.1(41 50 0 86.0 26.4(41 25 5 64.0 27.4(45- 25 4 60.0 37.2± 27* 81n total 85.0 (overall) 30.0 (45 26* 26* 26* 26.4± 25 5 64.0 37.2± 27* 81n total 85.0 (overall) 30.0 (45 26* 27* 26* (000 26* 27* 85.0 (overall) 30.0 (45	Control 20 0 NA 22.7± PRP gel 20 0 NA 22.9± Control 50 0 76.0 26.1(14) PRP 50 0 80.0 26.1(14) PRP 50 0 86.0 26.1(14) Control 25 5 64.0 26.1(14) PRP gel 25 5 64.0 27.4(16-5) Control 25 5 64.0 37.2 ± PRP 25 4 60.0 37.2 ± PRP 26* 26* 37.2 ± 30.0(15) PRP 26* 26* 0 37.2 ± PRP 26* 8 85.0 (overall) 30.0 (15) PRP 26* 26* 0 37.2 ± PRP 26* 26* 0 37.2 ± PRP 26* 26* 0 37.2 ±
of sugery) of sugery) of sugery Imrepoints: 14, if allograt F: biologgadable 10 days T & his bio M 0,0,1,2,m 0,10,3,7,m Trailograt F: biologgadable 10 days 0,0) M 10,4,3,7,m 0,10,-12, w Provegratable No 0,00 1 - - - Trailererere 0,00 0,000 0,000 FTT & inside 4,11,15 M, 10,-12, w Provedrame No 0,000 No 1 (intre-oci) 1,11,17 M, 10,-12, w Provedrame No 0,000 1 (intre-oci) 1,11,17 M, 10,000 1,11 No 0,000 1 (intre-oci) 1,11,17 No A stand HT F: biologgadable No 1 (intro-oci) 1,11,17 No A stand HT F: biologgadable No 1 Intro 1,11,18 No A stand HT F: biologgadable No 1 Intro 1,11,18 No No No No 1 Intro 1,11,18 No No No No 1 Intro 1,11,18 No No No No 1	gey) – – Imepoints: 1 d, le the NA 50.4,3 m, (intra-) – Timepoints: 1 d, 6 m, 12 m 9 m, 12 m 6 m, 12 m 1 m, 12 m 6 m, 12 m 6 m, 12 m 6 m, 12 m 6 m, 10 d, 10 m 1 mi: FT; 3 m, 4 the 5 m: between 6 m (intra- gat 6 m, 1 m 1 mi: FT 1 mi: FT	559 of surgery) 4-57) T & inside the graft (intra- po) 200 graft (intra- po) 12.3 - 2.4. FT, TT & inside the graft (intra- po) 2-57) - 2-57) - 2-57) - 2-57) - 2-10 - 2-11 (intra-op) 2-57 - 2-57 - 2-57 - 2-57 - 2-12.3 - 22.3 - 212.3 - 28.4 FT, T& & inside the graft (intra-op) (intra-op) (intra-op)	26.1 (1) 26.1 (1) 7.4 (16-5 32.6 ± 37.2 ± 37.2 ± (ove	76.0 26.1 (1) 80.0 26.1 (1) 86.0 27.4 (16.4 64.0 37.2.6 ± 60.0 37.2 ± 60.0 37.2 ± 85.0 (overall) 30.0 (1) (overall) (0.0	0 76.0 26.1 (1) 0 80.0 27.4 (16) 0 86.0 27.4 (16) 5 64.0 32.6 ± 4 60.0 37.2 ± 8in total 85.0 (overall) 30.0 (1) 8in total 85.0 (overall) 30.0 (1)	50 0 76.0 26.1(1) 50 0 80.0 26.1(1) 50 0 86.0 27.4(16-1) 25 5 64.0 27.4(16-1) 25 4 60.0 37.2± 26* 4 60.0 37.2± 26* 8 In total 85.0 (overall) 30.0(1) 26* 8 In total 85.0 (overall) 30.0(1) 27* 8 In total 85.0 (overall) 30.0(1)	Control 50 0 76.0 26.1 (1) PRP 50 0 86.0 26.1 (1) PRGF 50 0 86.0 27.4 (16) PRO 50 0 86.0 27.4 (16) PRO 50 0 86.0 27.4 (16) PRP 25 5 64.0 32.6 ± PRP 25 4 60.0 37.2 ± PRP 25 4 60.0 37.2 ± PRP 26* 4 60.0 37.2 ± PRP 26* 8 in total 85.0 (overall) 30.0 (1) PRP 26* 26* 0 0 0 PRP 26* 8 in total 85.0 (overall) 30.0 (1) PRP 26* 26* 0 0 0
Tit & indicative M 10d.3 m. cross fins: 0) 0 6 m.12 m 0 cross fins: 0) - - - The points -L Diodegradable 11.1 Ta inside 4 mi. Erit. 6 m.12 m Trial Indefence 11.1 Ta inside 1 mi. Erit. 6 m.12 m No screw 11.1 Ta inside 1 mi. Erit. 6 m.10 m Final final mitter final m	intra- NA 104.3 m. intra- 6m.12 m. intra- 6m.12 m. inside 4mi: graft; 1 6w.10-12 w graft mi: FT; 6w.10-12 w mi: FT; 6w.10-12 w anti: FT; 6w.10-12 w mi: FT; 7 anti: FT; 7 antices NA 2 m, 5 m, 6 m graft antices NA 2 m, 5 m, 6 m graft antices NA 2 m, 5 m, 6 m graft antices NA 6 m, 12 m 8, 9 m et the NA 6 m, 12 m 8, 9 m for the for the for the for the former for 1 m, 12 m 8, 9 m for the former for 1 m, 10 m for the for 1 m, 10 m for the former for 1 m for the former f	4-57) Π & Inside the graft (intra- op) 212.3 - 212.3 - 5-57) - 5-57) - 2-57) - 2-57) - 2-57) - 2-12.3 - 212.3 - 2.8.4 F1, T1 & inside the graft (intra- op) 12.3 - 2.8.4 F1, T1 & inside the graft (intra- op)	26.1 (1- 7.4 (16-5 37.2 ± 37.2 ± 30.0 (1) (ovv	80.0 21.4 (16-4 86.0 21.4 (16-4 64.0 37.2 ± 60.0 37.2 ± 85.0 (overall) 30.0 (1) (overall) 30.0 (1)	0 80.0 22.4(1- 5 64.0 27.4(16-4 4 60.0 37.2 ± 8 in total 85.0 (overall) 30.0 (1) (ov	50 0 80.0 26.4.0 50 0 86.0 27.4.(16.4 25 5 64.0 32.6.± 25 4 60.0 37.2.± 27 ^a 8 in total 85.0 (overall) 30.0(1: 28 ^a (overall) 20.0(1: 28 ^a (overall) 30.0(1:)	PRP 50 0 80.0 26.1(1, 26.1(1, 26.1(1, 27.4(16,
0) interference	 and the second state of the second st	 2.3 3.4 FI, TT & inside the gaft (intra-op) 57) all) FT & inside the gaft (intra-op) 2.3 3.4 FI, TT & inside the gaft (intra-op) 	32.6 ± 1 37.2 ± 5 30.0 (15-	64.0 32.6±1 60.0 37.2±6 85.0 (overall) 30.0 (15- (over	5 64.0 32.6 ± 1 4 60.0 37.2 ± 6 37.2 ± 6 8 in total 85.0 (overall) 30.0 (15- (over	25 5 64.0 32.6±1 25 4 60.0 37.2± 27* 8 in total 85.0 (overall) 30.0 (15-26* 28* 27* 27*	Control 25 5 64.0 32.6±1 PRP gel 25 4 60.0 37.2±6 Control 27" 8 in total 85.0 (overall) 30.0 (15- PRP 26" 8 in total 85.0 (overall) 30.0 (15- PRP 28" 8 in total 85.0 (overall) 30.0 (15- PRP 26" 1 total 85.0 (overall) 30.0 (15-
 I.T. Rainside antigority. 1 Coulds F7. Transmission and the series of the ser	- Time-points: 4- mil: FT apt mil: FT apt in: FT apple fmil: FT ab the fmil: FT	 2.3 —	32.6 ± 15 37.2 ± 8 30.0 (15- (overa	64.0 32.6 ± 11. 60.0 37.2 ± 8 85.0 (overall) 30.0 (15- (overall) (overall)	5 64.0 32.6 ± 11 4 60.0 37.2 ± 8 37.2 ± 8 8 in total 85.0 (overall) 30.0 (15- (overa	25 5 64.0 32.6±11 25 4 60.0 37.2±8 27 ^a 8 in total 85.0 (overall) 30.0 (15- 26 ^a (overall) 30.0 (15- 28 ^a	Control 25 5 64.0 32.6 ± 1/. PRP gel 25 4 60.0 37.2 ± 8 Control 27 ^a 8 in total 85.0 (overall) 30.0 (15- PRP 26 ^a 26 ^a 10 ^a 10 ^b 10 ^b PRP 28 ^a 21 ^a 8 in total 85.0 (overall) 30.0 (15- PRP 28 ^a 28 ^a 20 ^b 10 ^b 10 ^b 10 ^b
