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Abstract

Purpose We aimed to develop a predictive model of disease severity for cirrhosis using MRI-derived radiomic features of
the liver and spleen and compared it to the existing disease severity metrics of MELD score and clinical decompensation.
The MELD score is compiled solely by blood parameters, and so far, it was not investigated if extracted image-based features
have the potential to reflect severity to potentially complement the calculated score.

Methods This was a retrospective study of eligible patients with cirrhosis (n = 90) who underwent a contrast-enhanced MR
screening protocol for hepatocellular carcinoma (HCC) screening at a tertiary academic center from 2015 to 2018. Radiomic
feature analyses were used to train four prediction models for assessing the patient’s condition at time of scan: MELD score,
MELD score > 9 (median score of the cohort), MELD score > 15 (the inflection between the risk and benefit of transplant),
and clinical decompensation. Liver and spleen segmentations were used for feature extraction, followed by cross-validated
random forest classification.

Results Radiomic features of the liver and spleen were most predictive of clinical decompensation (AUC 0.84), which the
MELD score could predict with an AUC of 0.78. Using liver or spleen features alone had slightly lower discrimination
ability (AUC of 0.82 for liver and AUC of 0.78 for spleen features only), although this was not statistically significant on
our cohort. When radiomic prediction models were trained to predict continuous MELD scores, there was poor correlation.
When stratifying risk by splitting our cohort at the median MELD 9 or at MELD 15, our models achieved AUCs of 0.78 or
0.66, respectively.

Conclusions We demonstrated that MRI-based radiomic features of the liver and spleen have the potential to predict the
severity of liver cirrhosis, using decompensation or MELD status as imperfect surrogate measures for disease severity.

Keywords End-stage liver disease - Radiomics - Biomarker - Clinical decision support

Introduction

J. Nitsch and J. Sack have contributed equally to this work.

Nearly two million people worldwide die from complica-
tions of cirrhosis each year, making the disease the 11th
most common cause of death globally [1,2]. Cirrhosis is
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pensated cirrhosis, with the latter characterized by higher
mortality and defined as the occurrence of at least one episode
of variceal bleeding, ascites, or hepatic encephalopathy. The
only current curative treatment for advanced cirrhosis is liver
transplantation, which is limited by the small pool of avail-
able donor organs.

The model for end-stage liver disease (MELD) scoring
system aims to stratify potential liver transplant recipients by
estimating 90-day mortality. The MELD was developed by
the organ procurement and transplantation network (OPTN)
and the united network for organ sharing (UNOS) and was
implemented in 2002 for prioritizing organ allocation. The
score is a formula based on the patient’s serum creatinine
(Cr), total serum bilirubin (TBIL), and international normal-
ized ratio of prothrombin time (INR):

MELD(,‘) =957 1In (Cr mg/dl)
+3.78 - In (TBIL mg/dl))
+11.2 - In(INR) + 6.43. 1)

The formulation of MELD was modified by UNOS in Jan-
uary 2016 to include serum sodium (Na) [4,5]:

MELD Score = MELD;) + 1.32 - (137 — Na)
—0.033 - MELDy;) - (137 — Na). )

MELD scores are rounded to the nearest integer and range
from 6 to 40, with 6 being the lowest disease severity and 40
the highest disease severity. UNOS organ allocation also pro-
vides mechanisms to expedite transplant for conditions such
as HCC in the form of exception points that are added to a
patient’s MELD score. These exception points are handled
on a case-by-case basis; for this reason, we do not take possi-
ble MELD exception points into account. A MELD score of
15 has been shown to be the inflection between the relative
risk and benefit of transplant [6,7].

Cirrhosis leads to successive morphological and textu-
ral tissue changes to the liver and surrounding vessels and
organs. Evident characteristics of cirrhosis can include: liver
surface nodularity, heterogeneous enhancement of the liver,
varices, ascites, expanded gallbladder fossa, splenomegaly,
and sarcopenia [3,8]. Apart from these directly visible fea-
tures, radiomic feature analysis—radiomics—has recently
shown promising results in exploiting latent information
in medical images. Radiomics has been used to identify
biomarkers through quantitative image-based feature extrac-
tion and analysis. Applications include correlating derived
features with patient outcomes, such as survival and response
to chemotherapy and radiation [9,10]. Furthermore, radiomic
parameters related to characteristic texture and morphologi-
cal heterogeneity have shown the potential to yield excellent,
noninvasive prognostic factors for patient outcome. Exam-
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ples include tumor phenotype analysis for risk stratification
of prostate cancer as well as lung lesion characterization and
predicting treatment response [11-14].

