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SUMMARY

Quantum entanglement has shown distinguished features beyond any classical
state. Many methods have been presented to verify unknown entanglement
with the complete information about the density matrices by quantum state to-
mography. In this work, we aim to identify unknown entanglement with only
partial information of the state space. The witness consists of a generalized
Greenberger-Horne-Zeilinger-like paradox expressed by Pauli observables, and
a nonlinear entanglement witness expressed by density matrix elements. First,
we verify unknown bipartite entanglement and study the robustness of entangle-
ment witnesses against the white noise. Second, we generalize such verification
to partially unknown multipartite entangled states, including the Greenberger-
Horne-Zeilinger-type and W-type states. Third, we give a quantum-information
application related to the quantum zero-knowledge proof. It further provides a
useful method in blindly verifying universal quantum computation resources.
These results may be interesting in entanglement theories, quantum communica-
tion, and quantum networks.

INTRODUCTION

Quantum entanglement cannot be decomposed into a statistical mixture of various product states (Ein-

stein et al., 1935). It is the most surprising nonclassical property of composite quantum systems (Horodecki

et al., 2009) that Schrödinger has singled out as ‘‘the characteristic trait of quantum mechanics’’ (Schrö-

dinger, 1935). How to verify a given entanglement has become a fundamental problem in both quantum

mechanics and quantum information processing. In 1964, Bell firstly proved that the statistics generated

by some proper local quantum measurements on a two-qubit entanglement cannot be generated by

any local-hidden variable model (Bell, 1964). The so-called Bell inequality provides an experimental

method for verifying the intrinsic nonlocality of entanglement. Subsequently, this method has been

extended for various entangled states (Clauser et al., 1969; Gisin, 1991; Greenberger et al., 1989; Brunner

et al., 2014; Gühne and Tóth, 2009), except for special mixed states (Werner, 1989). Another method is from

the Hahn-Banach Theorem (Lewenstein et al., 2000; Horodecki et al., 2009), which can separate each entan-

glement from a specific convex set consisting of all the separable states (Horodecki et al., 2009) by

exploring the state-dependent witness function. This provides a universal method for witnessing all the en-

tangled states (Horodecki et al., 2009; Amico et al., 2008).

In Bell experiments, such as experimentally observing the maximal violation of the Clauser-Horne-Shi-

mony-Holt (CHSH) inequality for a two-qubit state, initially one needs to know the explicit density matrix

of the examined quantum state, so as to choose optimal measurements. Otherwise, selecting randommea-

surement settings, he could only observe the probabilistic violations of the CHSH inequality (Laing et al.,

2010). So far, the traditional Bell experiments (Bell, 1964; Clauser et al., 1969; Gisin, 1991) and entanglement

witnesses (Lewenstein et al., 2000; Horodecki et al., 2009) require essentially the state tomography to learn

its density matrix r˛BðHÞ (Lu et al., 2016), when people come to verify an unknown entangled source, as

shown in Figure 1A. This situation seems to rule out the possibility for entanglement verification without

complete information of its density matrix. It is interesting to consider that, what happens for an unknown

entanglement with partial knowledge?

Specifically, suppose a given source is restricted to be an entanglement ensemble. One possibility is that

the device provider gives only its state subspace S3BðHÞ, but not a specific density matrix. One example is

known as an arbitrary bipartite state in the known subspace S3BðHÞ spanned by the known basis

fj00DC00j; j00DC11j; j11DC00j; j11DC11jg (see Figure 1B), but not a specific Einstein-Podolsky-Rosen (EPR) state

(Einstein et al., 1935). This can be further regarded as a blind quantum communication model inspired by
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Figure 1. Schematic verification of partially unknown entanglement

(A) Traditional methods. The state tomography is firstly performed to learn the density matrix r˛BðHÞ, which is further

used for constructing Bell experiment or entanglement witness. Here, BðHÞ denotes the density operator space on

Hilbert space H:

(B) Proposedmethod without the state tomography. The given entanglement is supposed to be in a special subspace S3
BðHÞ spanned by known basis such as fj00DC00j; j00DC11j; j11DC00j; j11DC11jg; but without the knowledge of the mixture, that

is, the probability in the pure state decomposition of the density matrix.