The part The print The print The print Init Time on the grat 1 mit Time on the matrix 1 mit Time on the matrix 1 mit Time on the matrix Init Time on the grat 5 mit between 6 m 4 strand HT 7.blodegrad bloe If a inside the strands: 5 mit between 6 m 4 strand HT 7.blodegrad bloe If a inside the strands: 6 m 4 strand HT 7.blodegrad bloe No Op) 1 mit Time on the grat If Time on the grat 1 mit Time on the grat If Time on the grat 0 monored the matrix 0 monored the matrix 0 monored the matrix 1 mit Time on the grat If Time on the grat 1 mit Time on the grat If a inside the matrix 0 mit Time on the grat 1 mit Time on the grat 1 mit Time on the grat 1 mit Time on the grat If a inside the matrix 0 mit Time on the grat 1 mit Time on the grat 1 mit Time on the grat 1 mit Time on the grat If a inside the matrix 0 mit Time on the grat 1 mit Time on the grat 1 mit Time on the grat 1 mit Time on the grat	ant mil: FT: 3-0) 1.mi: FT: 3-0 Im: FT: 3-0 Im: FT: 1.mi: FT: 6.m. 9.001 9.018: 1.m. 1.m	 37) 57) (intra-op) (intra-op) graft (intra-op) 3 - 4 FI, TT & inside the graft (intra-op) 	30.0 (15-E (overal	85.0 (overall) 30.0 (15-5 (overal	8 in total 85.0 (overall) 30.0 (15-5 (overal	27 [%] 8 in total 85.0 (werall) 30.0 (15- ⁶ 26 [°] (overal 28 [°] 27 [°]	Control 27 ^a 8 in total 85.0 (overall) 30.0 (15-5 RRP 26 ^a 8 in total 85.0 (overall) 30.0 (15-5 RP 26 ^a 26 ^a 0 overall 90.0 (15-5 RP 26 ^a 8 in total 85.0 (overall) 30.0 (15-5 RP 26 ^a 27 ^a 9.0 (15-5 10.0 (15-5 RP 20 ^a 27 ^a 10.0 (15-5 10.0 (15-5
(intra-op) 1,mi:Ti autograft bioabsorbale - - - Timepoints: 3m, 4-strand HT F. biodegradable No 7R inside the 5 mit between constraints 5 mit between constraints 5 mit between constraints No 90) 1,mi:Ti autograft transhring pin:: No 1 1,mi:Ti 2 mit points: 1 m, bouble F. 2 N 1 1,mi:Ti 2 mit points: 1 m, bouble F. 2 10 days 1 1,mi:Ti 2 mit price N 2 mit price N 1 1,mi:Ti 2 mit pin points: 1 m, bouble F. 2 10 days 1 1,mi:Ti 2 mit pin points: 1 m, bouble F. 2 10 days 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 3 1 mi: IT 4 the 5 mi: between 6 m 6 m 6 m 1 mi: FT 1 mi: FT	(intra-op)) FT & inside the graft (intra- op) .3 .3 .1 .3 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	30.0 (15–5 (overal	85.0 (overall) 30.0 (15-5 (overal	8 in total 85.0 (overall) 30.0 (15-5 (overal	27 ⁸ 8 in total 85.0 (overall) 30.0 (15-5 26 ⁸ (overal 28 ⁸ 27 ⁸	Control 27 th 8 in total 85.0 (overall) 30.0 (15-5 PRP 26 th 8 in total 85.0 (overal) 30.0 (15-6 Bone plug 28 th PRP + Bone 27 th PRP + Bone 27 th
- - - Imepoints: 3m, 4-strand HT F: biodegradable No graft (intra-strands; graft (intra-strands; op) 1.m: FT autograft transfring, pn: interference No - - - - Imepoints: 1m, pouble F: biodegradable No - - - - Imepoints: 1m, pouble F: 2 No - - - - Imepoints: 1m, pouble F: 2 10 days - - - - Imepoints: 1m, pouble F: 2 10 days - - - - Imepoints: 1m, pouble F: 2 10 days - - - - Imepoints: 1m, pouble F: 2 10 days - - - - - - 1 1 - - - - - - 10 days - - - - - - 1 1 - - - - - - 1 1 - - - - - - - 1 - - - - - - - 1 -	le the 5 ml: between 6 m (intra- 5 ml: between 6 m strands; b) 1 ml: FT 1 mepoints: 1 m. Iraide NA 2 m, 5 m, 6 m gat acop) de the NA 6 m, 12 m & yaahy p) thereafter	 7) — — FT & inside the graft (intra-op) 33 — 4 FT, TT & inside the graft (intra-op) 	30.0 (15–5 (overall	85.0 (overall) 30.0 (15-5 (overall	8 in total 85.0 (overall) 30.0 (15-5 (overall	27° 8 in total 85.0 (overall) 30.0 (15-5 26° (overal) 2.0 28° 2.7°	Control 27 ^a 8 in total 85.0 (overall) 30.0 (15-5 PRP 26 ^a 26 ^a (overall 30.0 (15-5 PRP 28 ^a (overall 20.0 (15-5 (overall PRP 28 ^a (overall 20.0 (15-5 (overall PRP 28 ^a (overall 20.0 (15-5 (overall PRP 28 ^a 28 ^a (overall (overall PRP 28 ^a 27 ^a (overall (overall
Fit & inside the burning and the fit of the burning of the burni	Je the 5 mil between 6 m (intra- strands:) 1 mil FT - Timepoints: 1 m, inside NA 2 m, 5 m, 6 m (gat act) gat acp) - Timepoints: 3 m, 6 m, 12 m 8 (intra- val) (intra- NA 6 m, 12 m 8 val) p) thereafter	 FT & inside the graft (intra- graft (intra- op) .3 - FT, TT & inside the graft (intra-op) 	(overal	(overal	(overal	26" (overal 28° 27°	PRP 26 ^a (overal Bone plug 28 ^a (overal PRP + Bone 27 ^a (overal
op) 1.m: FT Imergention Imergention - - - Imergentist Im, Double F.2 N - - - - Imergentist Im, Double F.2 10 days (ntra-op) - - - - - 10 days (ntra-op) - - - - 10 days (ntra-op) - - - - 10 days graft (intra- NA N - 11 mergentist op) - - - - 10 days graft (intra- NA - - 10 days op) - - - - 10 days op) - - - - 10 days first (intra- NA N - 11 mergentist - - - - - 11 mergentist - - - - - 11 mergentist </td <td> a) 1 mil: FT a) 1 mil: FT inside NA 2 m, 5 m, 6 m 3 m, 6 m, 12 m & yaahy p) </td> <td>op) .3 – . .4 FT, TT & inside the graft (intra-op)</td> <td></td> <td></td> <td></td> <td>27ª</td> <td>Professione 27ª Ph. Bone 27ª Plus</td>	 a) 1 mil: FT a) 1 mil: FT inside NA 2 m, 5 m, 6 m 3 m, 6 m, 12 m & yaahy p) 	op) .3 – . .4 FT, TT & inside the graft (intra-op)				27ª	Professione 27ª Ph. Bone 27ª Plus
 Introduction of the sector of the s	- Timepoints: 1.m. gait 2.m. 5 m. 6 m gait 1.m. acopi - acopi - de the NA (intra- yearly (intra- thereafter	2.3 — Er, TT & inside the graft (intra-op)					DUG
F1,TT & inside NA 2 m, 5 m, 6 m looped bioabsorbable the gat m m m m m intra-op) intra-opination intra-opination interference interference intra-opination m m m m m interference m m m m m gati (intra- m m m m m op) m m m m m m m m m m m on m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m </td <td>nside NA 2m, 5m, 6m gatt sop) - Timepoints: 3m, 6 the NA 6m, 12 m & yearly (intra- thereafter p)</td> <td>.4 FT, TT & inside the graft (intra-op)</td> <td>32.6 ± 12</td> <td>64.0 32.6 ± 12</td> <td>5 64.0 32.6 ± 12</td> <td>25 5 64.0 32.6 ± 12</td> <td>Control 25 5 64.0 32.6±12</td>	nside NA 2m, 5m, 6m gatt sop) - Timepoints: 3m, 6 the NA 6m, 12 m & yearly (intra- thereafter p)	.4 FT, TT & inside the graft (intra-op)	32.6 ± 12	64.0 32.6 ± 12	5 64.0 32.6 ± 12	25 5 64.0 32.6 ± 12	Control 25 5 64.0 32.6±12