MRI-based radiomic feature extraction also comes with
additional challenges due to lack of signal normalization,
MRI sequence standardization, and more common acquisi-
tion artifacts [15,16]. This makes feature repeatability (also
termed stability or reproducibility in this context) between
different scanner types, models, or even different software
versions on the same model a research field on its own. As
a consequence, MRI-based radiomic features can identify
different MRI manufacturer models that are using the exact
same acquisition protocol, which would confound a study
such as ours focusing on disease.

For these reasons, we decided to focus our initial study
exclusively on MRI data from a single center, using the
same manufacturer model, scanner software version, mag-
netic field strength, and the exact same MRI acquisition
protocol. These restrictions allowed us to maximize control
while assessing the value of radiomic features.

Related research has used contrast-enhanced T1-weighted
MR images to automatically assess the stage of liver fibro-
sis. Yasaka et al. [17] trained a deep convolutional neural
network to learn characteristic image-based liver fibrosis fea-
tures from contrast-enhanced T1-weighted MR images from
534 patient data sets, classifying fibrosis into the stages FO,
F1, F2, F3, and F4, where a stage of F4 represents liver cir-
rhosis. This is similar to the research by Choi et al. where
liver fibrosis staging was performed on contrast-enhanced CT
images [18]. Park et al. had shown this based on liver fea-
tures only (with spleen-based intensity normalization), with
a model for fibrosis stage estimation [19]. Recently, He et al.
demonstrated the value of radiomic features for predicting
liver stiffness in children and young adults based on T2-
weighted MRI without contrast agent [20]. Other researchers
have attempted to improve the prognostic value of the MELD
scoring system by evaluating a broader set of laboratory
parameters, such as the MELD-Plus score, but do not include
image-derived metrics [21].

This retrospective study aimed to determine if radiomic
features derived from the MRI scans of a cirrhotic patient
cohort can predict the patients’ disease severity as approx-
imated by MELD score and presence of decompensation.
Furthermore, by focusing on severity assessment of end-
stage liver disease we try to predict whether a patient
has already decompensated by applying the same extracted
radiomic features. Compared to previous work focused on
fibrosis staging, we make no a priori assumptions about spe-
cific manifestations of disease in imaging beyond generally
detecting them in the liver and spleen. Rather, we rely on
objective image-derived radiomic features with established
surrogates for liver disease severity. For our radiomic fea-
ture analysis, we focused our feature extraction on liver and
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Table 1 Demographics for cirrhosis cohort

Cohort size n =90

Age (years) 61 4+ 12 (mean = standard deviation)

Sex 46 male/44 female

MELD score 9.94 4+ 3.97 (mean = standard deviation)
Median 8

spleen-derived features from T1-weighted MR images. To
the best of our knowledge, we are the first group to investi-
gate an image-based biomarker for severity assessment for
liver cirrhosis. The overall goal of our research is to produce
a cirrhosis biomarker or radiomic signature that can be used
to improve guidance in patient assessment and treatment or
to supplement MELD to improve transplant prioritization.

Materials and methods

Patient selection, MR imaging parameters, and
clinical data

This was a retrospective study using MRI scans of patients
with cirrhosis who were undergoing hepatocellular carci-
noma (HCC) screening at Brigham and Women’s Hospital
(BWH) from June 1, 2015, to June 1, 2018. Institutional
Review Board (IRB) approval was obtained from Partners
HealthCare. Eligible patients were screened using the Part-
ners HealthCare Research Patient Data Registry (RPDR),
which gathers clinical data from within the Partners Health-
Care system [22].

This query identified 417 patients with ICD10 codes of
cirrhosis, and within this cohort, we searched for patients
that were scanned using a multi-parametric, fat-suppressed
T1-weighted MRI scanning series on a 3 Tesla scanner
(a standard protocol used for HCC screening) including a
five-minute scan post-contrast injection (Gadovist®, Bayer
HealthCare AG, Medical Care, NJ, USA; in Europe also
known as Gadavist®). The five-minute post-contrast scan is
used for radiomic feature extraction, as it represents a con-
trast uptake phase where cirrhotic regions within the liver are
enhanced.