(C) Entanglement in a blind quantum communication model. A known entanglement rin passes through one blind

quantum channel Eð ,Þ such as random unitary operations, that is, the output unknown state is given by r = EðrinÞ:
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the blind quantum computation (Broadbent et al., 2009), in which the EPR state passes through a specific

blind channel, such as some random unitary operations (see Figure 1C). A natural problem is whether such

relaxed assumptions allow verifying entanglement ensembles without the state tomography. This also in-

trigues an interesting problem of entanglement locking (Horodecki et al., 2005).

The purpose of this paper is to verify unknown entanglement with partial information of the state space. To

reach this aim, we shall propose a nonlinear entanglement witness (NEW), which consists of a generalized

Greenberger-Horne-Zeilinger-like (GHZ-like) paradox expressed by Pauli observables, and a nonlinear

inequality expressed by density matrix elements. First, we verify an unknown bipartite entanglement,

and also discuss the robustness of entanglement witnesses. Second, we generalize the verification of un-

known entanglement to multipartite entangled states, such as the GHZ-type states and the cluster states.

Third, we provide a quantum-information application related to the quantum zero-knowledge proof. Our

result provides a general method for verifying universal unknown quantum computation resources (Raus-

sendorf and Briegel, 2001). It is also robust against white noises and allows for experiments with recent

techniques.

RESULTS

Entanglement ensemble model

A pure finite-dimensional quantum state is represented by a normalized vector j4D in Hilbert space H. An

ensemble of pure states fj4iDg is represented by using density matrix r=
P
i

pi j4iDC4ij on Hilbert space H,

where fpig is a probability distribution. An bipartite state rABon HA5HB is an entanglement (Horodecki

et al., 2009) if it cannot be decomposed into the following form

rAB =
X
i

pi9
ðiÞ
A 59

ðiÞ
B (Equation 1)

where 9
ðiÞ
AðBÞ are single-particle states and fpig is a probability distribution.

As for the entanglement ensemble model, in this work, we consider an n-particle state in the density oper-

ator space Bð5n
j = 1HAj

Þ associated with the Hilbert space 5n
j = 1HAj

: The additional information may be

learned from the device provider. The traditional entanglement witnesses (Brunner et al., 2014; Gühne

and Tóth, 2009; Horodecki et al., 2009) require complete information of its density matrix r by using the
2 iScience 25, 103972, March 18, 2022
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state tomography. Here, the given state is distributed to n remote users who have no complete information

about the density matrix r. For example, for a two-qubit system, its density operator is supposed to be in a

special subspace S3BðHÞ spanned by the known basis fj00DC00j; j00DC11j; j11DC00j; j11DC11jg (see Figure 1B),

but without the knowledge of mixture. Thus the main goal here is to separate one entanglement set S from

all the separable states. Interestingly, S may be not convex and thus rule out the standard construction of

linear entanglement witness (Horodecki et al., 2009) or linear Bell inequalities (Brunner et al., 2014). It is also

different from self-testing entangled subspaces consisting of all entangled pure states with the state to-

mography (Baccari et al., 2020). Therefore, how to verify the entanglement set S will show insights in funda-

mental problems of entanglement theory.
Verifying partially unknown bipartite entanglement

Let us consider the simplest case of a two-qubit system on Hilbert space HA5HB: A generalized bipartite

entangled pure state shared by Alice and Bob reads

jFðqÞDAB = cos qj00D+ sin qj11D; (Equation 2)

where q˛ð0;p =2Þ; and jFðp =4ÞD is the EPR state (Einstein et al., 1935). We now consider the following sce-

nario: both parties only know the shared state has the following form:

rAB = EðjFðqÞDCFðqÞjÞ; (Equation 3)

where Eð ,Þ is a blind quantum channel defined by Eð9Þ = P
j

pjðUj 5 VjÞ9ðUy
j 5 V y

j Þ, 9 is the input state, fpjg

is an unknown probability distribution, and Uj and Vj are any local phase transformations, e.g., Uj =

eiqj j0DC0j+eiq
0
j j1DC1j and Vj =eiwj j0DC0j+eiw

0
j j1DC1j; with unknown parameters qj; q

0
j ;wj ;w

0
j˛ð0;pÞ: In general,

Eð ,Þ can be defined through some positive-operator-value measurements (POVM), i.e., EðrÞ=P
i