the gat HT cross pins; (intra-ob) autograft T. 1 - - Immepoints; 3m, PT allograft F: 2 10 days graft (intra- NA 6 m, 12 m & screw screw 10 days graft (intra- veanty veanty cross pins; 10 days graft (intra- NA 6 m, 12 m & screw 10 days graft (intra- veanty rs.1 1: 1 10 days graft (intra- veanty rs.1 rs.2 10 days graft (intra- veanty rs.1 rs.2 10 days graft (intra- 0) thereafter 1: 1 10 days dout 6 m, 12 m & screw rs.2 10 days dout 6 m, 12 m & screw rs.2 10 days dout 6 m, 12 m & screw rs.1 1: 1 Donor site (end 4 ml 2 m, 4 m, autograft n dout 12 m, 9 m autograft transverse No o) 12 m, 9 m autograft transverse no on) 0 autograft transverse No on) 0 autograft transverse op) 12 m, 9 m	gaft 3-op) — Timepoints: 3 m, de the NA 6 m, 12 m & yearly (intre- yearly p) _ thereafter	the graft (intra-op)	37.2 ± 8	60.0 37.2±8	4 60.0 37.2 ± 8	25 4 60.0 37.2 ± 6	PRP gel 25 4 60.0 37.2±8
Introduction ancreases interference - - - Time-points: 3m, PT allograft F: 2 10 days graft (intra- NA 6 m, 12 m & boubsotable boubsotable screw graft (intra- yearly railograft F: 2 10 days anot site (and 4 ml 5 m, 4 m, autograft rail railograft - - - - Timepoints: 1 m, BPTB N N 0 12 m, 9 m, 9 m, autograft 12 m, 9 m, autograft railograft N N - - - - - - 10 m, m - - - - - 12 m, 9 m, m N - - - - - 12 m, 9 m, m N - - - - - - 12 m, 9 m, m - - - - - - 12 m, 9 m, m - - - - -	de the NA 6 m, 12 m & yearly (intre- yearly p)						
— — — Interference — — — Time-points: 3m, PT allograft F: 2 10 days graft (intra- NA 6 m, 12 m & piostsonbable 10 days graft (intra- 0p) 9 anty Cross pins; 10 days nop 9 mark 9 mark 17.1 10 days nop 1 1 1 10 days 10 days nop 1 1 1 10 days 10 days nop 1 1 1 10 days 10 days no 1 1 1 10 days 10 days no 1 1 1 10 days 10 days no 1 1 1 1 1	 Timepoints: 3 m, de the NA 6 m, 12 m & yearly (intra- p) 						
- - - Timepoints: 3m, PT allograft F. 2. 10 days Tild divide the NA 6 m, 12 m & bioabsorbable 5. 10 days graft (intra- yearly yearly cross pins; 10 days op) thereafter N 7.1 10 days and 6 m, 12 m & pearly cross pins; 10 days op) thereafter 1.1 11 modulos: 1 m, production interference on - - Timepoints: 1 m, production interference N M M M M M M M M M M M M M M M M M M M	– Timepoints: 3m, 5m, 2m & Je the NA 6 m, 12 m & (intra- yearly yearly p) thereafter						
Tă, înside the NA 6 m, 12 m & bioabsorbalie bioabsorbalie grat (intra- veaty cross pins; ross pins; op) veaty ross pins; ross pins; op) thereafter 1:1 bioabsorbalie interface bioabsorbalie bioabsorbalie n - - Timepoints; 1m, BPTB N N Donor site (end 4 ml 2 m, 4 m, autograft screw N N of sugery) 12 m, 24 m 12 m, 24 m autograft no	Je the NA 6 m, 12 m & yearly (intra- p) (intra- p)	- (6	26.6 (15–5	76.0 26.6 (15–5	0 76.0 26.6 (15–5	50 0 76.0 26.6 (15–5	Control 50 0 76.0 26.6 (15-5
gart (ntrae op) the reafter reaction to a point of the section op) the reafter reaction to a point of the section of the section of surgery of the section of surgery of the section of surgery of surgery of the section of surgery of surgery of the section of se)) yearly thereafter	7) Π & inside the ²⁰⁰⁶ (inter ²⁰⁰⁶ (inter ²⁰⁰⁶)	26.1 (14-5	80.0 26.1 (14–5	0 80.0 26.1 (14–5	50 0 80.0 26.1 (14–5	PRP gel 50 0 80.0 26.1 (14–5
— — — Interference bioabsorbable — — — Filmepoints: 1m, BPTB NA N Donor site (end 4 ml 2 m, 4 m, autograft screw N of surgery) 6 m, 9 m, 12 m, 24 m 12 m, 24 m No No — — — Timepoint: 6 m BPTB F: absorbable No 0 12 m, 24 m autograft 12 m, 24 m no no 12 m, 24 m 12 m, 24 m autograft no no 0) 12 m, 24 m autograft no no		Bran (mua-					
− − Timepoints: 1 m. BPTB NA N Donor site (end 4 ml 2 m, 4 m. autograft NA N of surgery) 6 m, 9 m. 12 m, 24 m. autograft Na No − − Time-point: 6 m BPTB F: absorbable No 0 12 m, 24 m. autograft transverse No 0 0 12 m, 24 m. autograft transverse 0 0 12 m, 24 m. autograft Transverse 0 12 m, 24 m. autograft transverse No							
— — Time-points: 1 m, BPTB NA N Donor site (and 4 ml 2 m, 4 m, autograft autograft N of sugery) 6 m, 9 m, 9 m, 12 m, 2 m, 9 m, N N N — — — Time-point: 6 m BPTB F: absorbable No Onor site (intra- 20 ~ 40 ml 12 m, 2 m autograft transverse No Op) 12 m, 2 m BPTB F: absorbable No Op) 12 m, 2 m autograft transverse No							
Doinor site (end 4 ml 2 m, 4 m, autograft of surgery) 6 m, 9 m, 6 m, 9 m, 12 m, 24 m - - 12 m, 24 m 12 m, 24 m - - Time point 6 m 8PTB F: absorbable No Donor site (intra- 20 ~ 40 ml autograft transverse pin: n op) . . 20 ~ 40 ml autograft transverse pin:	 Time-points: 1 m, 	I	¥	NA	0 NA NA	20 0 NA NA	Control 20 0 NA NA
of surgery) 6 m, 9 m, 12 m, 24 m 12 m, 20 ~ 40 ml 11 mepoint: 6 m BPTB F: absorbable No pin: pin: 1: absorbable pin: 1: absorbable pin:	e (end 4 ml 2 m, 4 m,	Donor site (end			1	23 1	PRGF 23 1
 	rgery) 6 m, 9 m, 12 m 24 m	of surgery)					
Donor site (inta- 20 ~ 40 ml autograft transverse pin; op) T: absorbable interference	Time-point: 6 m	5-34)	23.1 (1	93.0 23.1 (1	3 93.0 23.1 (1	15 3 93.0 23.1 (1)	Control 15 3 93.0 23.1 (1)
op) pin; T: absorbable interference	∋ (intra- 20 ~ 40 ml	3-44) Donor site (intra-	25.8 (18	83.0 25.8 (18	2 83.0 25.8 (16	12 2 83.0 25.8 (18	PRP gel 12 2 83.0 25.8 (19
T: absorbable interference	p)	(do					
Interference							