Intotal, 191 MRI scans were acquired with the above stan-
dardized protocol. Chart review for each scan was performed
by two hepatologists with a combined experience of 15 years
to confirm the diagnosis of cirrhosis (using clinical history,
liver biopsy, elastography [23]) and to classify the presence
of any liver-related decompensation (as mentioned above:
defined as the presence of any ascites, variceal hemorrhage,
or hepatic encephalopathy). Scans were excluded (in this cas-
caded order, for which the respective n are given) if cirrhosis
could not be confirmed (n = 10), if scans were not done on

a Siemens Verio MRI Scanner (Siemens Magnetom Verio,
Siemens Medical Solutions, PA, USA) (n = 31), if parame-
ters were missing for MELD score calculation (n = 9), prior
hepatic ablation (n = 14), prior hepatic resection (n = 1),
prior splenectomy (n = 1), and if patients had hepatocellular
carcinoma or liver lesions larger than 10mm (n = 0).

The final cohort consisted of 90 different patients with 125
MRI scans. If a patient had multiple scans, only the latest one
scan was used for feature analysis in order to prevent a bias.
The final set of images were acquired with a GRE sequence
with a typical echo time of 1.79 ms, repetition time 3.79 ms,
and flip angle 9° (Siemens 3D VIBE). Contrast agent vol-
umes were 1 ml per 10kg body weight, up to a limit of 10ml.
All included patients obtained their MELD Labs on aver-
age within a period of + 22 days from their MRI scan. In
Table 1, we summarized the cohort’s demographic informa-
tion. In Fig. 1, we give an overview of cirrhosis etiologies in
our patient cohort.

Image analysis

For quantitative radiomic feature extraction, we automati-
cally segmented livers and spleens in our cohort using a
U-net-like [24] architecture similar to Chlebus et al. [25]. The
original image resolution of the fat-suppressed T1-weighted
MR images acquired five minutes after contrast injection is
0.59 £0.05 mm ranging from 0.5 to 0.86 mm with 3 mm in
z-dimension. All images were resampled to 0.5 mm in x- and
y-dimension. As preprocessing before segmentation a non-
uniformity intensity correction was applied followed by a
normalization to the interval [0; 1]. We started with 20 expert
segmentations for training two individual neural networks for
liver and spleen segmentation. Erroneous liver and spleen
masks were successively corrected and the network was
retrained. An expert with more than 10 years of experience in
abdominal radiology validated and corrected segmented con-
tours as necessary. Feature extraction was performed using
the PyRadiomics library (version 2.0.1) in Python. For our
experiments, we initially extracted features from liver and
spleen segmentations using all available feature classes in
the respective version for further analysis: first-order statistic
features, shape-based 3D features, gray level co-occurrence
matrix (GLCM) features, gray level size zone matrix features
(GLSZM), gray level run length matrix (GLRLM) features,
neighboring gray tone difference matrix (NGTDM) features,
and gray level dependence matrix features (GLDM). Fur-
thermore, we used LoG filters with sigma 1-5mm. We also
added the liver-to-spleen volume ratio as additional feature.
In total, 2577 radiomic features were extracted, 1288 each
for liver and spleen.
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Fig. 1 Distribution of MELD scores in liver cirrhosis cohort (n = 90) (left) as well as an overview of different cirrhosis etiologies (right)
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Disease severity surrogates

We performed four different experiments in which we trained
predictive models for different surrogates of disease severity:

e Experiment 1 seeks to determine a direct, MELD-score-
specific prediction model of MRI-derived features with
our data set (meaning: radiomic features specific for
every MELD score).

e Experiment 2 attempts to create a model from MRI-
derived features to predict whether a patient has a MELD
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score above or below the cohort median. The cohort
median MELD score is 8, resulting in an almost even
split at MELD score > 9 (46 patients with alower MELD
score and 44 with a higher MELD score). A MELD score
of 9 has a clinical relevance as well, since a score of 10
has been suggested as a threshold at which transfer of
care to a hepatologist should be considered [6,26].