ðMi 51Þ

rðMy
i 51Þ; with Mi =

ffiffiffiffiffi
qi

p ��0DC0�� + ffiffiffi
ri

p ��1DC1��, P
i

My
i Mi = 1, and

P
i

qi =
P
i

ri = 1: The entanglement involved in

the state rAB is named as the EPR-type entanglement. The density matrix rAB is rewritten into

rAB = r00;00j00DC00j+ r11;11j11DC11j+ r00;11j00DC11j+ r11;00j11DC00j; (Equation 4)

where rij;kl’s are the matrix elements satisfying r00;00 + r11;11 = 1 and r00;11 = r�11;00: Thus our goal is to verify

the entanglement set

Sepr : = fEðjFðqÞDCFðqÞjÞ;cjFðqÞD; Eð , Þg (Equation 5)

which is spanned by the known basis fj00DC00j; j00DC11j; j11DC00j; j11DC11jg as in Equation (4). Notably, the

CHSH inequality (Clauser et al., 1969) is inapplicable because of the unknown parameter qi’s in Equation (3),

which forbids two parties to find suitable observables. Meanwhile, Sepr is not convex. For instance, for

the given state 9= jFðqÞDCFðqÞj;U1 = 1= j0DC0j+ j1DC1j; and U2 =sz = j0DC0j � j1DC1j; then one easily has

rAB =
1
2

P2
j = 1

�
Uj51

�
9
�
Uy
j 51

�
= cos 2 qj00DC00j+ sin 2 qj11DC11j; which is a separable state. This fact excludes

the well-known method of linear entanglement witnesses (Horodecki et al., 2009).

For solving the problem, we have the following Theorem 1.

Theorem 1. The entanglement set Sepr is verifiable.

Proof.—First, let us present a generalized GHZ-like paradox for quantum entanglement, which is given by

Csz5szDr = 1;
Csz5sxDr = 0;
Csx5szDr = 0;

Csx5sxDrs
ES
0;

(Equation 6)

where ‘‘ES’’ represents ‘‘entangled states’’, sx and sz are Pauli matrices, and Csj5skDr is defined by

Csj5skDr =Tr½rðsj 5skÞ�: In Equation (6), whose left-hand side contains four operators fE1 = sz 5 sz;

E2 = sz 5 sx ;E3 = sx 5 sz ;E4 = sx 5 sxg. For a standard GHZ paradox (Greenberger et al., 1989), the

global observableEi’s are required to satisfy a very strict condition: they are mutually commutative, i.e.,

½Ej;Ek �=EjEk � EkEj = 0 for any js k, and moreover the examined entanglement is the common eigenstate

of fE1;E2;E3;E4g: In Ref. (Wiseman et al., 2007), quantum nonlocality has been classified into three distinct
iScience 25, 103972, March 18, 2022 3
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types: quantum entanglement, EPR steering, and Bell nonlocality. Among which, as quantum entangle-

ment is the weakest type of quantum nonlocality, we develop the paradox (6) without the above strict con-

ditions for witnessing entanglement.

Let us denote the supposedly definite real values of v1,z and v1,x for Alice, and v2,z and v2,x for Bob, with

v1;x ; v1;z; v2;x ; v2;z˛½1;�1� beyond the integers in the standard GHZ paradox (Greenberger et al., 1989).

This can be regarded as a restricted hidden variable model. Then similar to the analysis of GHZ paradox,

classically we have from Equation (6) that v1;zv2;z = 1; v1;zv2;x = 0; v1;xv2;z = 0; and v1;xv2;xs0:But, the product of

the first three relations gives v21;zv
2
2;zv1;xv2;x = v1;xv2;x = 0; which conflicts with the fourth relation.