Orthopaedic Surgery Volume 14 • Number 10 • October, 2022 Role of $\ensuremath{\mathsf{PRP}}$ in ACL Reconstruction

IABLE 1 Con												
Author/year	Study period	Treatment group	No. of pts.	Drop out	Male%	Mean age (years)	Injection site (s) and time points	Injection volume	Follow-up periods	Graft type	Fixation methods ($F = Femoral side$, $T = Tibial side$)	Use of knee brace
Vadalà, 2013 ³⁴	Ч.	Control PRP gel	50	0 0	100 100	34.5 (18–48) (overall)	FT, TT & inside the graft (intra-on)	10 ml: FT & graft; 5 ml: TT	Median:14.7 m (10–16 m)	4-strand HT autograft	F: the Swing- Bridge device; T. the Funisate	No use
Vogrin, 2010 ³⁵	Feb. 2008 -Jun. 2008	Control PRP gel	25	NM	73.9 59.1	33.0±12.5 35.4±10.0	FT, TT & inside ET, TT & inside the graft (intra-op)		Timepoints: 3 m, 6 m	Double- looped нт autograft	. the Longate F: 2 bioabsorbable aross pins; T: 1 bioabsorbable interference screw	No use
Mirzatolooei, 2013 ³⁶	Feb. 2011 -Feb. 2012	Control PRP	25	0 0	96.0 87.0	26.9 (18–40) 26.4 (18–40)	— FT & TT (intra-op)	2 ml: FT; 1.5 ml: TT	Time-points: 3 m	4-strand HT autograft	F. cross-pin; T: bioabsorbable interference screw	2 weeks post-op
Walters, 2018 ³⁷	2011-2015	cancellous bone chips PRP soaked cancellous bone chips	30 7ð 33 7ð	10	52.0 37.0	30.0 ± 12.0 (overall)	Donor site (intra-op) Donor site (intra- op)		Time-points: 3 m, 6 m, 12 m, 24 m	BPTB autograft	F&T: ttanium cannulated interference screws	ч Ч
Beijas, 2013 ³⁸ Rupreht, 2013 ³⁸	Jan. 2009 Jul. 2009 NA	Control PRP Control PRP gel	50 25 25	नन ७ 4	RA 26.0 60.0	NA 32.6 ± 12.3 37.2 ± 8.4	– Suprapatellar Joint (end of surgery) – FT, TT & inside the graft (intra-op)	8 ml 1 mi: FT: 1 1 mi: FT: 1 3 mi: graft	Timepoints: 4 m, 6 m, 12 m Time-points: 1 m, 2.5 m, 6 m	BPTB autograft Double- Iooped HT autograft	F&T: hydroxylapatite screws F. 2 bioabsorbable cross pins; T: 1 bioabsorbable interference screw	Immobilization for 1 week with 2 plaster splints NA
Starantzis, 2014 ⁴⁰	Dec. 2007 -Jun. 2010	C ontrol PRP	9 9 9 9	4 D	74.5 (overall)	31.3 ± 8.0 29.4 ± 7.3	FT & inside the graft (intra- op)	3 ml: FT: 3 ml: graft	Time-points: 1 m, 12 m	4strand HT autograft	F. Crosspin / Endobutton; T. a biodegradable interference screw + bone bridge suture anchoring	NA