e Experiment 3 is similar to experiment 2, but attempts
to predict whether a patient’s MELD score is 15 or
above (where 15 represents a value where the mortality
risk of transplant and cirrhosis are approximately equal).
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Since our patient cohort includes more patients with less
advanced cirrhosis, the population of the two classes is
77 patients with a MELD < 15 and 13 patients with a
MELD > 15.

e Experiment 4 uses the same radiomic feature analysis,
but instead uses liver decompensation (as determined by
chart review) rather than MELD score as a surrogate
for disease severity. Decompensation events (presence
of ascites, variceal bleeding, or hepatic encephalopathy)
pose severe mortality risks and impact to patient qual-
ity of life. Decompensation can be directly assessed by
review of the patient’s clinical record, even in the absence
of laboratory tests. The patient cohort consists of 62 com-
pensated and 28 decompensated patients. Figure 2 shows
the number of compensated and decompensated patients
in the cohort for each MELD score value.

Machine learning analysis

We usedrepeated (n = 15) stratified fivefold cross-validation
in each of our four experiments. For regression and classifica-
tion, we employed random forests (with 100 decision trees),
which have shown to be a powerful tool for machine learning
analysis of radiomic features in related work [27].

We measured the performance of regression models using
the coefficient of determination (RZ2). For the classifica-
tion models, we computed receiver operating characteristic
(ROC) curves and measured classifier performance by means
of the area under the curve (AUC).

Statistical significance of our reported AUC values was
determined through a random permutation test (100 itera-
tions, with p < 0.01 as significance level). The classification
results were aggregated from the individual cross-validation
folds in which the samples were part of the test data. This
enabled us to compute statistical significance for the differ-
ence in classification performance between separate radiomic
analysis experiments, using a Wilcoxon signed-rank test on
the predicted probabilities of the respective true classes.

Figure 3 gives an overview of the general feature extrac-
tion and classification approach.

Results

In the following section, we describe the results of our exper-
iments using radiomic feature analysis to predict different
measures of cirrhosis severity. In Table 2, all results are sum-
marized together with the ROC curves of the experiments in
Fig. 4.

Experiment 1: direct prediction of each MELD score
with extracted radiomic features

For this experiment, we tested different experimental set-
tings and approaches. As the MELD score represents integer
values within the interval [6; 40], we employed the random
forest regressor. We carried out different experiments by try-
ing to detect a correlation with just liver-derived radiomic
features, spleen-derived features and trying to correlate with
the ensemble of both organ features. But even after reduc-
ing the feature space by applying the FCBF feature selection
method on the training data and selecting the most impor-
tant features (feature selection performed on liver features,
spleen features, and liver and spleen features together), we
could not verify a direct correlation of radiomic features in
our remaining test data sets with specific MELD scores with
an R? = —0.0044.

Experiment 2: dividing cohort into two classes at
median MELD score

Based on the observations in the previous experiment, we
modified the experiment by splitting the data into two classes
at the median MELD score which was 8 in our cohort. The
goal was to reduce the effect of class imbalances in our rel-
atively small cohort (n = 90) while splitting our cohort
into two categories, a lower and a higher cirrhosis disease
stage. This experiment consequently transferred a regression
problem to a classification problem, and the random forest
classifier was applied.

With a combination of liver and spleen features, we
achieved an AUC of 0.78, which was higher than with liver
features alone (AUC = 0.70, p = 0.0019). Using only
spleen features achieved an AUC of 0.78, which was sig-
nificantly better than with liver features alone (p = 0.0063)
and not significantly different to using combined features.
Random permutation tests showed that these AUC were sta-
tistically significant (p < 0.01). Table 2 gives an overview
of the classification results of this and the following experi-
ments.

Experiment 3: dividing cohort into two classes at
MELD score 15

Based on the same experimental setup as in the second exper-
iment, we evaluated a radiomic feature correlation with a
split in which the higher disease stage group was defined
to have MELD scores above or equal 15. We also used the
same cross-validation strategy as in the previous experiment,
and an AUC of 0.66 could be attained for liver and spleen
features, an AUC of 0.72 with p < 0.01 when using only
liver features, and an AUC of 0.61 for using solely spleen fea-
tures (see Table 2). However, due to the uneven split (only 13

@ Springer



462 International Journal of Computer Assisted Radiology and Surgery (2021) 16:457-466
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patients had a MELD score > 15), the significance test only
confirmed the AUC based on liver features to be unlikely to
be attained by chance (with p < 0.01). Accordingly, com-
parisons between the different feature sets failed to show
significance in the respective tests.