The proof of witnessing entanglement set Sepr depends on the following nonlinear inequality

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r00;11r11;00

p
+ r00;00 + r11;11 � 1%0 (Equation 7)

Which holds for any biseparable states (see Lemma 1 in Method details). From the inequality (7), r in

Equation (4) is entangled if and only if r00;11s0; in other words, it is separable state if and only if r00;11 =

r11;00 = 0:

Next we come to prove that any separable state would violate one statement in the paradox (6). For any

separable state rbs without the decomposition in Equation (4), it violates the first statement in the paradox

(6). Otherwise, from Equation (6) any rbs with r00;11 = r11;00 = 0 violates the fourth relation in the paradox (6).

This has completed the proof. ,

The paradox (6) and the nonlinear inequality (7) together have provided a nonlinear entanglement witness

to successfully verify the bipartite entangled states in a blind manner. In experiment, the inequality (7) is

verified according to the paradox (6). Interestingly, different from the standard linear entanglement witness

(Horodecki et al., 2009) for any entanglement derived from the Hahn-Banach Theorem, the inequality (7)

implies a nonlinear entanglement witness for verifying the non-convex set Sepr (5). Although the present

method is constructive for specific sets, it might intrigue general interests beyond the Hahn-Banach

Theorem.
Robustness of entanglement witnesses

The generalized GHZ-like paradox (7) of verifying unknown entangled sources is adaptable against white

noise. Consider a bipartite noisy Werner state (Werner, 1989) as

rv = vrAB +
1� v

4
1; (Equation 8)

where rAB is given in Equation (4), 1 is the identity operator of rank 4, and v˛½0; 1� is the visibility. From

Equations (6) and (7), the entanglement of rv is witnessed if it satisfies the followingmodified entanglement

witness (see Method details)

Csz5sxDrv = 0;
Csx5szDrv = 0;
4Csx5sxDrv + Csz5szDrv >1:

(Equation 9)

The visibilities of white noise, denoted by v*, are shown in Figure 2. There is an evident gap between two

curves, indicating the present entanglement witness is more efficient than the CHSH inequality (Clauser

et al., 1969) even with known density matrix.
Verifying partially unknown multipartite entanglement

The stabilizer formalism presents a novel way for describing quantum mechanics by using the concepts

from group theory, such as the Pauli group (Dehaene and Moor, 2003). This inspires a way for witnessing

partially unknown multipartite entanglement using its stabilizer. Specially, for a given n-partite entangle-

ment ensemble fjJðaÞDg depending on some parameter a˛R on Hilbert space 5n
j = 1HAj

; a generalized

GHZ-like paradox for quantum entanglement is built as

CgjDjJðqÞD =G1; ðj = 1;/;NÞ;
CwDjJðqÞDs0;

(Equation 10)
4 iScience 25, 103972, March 18, 2022



Figure 2. Visibility for white noise

The blue line denotes the critical visibility v � = 1=ð4��r00;11�� + 1Þ by using the entanglement witness (9) without unknown

r00;11: The red line denotes the visibility given by v� = 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 4

��r00;11��2q
, which is verified by the CHSH inequality (Clauser

et al., 1969) with known r00;11:
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where w is an entanglement witness operator (Horodecki et al., 2009), which satisfies CwDrsep = 0 for any bi-

separable state rsep (Svetlichny, 1987), and fg1;.;gNg are simultaneous stabilizers ofjJðaÞD’s. Specially, w
may be defined by

w˛

(
GjJðaÞDCJðaÞj +

X
j

qj

��FjDCFj

��); (Equation 11)

where f��JðaÞD; ��FjD;cjg is an orthogonal basis of specific Hilbert space. The witness operator w may be

separable for special qj’s.