ORTHOPAEDIC SURGERY ROLE C VOLUME 14 • NUMBER 10 • OCTOBER, 2022

ROLE OF PRP IN ACL RECONSTRUCTION

				uide				
	WB			Speed	Time			РЯР
Author/year	Volume	Anticoagulant	Processing machine	(r/min)	(min)	Post-preparation analysis	PRP activation	formé
Silva, 2009 ²⁶	27 ml	citric acid (3 ml)	the Mini GPS III Kit (Biomet $^{\otimes}$, Warsaw, IN, USA)	3200	15	2	thrombin (6 ml from 12 ml citrated WB, in group D) ^a	liquid
Cervellin,	54 ml	citric acid	the Gravitational Platelet Separation II (GPS [®])	3200	15	platelet count in WB	thrombin (2.5 ml from 10 ml citrated	gel
7107		(AUU-A, 0 ml)	system (biomet biologics, inc. warsaw, in, USA)				WB) + CdCl2 (U.3 IIII)	
Azcárefate, 2014 ²⁸	40 ml	sodium citric (3.8%,	(1) Beckman J-6B, Beckman Coulter Spain;	(1) 3000 + 1000; (2) 1800 ^b	(1) 8 + 6; (2) 8 ^b	Q	CaCl $_2$ (10%, 0.05 ml per 1 ml PRP)	gel
		wt/vol)	(2) PRGF-Endoret [®] Technology (BTI Svstem II)					
Vogrin, 2010 ²⁹	52 ml	calcium citric	the Magellan (Medtronic Biologic Therapeutics and Diagnostics, Minneapolis, MN, USA) autologous	NA	NA	Platelet count in PRP	thrombin	gel
Orrego.	57 ml	(10%, 8 ml) unknown anticlotting	platelet separator the Biomet GPS II kit (Biomet [®] Waraw. IN. USA)	NA	15	ç	thrombin (collected from 10 ml WB)	ge
2008 ³⁰	5	agent (3 ml)			2	2	+ CaCl ₂ (10:1, vol/vol)	j D
Rupreht, 2013 ^{c31}	NA	NA	NA	NA	NA	platelet counts in WB and PRP	NA	gel
Nin, 2009 ²⁰	40 ml	citric acid	Beckman J-6B, Beckman Coulter Spain, Madrid,	$3000 + 1000^{d}$	8 + 6 ^d	platelet counts in WB and	CaCl $_2$ (10%, 0.05 ml per 1 ml PRP)	gel
Seijas,	$10 \sim 20$	trisodium citrate	NA	160G ^e	Q		${\rm CaCl}_2$ (10%, 0.05 ml per 1.2 ml PRP)	gel
-5013-		(%0T)		V I V		otania OUM had talatala		1
ue Allifeiua, 2012 ³³	11000 11000		raemonetics into a + 5000 cell separation with a specific kit for platelet apheresis 995-E (Homomonetics Come Desistence MA 106A)			plateret and web counts in WB and PRP		<u>D</u>
	0		(Haemoreucs Corp, Braintree, MA, USA)					ł
Vadalā, 2013 ³⁴	10 ml	NA	the PRP rast Blotech kit (MyCells" PPT-Platelet Preparation Tube)	AN	NA	2	thrombin+Ca-gluconate (10%)	ge
Vogrin,	52 ml	calcium citrate (8 ml,	the Magellan autologous platelet separator	NA	NA	platelet counts in WB and	thrombin	gel
2010 ³⁵		10%)	(Medtronic Biologic Therapeutics and Diagnostics, Minneapolis, MN, USA)			РКР		
Mirzatolooei, 2013 ³⁶	10 ml	NA	a double syringe system (Arthrex)	1500	Q	е	QL	liquic
Walters,	10 ml	citric acid	a PRP separation kit and centrifuge system (ACP	1500	ß	ou	CaCl ₂ (0.25 ml)	gel
2018 ³⁷		(ACD-A, 1 ml)	PRP; Arthrex)					
Seijas,	NA	NA	a PRGF technique (BTI Systems Vitoria, Spain)	NA	NA	Q	NA	NA
ZUIJS Rupreht,	NA	NA	NA	NA	NA	оц	thrombin	gel
2013 ³⁹								
Starantzis, 2014 ⁴⁰	65 ml	citric acid (ACD-A, 5 ml)	the Biomet GPS III kit (Biomet, Warsaw, IN, USA)	3200	15	2	thrombin (collected from 10 ml WB) + CaCl ₂ (10:1, vol/vol)	ge

ROLE OF PRP IN ACL RECONSTRUCTION

ORTHOPAEDIC SURGERY

Volume 14 • Number 10 • October, 2022

ROLE OF PRP IN ACL RECONSTRUCTION

ORTHOPAEDIC SURGERY

Fig. 2 The risk of bias graph for each study and the summaries of the risk of bias. Generally, the included studies were of low risk of bias, but the information about allocation concealment was unclear in many included studies.

of funding sources of each trial is available in Supporting information Appendix S4. The funding information was available in seven studies,^{27,30,33,35–37,40} five^{27,30,33,37,40} of which were partially supported by some funders.

Table 2 represents the preparation protocols for PRP in the included studies. The median volume of whole blood drawn from patients was 40 (range: 10–450 mL). In 11 of the studies, $^{20,26-30,32,33,35,37,40}$ anticoagulant process was reported, which was predominately conducted with citric acid or citrates. Various processing devices were selected for PRP preparation, and double-spinning process was used in the studies of Nin *et al.*²⁰ and Valentí Azcárate *et al.*²⁸ Platelet counts in whole blood and/ or PRP were performed for post-preparation analysis in six studies.^{20,27,29,31,33,35} PRP in liquid and gel-like PRP (activated with thrombin or CaCl₂ solution) were applied in two studies^{26,36} and 14 studies,^{20,26-36,39,40} respectively.

Figure 2 represents the risk of bias graph for each study and the summaries of the risk of bias. Generally, the included studies were of low risk of bias, but the information about allocation concealment was unclear in many included studies.

Qualitative Synthesis of the Outcome Evaluations

Table 3 shows the main outcomes and the significant findings in each primary study. Image assessment on the treatment effect of PRP was performed in 15 RCTs, 20, 26-34, 36-40 with MRI in 12 studies,^{20,26–31,33,37–40} CT in two studies,^{34,36} and ultrasound in one study.³² Table 4 presents the types of MRI used for outcome assessment. Several types of MRI imaging techniques were performed, mainly including the proton density-weighted images, T1/T2-weighted images, contrast-enhanced images with intravenous administration of gadolinium or paramagnetic contrast medium Gd-DTPA, and sometimes combining with spectral fat saturation. In general, MRI was mainly used for evaluating the signals of the bone tunnels, the intra-articular part of the graft and the defect on BPTB harvest site, for assessing the processes of bone tunnel healing, graft maturation and donor site healing. Additionally, it was also used to assess the widening and direction of femoral and tibial tunnel, and tibial anterior translation. CT was only used for measuring the diameters of femoral and tibial tunnels. The ultrasonography testing on the vascularization of PT and state of defect repair at the harvest site was used for assessing harvest site healing. In

Orthopaedic Surgery Volume 14 • Number 10 • October, 2022 ROLE OF PRP IN ACL RECONSTRUCTION