Experiment 4: predicting compensated or
decompensated cirrhosis

The fourth experiment targets the status of liver decompensa-
tion as determined by a clinical hepatologist based on review
of the electronic patient record (for details, see “Disease
severity surrogates” section). Utilizing a combination of liver
and spleen features for this classification task resulted in an
AUC of 0.84, only using liver features led to an AUC of 0.82,
and only using spleen features induced an AUC of 0.78. All
single AUC values passed the significance test (p < 0.01),
but the apparent difference in AUC between the usage of
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Table 2 Classification results: used radiomic features with respective
area under ROC curve (AUC) and p values for each classification task

Experiment Used radiomic features AUC p value
2: Split at median MELD score
Combined 0.78 < 0.01
Liver 0.70 < 0.01
Spleen 0.78 < 0.01
3: Split at MELD score > 15
Combined 0.66 < 0.02
Liver 0.72 < 0.01
Spleen 0.61 0.13
4: Decompensation
Combined 0.84 < 0.01
Liver 0.82 < 0.01
Spleen 0.78 < 0.01
MELD score 0.79 < 0.01

Bold values indicate the Significant results
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Fig. 4 Overview of ROC curves of experiment 2—4, also comparing using liver and spleen radiomic features against solely using liver or spleen

features for the classification task

combined liver and spleen features versus using only liver
(p = 0.09) or spleen (p = 0.2) features did not pass our
significance level.

For reference, the MELD score itself has an AUC of 0.79
for predicting the status of liver decompensation on this same
cohort (Fig. 4, gray curve).

Feature importance

In order to determine the importance of selected features,
we used the fast correlation-based filter (FCBF) [28]. This
filter allows identification of features with minimal redun-
dancy and maximized relevancy due to pairwise analysis
of correlations between features. The resulting reduced set

should contain those features that have the greatest prognos-
tic power.

Unfortunately, given our present cohort, we could not
determine a stable set of important radiomic features that
were the most salient for a majority of the training and test
splits within the cross-validation process.

However, we could make some qualitative observations,
such as that the resulting feature sets made use of a combi-
nation of liver and spleen features. Furthermore, they always
contained a different mixture of texture features (such as LoG
and wavelet-based features from the feature classes GLCM,
GLDM, GLSZM, and GLRLM). Most of the important LoG
features were computed with a sigma of 3 or 4 mm. Shape
features or the liver-to-spleen ratio were not ranked among
the most important features. The size of the selected feature
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sets was about nine to thirteen, indicating that a small number
of carefully selected features from both liver or spleen seem
to be sufficient for the classification process.

Discussion

In this exploratory study, we evaluated the potential for using
radiomic features for severity assessment of patients with
cirrhosis. Our hypothesis is that medical images of cirrhotic
patients hold latent information on liver disease status that
can be used to complement current clinical indicators such
as MELD or decompensation. However, our experiments are
complicated by the fact that no objective “ground truth”
disease severity metric is available to model and evaluate
against. Hence, we had to evaluate our predictive models
against several existing clinical surrogates for disease sever-
ity: MELD score, MELD score > 9, MELD score > 15, and
decompensation status. As we ultimately seek to improve on
current practice (which is largely based on the MELD score),
perfect alignment with the existing metrics would be neither
expected nor desired. Future clinical evaluation is required to
fully assess the accuracy and utility of our method compared
to (or in conjunction with) existing methods.

We evaluated the prognostic value of liver and spleen fea-
tures together as well as solely using liver or spleen features in
our experiments. Although we could not show a regression
of MRI-derived radiomic features with each MELD score
for severity assessment—which was an ambitious attempt
from the start considering the heterogeneous patient cohort
in cirrhosis etiology and disease stage, as well as our limited
sample size (see Fig. 1)—we were able to show that MRI-
derived radiomic features have the potential to be used for
severity stratification.