One example is an m-partite entanglement given by

rA1/An
= EðjJðqÞDCJðqÞjÞ (Equation 12)

On Hilbert space 5n
j = 1HAj

; where jJðqÞD is a generalized GHZ state (Greenberger et al., 1989) defined by

jJðqÞDA1/An
= cos qj0D5n

+ sin qj1D5n
(Equation 13)

with q˛ð0;pÞ; and Eð ,Þ is a blind quantum channel defined by Eð9Þ=P
j
pjð5n

k = 1U
ðkÞ
j Þ9ð5n

k = 1U
ðkÞ
j Þy;

U
ðkÞ
j =eiqjk j0DC0j+eiwjk j1DC1j with unknown parameters qjk ;wjk˛ð0;pÞ; and

n
pj

o
is unknown probability distri-

bution. This is regarded as the multipartite GHZ-type entanglement. A generalized GHZ-like paradox for

the entanglement (12) is given by

Csð1Þ
z 5sðnÞ

z Dr = 1;

CsðjÞ
z 5sðj + 1Þ

z Dr = 1;

Csð1Þ
z 5sðnÞ

x Dr = 0;

CsðjÞ
z 5sðj + 1Þ

x Dr = 0;

Csð1Þ
x 5sðnÞ

z Dr = 0;

CsðjÞ
x 5sðj + 1Þ

z Dr = 0; ðj = 1;/;n� 1Þ;
C5n

k = 1s
ðkÞ
x Drs

ES
0;

(Equation 14)

where s
ðjÞ
z denotes the Pauli matrix sz being performed by the j-th party. This paradox reduces to the bipar-

tite paradox (6) when n = 2. For the n-qubit scenarios, denote Sghz = fEðjJðqÞDCJðqÞjÞ;cjJðqÞD; Eð ,Þg: We

have the following Theorem 2 (see Method details).

Theorem 2. The entanglement set Sghz is verifiable

Another example is to verify a W-type entanglement set Sw = fEðjFDCFjÞ;cjFD; Eð ,Þg (see Method details),

where jFD= a0j001D+ a1j010D+ a2j100D+ a3j111D (Dür et al., 2000) on Hilbert space HA5HB5HC ; aj are real

parameters satisfying
P3

j = 0a
2
j = 1; and Eð ,Þ is defined in Equation (12).
iScience 25, 103972, March 18, 2022 5



Figure 3. Schematic cluster states generated by quantum networks

(A) A general quantum network consisting of unknown EPR-type sources. Each green area denotes one controlled phase

operation on two qubits.

(B) An equivalent star-shaped quantum network.
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In the following, let us discuss two applications.
Verifying partially unknown universal computation resources

The one-way quantum computer (Raussendorf and Briegel, 2001) is realized by measuring individual qubits of a

highly entangled multiparticle state in a temporal sequence. The involved cluster state provides a universal

resource for quantum computation. One easy way to generate cluster states is from quantum networks (den

Nest et al., 2006; Wei et al., 2011) by using local two-qubit controlled-phase operations CPðqÞ= j00DC00j+ j01D
C01j+ j10DC10j+eiqj11DC11j: Specially, consider a connected quantum networkN q consisting ofA1;/;An, where

each party shares the entanglement (2) or (13) with others. The connectednessmeans that for anypair ofAi andAj

there is a chain subnetworkN ij consisting ofAi;Ai1 ;/;Ais ;Aj satisfying any adjacent two parties share some en-

tangled states. These multipartite entangled states can be in whole verified by using Bell inequalities (Gühne

et al., 2005; Luo, 2021a, 2021b), entanglement witness (Jungnitsch et al., 2011), or GHZ-type paradoxes (Scarani

et al., 2005; Tang et al., 2013; Liu et al., 2021). Instead, the goal here is to witness partially unknown cluster states

generated by entangled states (2) and (13) under blind channels. Let the set Scl consist of all cluster states gener-

ated fromquantumnetworkN q in the staterG, that is,Scl = fE +CðrGÞ;crG; Eð ,Þg; whereEð ,Þ isdefined inEqua-
tion (12), and Cð ,Þ is a blind unitary transformation defined by5j˛GCPðqjÞ with unknown qj˛ð0;pÞ. The set Scl is

unique because Eð ,Þ and Cð ,Þ are commutative. We have the following Theorem 3 (see Method details).

Theorem 3

The entanglement set Scl is verifiable.