TABLE 3 Summary of mai	in results of included studies	
Author/year	Outcome measures	Significant findings
Silva, 2009 ²⁶ Cervellin, 2012 ²⁷	 Image assessment: MRI signal of the FIZ Image assessment: MRI evaluations on harvest site healing; Clinical assessment: anterior knee pain and kneeling pain by VAS, and VISA contact 	None 1. VISA scores were significantly higher in the patients treated
Valentí Azcárate, 2014 ²⁸	 Image assessment: MRI evaluations on intensity, thickness, and uniformity of graft, direction of TT and FT, and tibial anterior translation; Clinical assessment: VAS, side-to-side difference by KT-1000, IKDC objective score. CRP and PER 	 Significant improvements in swelling and inflammatory parameters were found for PRGF group at 1d post-op
Vogrin, 2010 ²⁹	 (1) Image assessment: MRI evaluations on revascularization rate in FIZ & intra-articular part of graft, and diameters of FT & TT 	 (1) Significantly higher level of vascularization in FIZ was shown in PRP group, at 4–6 weeks
Orrego, 2008 ³⁰	 Image assessment: MRI evaluations on graft signal intensity in FT, presence of an interface between graft and FT and tunnel widening; Clinical assessment: Lysholm score, IKDC objective score 	 Increased number of patients presented low-intensity signal in PRP group than control group at 6 months; Tunnel widening was decreased in bone plug group than control
Rupreht, 2013 ³¹	 Image assessment: apparent diffusion coefficient (ADC) values, contrast enhancement gradient (Genh), enhancement factor (Fenh) values by diffusion weighted imaging (DWI) and with dynamic contrast-enhanced imaging (DCE-RI) in TT 	 group at 6 months 1. ADC value in the PRPG group was significantly lower than in the control group at 1 month; 2. Genh was significantly higher in the PRPG group at 2.5 and 6 months
Nin, 2009 ²⁰	 Image assessment: MRI evaluations on graft intensity, thickness and uniformity, the direction of TT & FT, tibial anterior translation, and position of PCL; Clinical assessment: VAS, knee laxity by KT-1000, IKDC objective score and CRP 	None
Seijas, 2013 ³⁸	 Image assessment: Ultrasound evaluations on vascularization of the tendon and the state of repair at the harvest site 	 Significantly higher scores of maturity were found in PRGF group than control group, at 4m post-op
de Almeida, 2012 ³³	 Image assessment: MRI evaluations on harvest site healing; Clinical assessment: VAS, Lysholm score, IKDC subjective score, Kujala score, Tegner score and isokinetic strength measurements of quadriceps and hamstring muscles 	 PT gap area at harvest site was significantly smaller, and VAS was lower in PRP group, at 6m post-op
Vadalà, 2013 ³⁴	 Image assessment: CT evaluations on diameters of FT & TT; Clinical assessment: ROM, Lachman and pivot-shift tests, Lysholm score, Tegner score, IKDC objective score, and knee laxity by KT-1000 	None
Vogrin, 2010 ³⁵	1. Clinical assessment: Tegner score, Lysholm score, IKDC score and knee laxity by KT-2000 arthrometer	 Improvement on knee anteroposterior stability at 6 month post-op was significantly higher in PRP group
Mirzatolooei, 2013 ³⁶	 Image assessment: CT evaluations on diameter at the aperture and in the middle of tunnels; Clinical assessment: ROM, knee laxity by KT-1000, and VAS 	None
Walters, 2018 ³⁷	 Image assessment: MRI evaluations of graft site defect and anteroposterior dimensions of patellar tendon; Clinical assessment: VAS and UKDC subjective score. 	None
Seijas, 2013 ³⁸ Rupreht, 2013 ³⁹	 Image assessment: MRI evaluations on stages of the grafts remodeling Image assessment: MRI evaluations on percentage of TT wall cortical bone 	None 1. Significant increase on average percentage of TT wall cortical bone for PRP group than control group, at 2.5m and 6m post-on
Starantzis, 2014 ⁴⁰	 Image assessment: MRI evaluations on FT diameters; Clinical assessment: Lysholm score, Tegner score, Rolimeter assessment and pivot-shift test 	 Significant decrease on the tunnel dilation at the middistance of the FT in PRP group, at 12m post-op

these image evaluations, significant improvement on graft remodeling, bone tunnel healing, harvest site healing and bone tunnel diameters were reported in one of five (20.0%), three of five (60.0%), two of four (50.0%) and one of five

Orthopaedic Surgery Volume 14 • Number 10 • October, 2022

ROLE OF PRP IN ACL RECONSTRUCTION

Author/year	Types of MRI
Silva, 2009 ²⁶	 Proton density weighted image with spectral fat saturation:
	 T₁ weighted image with spectral fat saturation after administration of intravenous gadolinium
Cervellin, 2012 ²⁷	1. T_1 and T_2 -weighted images
Valentí Azcárate, 2014 ²⁸	 Orthogonal proton density-weighted images (axial, sagittal, and coronal);
Vogrin, 2010 ³⁵	 I₁ and I₂-weighted images Contrast-enhanced T₁-weighted images after intravenous administration of paramagnetic contrast medium Gd-DTPA
Orrego, 2008 ³⁰	1. T ₂ -weighted images (sagittal and axial)
Rupreht, 2013 ³¹	 Proton density weighted images; Dynamic contrast-enhanced (DCE-MRI) images after intravenous administration of parameteric contrast medium Cd DTPA
Nin, 2009 ²⁰	 Orthogonal proton density-weighted images (axial, sagittal, and coronal); T. and T. weighted images
de Almeida, 2012 ³³	 1. T₂-weighted fat-saturated fast spin-echo images (axial);
	 T₂-weighted fat-saturated images (sagittal); Intermediate-weighted fast spin-echo images
Walters, 2018 ³⁷ Seijas, 2013 ³⁸	1. Fluid-sensitive images (axial) NA
Rupreht, 2013 ³⁹	 Proton-density weighted fat-suppressed images
Starantzis, 2014 ⁴⁰	 T₁-weighted images (coronal and axial); Proton density weighted (sagittal) /T₂-weighted images; STIR (coronal) or proton density-weighted (coronal) or proton density-weighted for the second second
	 saturation; 4. T₁-weighted images with spectral fat saturation after administration of intravenous gadolinium

(20.0%) studies respectively, for PRP group. Figure 3 shows the number of studies reported significant and non-significant results for the image and clinical evaluations.

Clinical outcomes assessments were available in 10 studies, mainly including VAS, knee anteroposterior laxity by KT-1000/KT-2000, IKDC subjective and objective score, Lysholm score, Tegner score, Lachman test, pivot-shift test, range of motion (ROM) and concentration of inflammatory parameters such as C-reactive protein (CRP). Among these studies, one of six studies (16.7%) showed significantly lower VAS in the treatment group with PRP than control group. The knee anteroposterior stability was shown to be increased in one of five studies (20.0%) following additional applying of PRP. No significance was found for the knee function (IKDC scores, Lysholm score, Tegner score, and ROM) and rotational stability (Lachman and pivot-shift tests) evaluations at various points of follow-up. Concerning the postoperative inflammatory parameters, CRP was found to be significantly decreased in one of two studies (50.0%) at one day post-operation.

Fig. 3 Number of trials with significant findings for various imaging and clinical assessments. In the image evaluations, significant improvement on graft remodeling, bone tunnel healing, harvest site healing and bone tunnel diameters were reported in one of five (20.0%), three of five (60.0%), two of four (50.0%) and one of five (20.0%) studies respectively, for PRP group. Concerning the clinical evaluations, one of six studies (16.7%) showed significantly lower VAS in the treatment group with PRP than control group. The knee anteroposterior stability was shown to be increased in one of five studies (20.0%) following additional applying of PRP. No significance was found for the knee function (IKDC scores, Lysholm score, Tegner score, and ROM) and rotational stability (Lachman and pivot-shift tests) evaluations at various points of follow-up. Concerning the post-operative inflammatory parameters, CRP was found to be significantly decreased in one of two studies (50.0%) at one day post-operation.

Discussion

The main finding was that only a few publications demonstrated a positive effect of PRP on accelerating the maturation process of tendon graft and healing processes on bone tunnel and the harvest site of autologous graft, and the clinical outcomes could hardly be significantly improved following application of PRP.