We received the best results for predicting a lower or
higher severity in experiment 2 and 4 if a combination of
liver and spleen features is used (with limited statistical sig-
nificance). For experiment 2 in which the median MELD
score was used as threshold for a patient’s classification into
a lower or higher disease severity, it must be mentioned that
spleen features alone (AUC 0.78) have shown a higher pre-
dictive value than solely using liver features (AUC 0.70).
We believe this small but statistically significant disparity
(p = 0.0064) represents a previously unreported discovery
worthy of future studying. In current clinical evaluation of
liver disease, the spleen is typically considered only in pass-
ing as an impression of splenomegaly or a rough measure of
size by a radiologist. We believe that a more detailed anal-
ysis of spleen features is warranted and is worthy of further
exploration in the diagnostic assessment of cirrhosis.

In experiment 3, a MELD score of 15 was used as thresh-
old to define the two different classes for severity assessment,
marking an important disease stage by considering if the
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respective patient should be listed for liver transplant. Unfor-
tunately, given our small cohort of 90 patients, only 13
patients had a MELD of 15 or higher, which limited our
ability to draw definitive conclusions and the reported AUC
values did not pass the significance test.

Experiment 4 achieved the highest AUC in this work, with
an AUC of 0.84 using combined liver and spleen features
for discriminating between compensated and decompensated
cirrhosis, meeting or modestly exceeding MELD’s predictive
ability (AUC of 0.79). This result may imply that changes to
the liver and spleen manifested in radiomic features align
with a definition of severity defined by decompensation.
While useful in clinical practice, decompensation is a crude
binary measure of disease that does not provide detailed
insight into the progression or severity of cirrhosis compared
to, for instance, the MELD scoring system with a range for
progressive severity assessment from 6 to 40. A larger patient
cohort would allow a better understanding of how the liver
and spleen change as patients approach and pass through
the decompensation threshold. Furthermore, it must be men-
tioned that MELD score exception points are not handled in
this work which might increase some patient MELD scores.

Moreover, experiments 2—4 demonstrate that we can train
reliable, predictive models for each classification task. Even
with unbalanced data sets, we demonstrate the significance
of our cross-validated accuracy scores with random permuta-
tion tests. In accordance with this, the p values of experiments
24 are always < 0.01 for either using liver or spleen features
in the respective experiment (see corresponding p values for
each experiment in Table 2). Stability and robustness of the
trained predictive models can also be seen in the ROC curves
in Fig. 4 within the distance of each curve to the 50% recall
ratio. A fixed separation of a training and test set was not fea-
sible in the relatively small cirrhotic cohort containing a very
heterogeneous distribution of disease severity. However, to
increase the general robustness of our experiments and to find
stable and reliable radiomic feature for a radiomic signature
a balanced data set would be desirable. Nevertheless, in our
case, an overall larger patient cohort would be an additional
prerequisite. The classifier needs an “adequate” number of
data sets—dependent on the complexity of the classification
task—in order to learn to distinguish properly between two
or more classes.

According to a study published by UNOS and OPTN, the
median MELD score at liver transplantation in the United
States during 2018-2019 was 35 [29]. Given that our cohort
was small and included patients with relatively low MELD
scores, it is difficult to apply our findings to patients with
higher MELD scores. Future studies that include a larger
sample size for each MELD score across the entire MELD
score spectrum are warranted to generate better radiomic
characterization of liver disease severity.
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Moreover, it has to be evaluated whether additional,
objective surrogates for disease severity can be determined
and included in future prediction models. For instance, the
image feature analysis could be combined with other metrics
derived from laboratory tests and the patient records (such as
MELD, decompensation, and additional factors such as those
used in MELD-Plus [21]). Statistical analysis could then be
used to weight the different components by relevance to form
a more wholistic clinical decision support system.

Beyond expanding the patient cohort, several additional
steps will be required in order to produce a fair, objective,
transparent, and widely useful radiomics-based signature or
biomarker for cirrhosis severity. In particular, the differences
in imaging produced at different hospitals using MRI scan-
ners made by different manufacturers must be accounted
for. Fortunately, the HCC screening protocol used in our
cohort corresponds to a widely used standard in the field.
In addition, our use of an open source library for radiomic
feature extraction (PyRadiomics)[11] and consequently the
open availability of our experimental setting should facili-
tate validation and extension of our work by the research
community.

To the best of our knowledge, we are the first research
group to analyze the prognostic value of radiomic features
in this field of research. It is our hope that this work opens
new avenues of research for applying radiomics and imaging
to the challenges of understanding cirrhosis, treating liver
disease patients, and allocating organs for transplant.
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