For the EPR-type state (3) or GHZ-type state (12), the controlling and controlled qubits in the two-qubit

operation CPðqÞ= j00DC00j+ j01DC01j+ j10DC10j+eiqj11DC11j can be swapped. The symmetry allows for re-

shaping N q in Figure 3A into a star-shaped network, as Figure 3B, in which all CP(q)’s are performed by

the center party. The new network is easy for proving the universality of generated entangled states

(Wei et al., 2011). Thus Theorem three provides a blind witness of universal quantum computation re-

sources without the state tomography beyond previous results (Gühne et al., 2005; Jungnitsch et al.,

2011; Scarani et al., 2005; Tang et al., 2013; Liu et al., 2021).
Zero-knowledge proof of partially unknown quantum entangled source

Classical zero-knowledge proof provides an interesting protocol to prove special hard problems without

leaking its information (Goldwasser et al., 1989; Goldreich andOren, 1994). It is of a cryptographic primitive

in secure multiparty computation. The quantum versions take use of entangled states. So far, most results

have focused on extensions of classical tasks (Watrous, 2002) or entangled provers (Ito and Vidick, 2012; Ji,

2017; Grilo et al., 2019); however, our proposed method proves a quantum information task, that is, veri-

fying an entanglement (3) (for example) without leaking knowledge of mixture probability distribution
6 iScience 25, 103972, March 18, 2022
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fpjg and parametersqj ’s. One simple protocol is elaborated as following four steps: (i) The prover prepares

N copies of EPR-type entanglement (3), i.e., 5N
j= 1rAjBj

; and sends the qubit series B1;/;BN to the

verifier. (ii) The verifier challenges with a random bit series k1;/; kN˛f0; 1g: (iii) The prover complies with

a1;/; aN˛fG1g; where aj denotes the outcome on qubit Ai by performing Pauli measurement

skjwiths0 : = sx and s1 : = sz : (iv) The verifier performs the measurement on qubit Bj with Pauli observable

ssj˛fsx ; szg under the uniform distribution. The proof is true if all the joint statistics of Cskj5ssj DrAjBj satisfy

the paradox (6) under the assumptions of ideal Pauli measurement devices. Otherwise, it is false. The veri-

fier can only access the partial particle, which implies a difficult problem for the verifier to complete the task

without the help of a prover. The completeness is followed from Theorem 1, that is, the prover can convince

the verifier’s result. Amalicious prover, who prepares another entanglement beyond the one in Equation (3)

or separable state, cannot convince the verifier’s verification because he cannot forage measurement out-

comes of challenges before the random measurements ss1 ;/;ssN . This yields soundness. Besides, a mali-

cious verifier can only learn the decomposition (4) of its density matrix, which leaks no useful information of

fpjg and parameters qj’s. This follows the zero-knowledge. A more rigid analysis requires formal crypto-

graphic models beyond the scope of this paper. The protocol may be extended for multiparty by using

the GHZ-type entanglement (12). Those examples may inspire interesting applications in cryptography.
DISCUSSION

In this paper, we have investigated unknown entangled states with limited information of its state

subspace. We proposed a generalized GHZ-like paradox for verifying an entanglement set consisting of

unknown bipartite entangled states using only Pauli observables. This allows a blind entanglement verifi-

cation assisted by a nonlinear entanglement witness in a device-independent manner. We further verified

an entanglement set consisting of unknown multipartite entangled states such as multipartite GHZ-type

entanglement and cluster states from quantum networks. This provides a useful method for verifying uni-

versal quantum computation resources blindly. The present results should be interesting in entanglement

theory, Bell theory, and quantum communication.

The well-known Bell theory and entanglement witness are designed for detecting given entanglement. Our

method is designed for unknown entanglement without the state tomography. This intrigues a new prob-

lem of verifying specific sets consisting of entangled states. It may be regarded as entanglement verifica-

tion in adversary scenarios where the given entanglement passes through a blind channel of black-box

device controlled by adversaries. The present results hold for special sources in generalized EPR states

or multipartite GHZ states. It can be extended to high-dimensional EPR-type or GHZ-type entangled states

(see Method details). This motivates a general problem for other entangled sources (Dicke, 1954; Luo,