Application and Effectiveness of PRP for Tendon Healing

It has been reported that the long period of healing in the interzone between bone tunnel and graft makes up one of the factors to delay the return to pre-injury activity, and there is also an existent relationship between harvest site healing time and anterior knee pain.^{4–6} Though the treatment role of PRP in ACL-reconstructed patients has not been definitely identified, it has been applied with the anticipation of accelerating the recovering processes. In many former cytological, histological or biomechanical studies, PRP

ROLE OF PRP IN ACL RECONSTRUCTION

was shown to have positive effects on promoting tendon healing at the injured site by promote cell proliferation and tissue regeneration.^{16,41-45} Chan et al.⁴¹ studied the effects of basic fibro-blast growth factor (bFGF) on cell proliferation, type III collagen expression, ultimate stress and the pyridinoline content in the early stages of healing in rat patellar tendons, and found a dose-dependent increase in the number of proliferating cells and the level of expression of type III collagen at 7 days post-injury. Anaguchi *et al.*⁴² have also shown that the tangent modulus and the tensile strength of regenerated tissue in the patellar tendon after resecting the central portion could be significantly improved by TGF- β injections. In a cell culture study of de Mos *et al.*¹⁶ the PRP was reported to stimulate cell proliferation and total collagen production, and slightly increase the expression of matrix-degrading enzymes and endogenous growth factors. These pre-clinical studies were generally associated with tendon-to-tendon healing at the site of injury, that is known as the ligamentization process. However, the ACLR was mainly about the tendon-to-bone (without bone block) or bone-tobone (with bone block) healing. Xie et al.43 indicated that PRP application could promote the revascularization and reinnervation after ACLR in a dog model, which might explain the enhancing effect of PRP on ACL graft maturation. In the study of Zhang et al.44 autologous PRP combined with gelatin sponge was demonstrated to be effective in improving the tendon-tobone interface healing and structure formation after ACLR with semitendinosus autograft in rabbit model.

Clinical and Imaging Outcomes Following PRP Application

In human studies, the histologic and biomechanical data could not be obtained due to ethical implications. Thus, MRI and other imaging techniques, such as CT, have been used for assessing the treatment result of PRP, including graft revascularization, healing of the fibrous interzone between bone tunnel and graft, bone tunnel widening, and healing of the donor site. In this systematic review, based upon the available high-level evidence from RCTs, less significant findings were demonstrated in the imaging evaluations following ACLR, which was very different to that was represented in histological and biomechanical studies.^{26,27,36,37} In order to evaluate the role of PRP in the tendon-to-bone healing of the ACL reconstructed with HT, Silva et al.26 examined the MRI signal intensity of the fibrous interzone in the femoral tunnels for patients with or without applying PRP, and no difference was found between groups at 3 months after surgery. In the RCT of Mirzatolooei et al.³⁶ they assessed the impact of PRP on the prevention of tunnel widening in ACLR using quadrupled autologous HT. No significant difference was found between the groups treated with or without PRP at 3 months post-operatively, both for the femoral and tibial tunnels. Cervellin et al.²⁷ also evaluated the effect of PRP on reducing subjective pain (VAS scoring) and accelerating the healing of bone and tendon defect at donor site (MRI analyses) after BPTB harvesting for ACLR, showing no

effect of PRP in reducing the VAS pain score and accelerating healing of bone and tendon defect at 12-month followup. Similarly, Walters et al.37 also found similar levels of kneeling pain and patellar defect sizes at different follow-up periods after ACLR with BPTB autograft, whether patients were randomized to receive PRP in their patellar defect or not. Additionally, almost all of the trials assessing the clinical outcomes failed to find a positive treatment effect of PRP for ACL-reconstructed patients.^{20,26,34,36,37,40} Vadalà *et al.*³⁴ evaluated the efficacy of PRP in reducing femoral and tibial tunnel enlargement, and improving knee outcomes including Tegner score, Lysholm score, IKDC objective score, as well as knee laxity by KT-1000 arthrometer, in patients operated on for ACLR with HT, and no difference was found between the treatment groups. It could be speculated that though in vitro and animal studies have widely verified the positive role of PRP in tendon regeneration and healing, the ACLR in human patients is generally complex and the treatment outcomes could be affected by multiple factors, such as graft types, fixation methods, postoperative rehabilitation protocols, and so on. Large variations exist during the procedures of PRP preparation with various commercially available preparation systems. Thus, it is not applicable to include various PRP preparations in one general concept. Moreover, clinical evaluations carried out were mainly limited to short-term follow-up (as shown in Table 1, all of the studies followed for less than 24 months with seven studies^{26,30,31,33,35,36,39} no more than 6 months), which probably prevents an accurate assessment on long-term benefit of PRP.

Limitations

This systematic review, although based on RCTs with high level of evidence, has some potential weaknesses. First, it is not feasible to perform quantitative syntheses for the treatment outcomes, due to the existence of significant clinical heterogeneity among the primary trials, which includes different PRP patterns, volumes and application sites, different tendon graft types, fixation methods, rehabilitation protocols and follow-up, and so on. However, it is necessary to obtain an exact quantitative pooling result about the effectiveness of PRP in ACLR. Hence, to decrease the diversities of studies and increase the possibility of synthetic analysis, a standard guideline about PRP application during ACLR is required. Additionally, future trials should strictly follow the MIBO checklist for clinical studies evaluating PRP when reporting the research. Then, only imaging and clinical assessments were available for evaluating the treatment effect of PRP for ethical consideration, while histological and biomechanical data could not be obtained for patients operated with ACLR.

Conclusion

In summary, although some trials have identified a positive effect of PRP on imaging outcomes, this systematic review failed to demonstrate a discernable treatment effect of PRP according to clinical assessments. Thus, there is at this stage, no indication for the benefit of PRP procedures in ACLR.

Supporting Information

Additional Supporting Information may be found in the online version of this article on the publisher's web-site:

Appendix S1 Checklist of the PRISMA for systematic review and meta-analysis.

Appendix S2 MIBO checklist for clinical studies evaluating PRP.

Appendix S3 Searching strategies used for initial retrieval in the databases.

Appendix S4 Summary of funding source of the included studies.

REFERENCES

1. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016; 44:1861–76.

2. Ahldén M, Samuelsson K, Sernert N, Forssblad M, Karlsson J, Kartus J. The Swedish National Anterior Cruciate Ligament Register: a report on baseline variables and outcomes of surgery for almost 18,000 patients. Am J Sports Med. 2012;40:2230–5.

 Ardern CL, Taylor NF, Feller JA, Webster KE. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48:1543–52.
 Chen CH. Graft healing in anterior cruciate ligament reconstruction. Sports

4. Chen CH. Graft healing in anterior cruciate ligament reconstruction. Sports Med Arthrosc Ther Technol. 2009;1:21.

5. Gobbi A, Francisco R. Factors affecting return to sports after anterior cruciate ligament reconstruction with patellar tendon and hamstring graft: a prospective clinical investigation. Knee Surg Sports Traumatol Arthrosc. 2006;14:1021–8.

6. Guglielmetti LGB, Salas VER, Jorge PB, Severino FR, Duarte A, de Oliveira VM, et al. Prospective and randomized clinical evaluation of hamstring versus patellar tendon autograft for anterior cruciate ligament reconstruction in soccer players. Orthop J Sports Med. 2021;9:23259671211028168.

7. Filardo G, Kon E. PRP: more words than facts. Knee Surg Sports Traumatol Arthrosc. 2012;20:1655–6.

8. Molloy T, Wang Y, Murrell G. The roles of growth factors in tendon and ligament healing. Sports Med. 2003;33:381–94.

9. Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004; 91:4–15.

10. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am. 1993;75:1795–803.

11. Arnoczky SP, Tarvin GB, Marshall JL. Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am. 1982;64:217–24.

 Marumo K, Saito M, Yamagishi T, Fujii K. The "ligamentization" process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sports Med. 2005;33:1166–73.
 Hsu C, Chang J. Clinical implications of growth factors in flexor tendon wound healing. J Hand Surg Am. 2004;29:551–63.