2021a, 2021b) or entangled subspaces (Baccari et al., 2020). Another interesting problem is to find new ap-

plications specially in cryptography with specific entanglement sets. In addition, it is unknown what kind of

information is necessary for verifying a general set consisting of all entangled states. This might intrigue

new entanglement models.
Limitations of the study

This paper is aimed to verify the entangled ensemble. The main limitation of the proposed method is from

the simultaneous stabilizers. This requires all the involved states being in a specific subspace. Another is the

nonconvexity of the involved subspace, which requires in principle nonlinear entanglement witnesses, or a

set of linear witnesses.
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METHOD DETAILS

Proof of Lemma 1

Lemma 1. For any two-qubit state r on Hilbert space HA5HB; the following inequality holds

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r00;11r11;00

p
+ r00;00 + r11;11 � 1%0; (Equation 15)

if and only if rAB is separable, where rij;ks denote density matrix components of rAB; that is, rAB =P
i;j;k;srij;ksjijDCksj:

Proof. Let us consider an arbitrary separable two-qubit pure state jFDAB = j41DAj42DB on Hilbert space

HA5HB with
��4jD= cos qj j0D+ sin qj j1D; qj˛ð0;pÞ; j = 1; 2: It follows that r00;11 = cosq1sinq1cosq2sinq2;

and r01;01r10;10 = ðcosq1sinq1cosq2sinq2Þ2: From the Hermitian symmetry of the density matrix r, it implies

2
��r00;11�� = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r01;01r10;10

p
%r01;01 + r10;10; (Equation 16)

where the last inequality is due to the Cauchy-Schwarz inequality of 2
ffiffiffiffiffiffiffiffijxyjp

%x2 + y2:

Consider an arbitrary mixed separable state on Hilbert space HA5HB given by

rAB =
X
i

pijFiDABCFij : =
X

j1 ;j2 ;k1 ;k2

rj1 j2 ;k1k2 jj1j2DCk1k2j=
X
i

pi

X
j1 ;j2 ;k1 ;k2

r
ðiÞ
j1 j2 ;k1k2

jj1j2DCk1k2j; (Equation 17)

where jFiDAB are separable pure states defined by r
ðiÞ
j1 j2 ;s1s2

= jFiDCFij; andfpig is a probability distribution.

From Equation (17) we get

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r00;11r11;00

p
= 2

��r00;11��
= 2

��X
i

pir
ðiÞ
00;11

��
%2

X
i

pi

��rðiÞ00;11��
(Equation 18)

X �
ðiÞ ðiÞ

�

%

i

pi r01;01 + r10;10 (Equation 19)
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= r01;01 + r10;10 (Equation 20)

= 1� r � r : (Equation 21)
00;00 11;11

The inequality (18) is followed from the convexity of function f ðxÞ = jxj. The inequality (19) is followed from

the inequality (16). The equality (20) is from Equation (17). Equation (21) follows the trace equality of Trr= 1:

Thus we have successfully proved the inequality (15). ,
Robustness of bipartite entanglement witness

Consider a bipartite state with white noise on Hilbert space HA5HB is given by

rv = vrAB +
1� v

4
1; (Equation 22)

where 1 is the rank-4 identity operator on Hilbert space HA5HB and v˛½0; 1�: and v˛½0; 1�. For the noisy

state rv ; the density matrix is given by

rv =

0BBBBBBBBBBBB@

1� v

4
+ vr00;00 0 0 vr00;11

0
1� v

4
0 0

0 0
1� v

4
0

vr00;11 0 0
1� v

4
+ vr11;11

1CCCCCCCCCCCCA
;

where r00;00 and r11;11 satisfies r00;00; r11;11R0 and r00;00 + r11;11 = 1; and r00;11R0 (for simplicity, let us take

r00;11 as a real number). From Lemma 1, rv is a bipartite entanglement if v satisfies the following inequality

v>
1

1+ 4r00;11
: (Equation 23)

For two observables sz5sxandsx5sz ; from Eq. (Robustness of bipartite entanglement witness) it is easy to

prove that rv satisfies

Csz 5 sxDrv = 0; (Equation 24)
Csx 5szDrv = 0: (Equation 25)

Similarly, for two observables sz5sz and sx5sx ; from Eq. (Robustness of bipartite entanglement witness)

it follows that

Csz5szDrv = v; (Equation 26)
Csx5sxDrv = 2vr00;11: (Equation 27)