14. Rozman P, Bolta Z. Use of platelet growth factors in treating wounds and soft-tissue injuries. Acta Dermatovenerol Alp Pannonica Adriat. 2007;16:156–65.
15. Smrke D, Gubina B, Domanoviç D, Rozman P. Allogeneic platelet gel with autologous cancellous bone graft for the treatment of a large bone defect. Eur Surg Res. 2007;39:170–4.

16. de Mos M, van der Windt AE, Jahr H, et al. Can plateletrich plasma enhance tendon repair? A cell culture study. Am J Sports Med. 2008;36:1171–8.
17. Kajikawa Y, Morihara T, Sakamoto H, et al. Plateletrich plasma enhances the initial mobilization of circulation-derived cells for tendon healing. J Cell

Physiol. 2008;215:837–45. **18.** Murray MM, Spindler KP, Devin C, et al. Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL. J Orthop Res. 2006;24:820–30.

19. Xie X, Wu H, Zhao S, Xie G, Huangfu X, Zhao J. The effect of platelet-rich plasma on patterns of gene expression in a dog model of anterior cruciate ligament reconstruction. J Surg Res. 2013;180:80–8.

20. Nin JR, Gasque GM, Azcárate AV, Beola JD, Gonzalez MH. Has platelet-rich plasma any role in anterior cruciate ligament allograft healing. Art Ther. 2009;25: 1206–13.

21. Hexter AT, Thangarajah T, Blunn G, Haddad FS. Biological augmentation of graft healing in anterior cruciate ligament reconstruction: a systematic review. Bone Joint J. 2018;100-B:271–84.

22. Chahla J, Cinque ME, Piuzzi NS, et al. A call for standardization in plateletrich plasma preparation protocols and composition reporting: a systematic review of the clinical orthopaedic literature. J Bone Joint Surg Am. 2017;99:1769–79.

23. Murray IR, Geeslin AG, Goudie EB, Petrigliano FA, LaPrade RF. Minimum information for studies evaluating biologics in orthopaedics (MIBO): platelet-

rich plasma and mesenchymal stem cells. J Bone Joint Surg Am. 2017;99: 809–19.

 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339: b2535

25. Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

26. Silva A, Sampaio R. Anatomic ACL reconstruction: does the platelet-rich plasma accelerate tendon healing. Knee Surg Sports Traumatol Arthrosc. 2009; 17:676–82.

27. Cervellin M, de Girolamo L, Bait C, Denti M, Volpi P. Autologous platelet-rich plasma gel to reduce donor-site morbidity after patellar tendon graft harvesting for anterior cruciate ligament reconstruction: a randomized, controlled clinical study. Knee Surg Sports Traumatol Arthrosc. 2012;20:114–20.

28. Valentí Ázcárate A, Lamo-Espinosa J, Aquerreta Beola JD, Hernandez Gonzalez M, Mora Gasque G, Valentí Nin JR. Comparison between two different platelet-rich plasma preparations and control applied during anterior cruciate ligament reconstruction. Is there any evidence to support their use. Injury. 2014; 45(Suppl 4):S36–41.

29. Vogrin M, Rupreht M, Dinevski D, et al. Effects of a platelet gel on early graft revascularization after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind, clinical trial. Eur Surg Res. 2010;45: 77–85.

30. Orrego M, Larrain C, Rosales J, et al. Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel. Art Ther. 2008; 24:1373–80.

31. Rupreht M, Jevtič V, Serša I, Vogrin M, Jevšek M. Evaluation of the tibial tunnel after intraoperatively administered platelet-rich plasma gel during anterior cruciate ligament reconstruction using diffusion weighted and dynamic contrastenhanced MRI. J Magn Reson Imaging. 2013;37:928–35.

32. Silva A, Sampaio R, Pinto E. Femoral tunnel enlargement after anatomic ACL reconstruction: a biological problem. Knee Surg Sports Traumatol Arthrosc. 2010; 18:1189–94.

33. de Almeida AM, Demange MK, Sobrado MF, Rodrigues MB, Pedrinelli A, Hernandez AJ. Patellar tendon healing with platelet-rich plasma: a prospective randomized controlled trial. Am J Sports Med. 2012;40:1282–8.

34. Vadalà A, Iorio R, De Carli A, et al. Platelet-rich plasma: does it help reduce tunnel widening after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013;21:824–9.

35. Vogrin M, Rupreht M, Crnjac A, Dinevski D, Krajnc Z, Recnik G. The effect of platelet-derived growth factors on knee stability after anterior cruciate ligament reconstruction: a prospective randomized clinical study. Wien Klin Wochenschr. 2010;122:91–5.

36. Mirzatolooei F, Alamdari MT, Khalkhali HR. The impact of platelet-rich plasma on the prevention of tunnel widening in anterior cruciate ligament reconstruction using quadrupled autologous hamstring tendon: a randomised clinical trial. Bone Joint J. 2013;95:65–9.

37. Walters BL, Porter DA, Hobart SJ, et al. Effect of intraoperative platelet-rich plasma treatment on postoperative donor site knee pain in patellar tendon autograft anterior cruciate ligament reconstruction: a double-blind randomized controlled trial. Am J Sports Med. 2018;46:1827–35.

38. Seijas R, Ares O, Catala J, Alvarez-Diaz P, Cusco X, Cugat R. Magnetic resonance imaging evaluation of patellar tendon graft remodelling after anterior cruciate ligament reconstruction with or without platelet-rich plasma. J Orthop Surg (Hong Kong). 2013;21:10–4.

39. Rupreht M, Vogrin M, Hussein M. MRI evaluation of tibial tunnel wall cortical bone formation after platelet-rich plasma applied during anterior cruciate ligament reconstruction. Radiol Oncol. 2013;47:119–24.

40. Starantzis KA, Mastrokalos D, Koulalis D, Papakonstantinou O, Soucacos PN, Papagelopoulos PJ. The potentially positive role of PRPs in preventing femoral tunnel widening in ACL reconstruction surgery using hamstrings: a clinical study in 51 patients. J Sports Med (Hindawi Publ Corp). 2014;2014:789317.

41. Chan BP, Fu S, Qin L, Lee K, Rolf CG, Chan K. Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthop Scand. 2000;71:513–8.

ORTHOPAEDIC SURGERY Volume 14 • Number 10 • October, 2022

42. Anaguchi Y, Yasuda K, Majima T, Tohyama H, Minami A, Hayashi K. The effect of transforming growth factor-beta on mechanical properties of the fibrous tissue regenerated in the patellar tendon after resecting the central portion. Clin Biomech (Bristol, Avon). 2005;20:959–65.
43. Xie X, Zhao S, Wu H, et al. Platelet-rich plasma enhances autograft revascularization and reinnervation in a dog model of anterior cruciate ligament meanstructure. J Col 2012;12:014 (2020)

reconstruction. J Surg Res. 2013;183:214-22.

ROLE OF PRP IN ACL RECONSTRUCTION

44. Zhang M, Zhen J, Zhang X, et al. Effect of autologous platelet-rich plasma and gelatin sponge for tendon-to-bone healing after rabbit anterior cruciate ligament reconstruction. Arthroscopy. 2019;35:1486–97.
45. Lee AJ, Chung WH, Kim DH, et al. Anterior cruciate ligament reconstruction in a rabbit model using canine small intestinal submucosa and autologous platelet-rich plasma. J Surg Res. 2012;178:206–15.