So, combining Equations 24–27 and the inequality (23), rv is entangled if it satisfies the following state-

ments as

Csz5sxDrv = 0;
Csx5szDrv = 0;
2Csx5sxDrv + Csz5szDrv >1:

(Equation 28)

This has completed the proof.
Proof of Theorem 2

In this section we prove Theorem 2. The first subsection is for witnessing the unknown entanglement by

using present generalized GHZ-type paradox (13) in the main text. The second subsection is for verifying

the nonlocality. The third subsection is for the robustness against white noise while the last section is for

verifying noisy state using the Svetlichny inequality.
Witnessing unknown entanglement set Sghz

Similar to Lemma 1, we prove the following Lemma.

Lemma 2. For any n-qubit biseparable state r on Hilbert space 5n
j = 1HAj

; the following inequality holds
iScience 25, 103972, March 18, 2022 11
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2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

0
!

n ; 1
!

n
r

1
!

n ; 0
!

n

p
+ r

0
!

n ; 0
!

n
+ r

1
!

n ; 1
!

n
� 1%0; (Equation 29)

where 0
!

n and 1
!

n denote respectively n-bit series 0/0 and 1/1; and r
i
!

n ; j
!

n
are density matrix compo-

nents defined by rA1/An
=

P
i1 ;/;in ;j1 ;/;jn

ri1/in ;j1/jn ji1/inDCj1/jnj.

Proof of Lemma 2. The proof is similar to Lemma 1 and a recent method (Gühne and Seevinck, 2010).

Consider an arbitrary biseparable pure state (Svetlichny, 1987) on Hilbert space 5n
j = 1HAj

given by

jJDA1/An
= jj1Djj2D (Equation 30)

where jj1DA1/As
=

P
j1 ;/;js

aj1/js

��j1/jsD is a s-qubit pure state on Hilbert space 5s
j = 1HAj

andjj2DAs+ 1/An
=

P
js+ 1 ;/;jn

bjs+ 1/jn

��js+ 1/jnD and
��j2DAs+ 1/An

=
P

js+ 1 ;/;jn

bjs+ 1/jn

��js+ 1/jnD is an n� s-qubit pure state

on Hilbert space 5n
j = s+ 1HAj

. It follows that��r
0
!

n ; 1
!

n

�� = ��a
0
!

s
a

1
!

s
b

0
!

n�s
b

1
!

n�s

��= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

0
!

s 1
!

n�s ; 0
!

s 1
!

n�s
3 r

1
!

s 0
!

n�s ; 1
!

s 0
!

n�s

q
: (Equation 31)

This implies that

2
��r

0
!

n ; 1
!

n

�� = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

0
!

s 1
!

n�s ; 0
!

s 1
!

n�s
r

1
!

s 0
!

n�s ; 1
!

s 0
!

n�s

p
%r

0
!

s 1
!

n�s ; 0
!

s 1
!

n�s
+ r

1
!

s 0
!

n�s ; 1
!

s 0
!

n�s
%1� r

0
!

n ; 0
!

n

� r
1
!

n ; 1
!

n
:

(Equation 32)

Here, the inequality (32) is followed from the Cauchy-Schwarz inequality of 2jabj%a2 +b2; and

the inequality (32) has used the inequality of r
0
!

n ; 0
!

n
+ r

1
!

n ; 1
!

n
+ r

0
!

s 1
!

n�s ; 0
!

s 1
!

n�s
+ r

1
!

s

0
!

n�s; 1
!

s 0
!

n�s%1; 0
!

mðor 1!mÞ denotes m-bit series 0/0ðor1/1Þ:

Similarly, we can prove the inequality (32) for any mixed biseparable state in Equation (30) in terms of

each bipartition of fA1;/;Ang. In what follows, consider a biseparable mixed state rbs on Hilbert space

5n
j = 1HAj

as

rbs =
X
i

pijJiDA1/An
CJij=

X
j1 ;/;jn
k1 ;/;kn

rj1/jn ;k1/kn jj1/jnDCk1/knj=
X
i

pi

X
j1 ;/;jn
k1 ;/;kn

r
ðiÞ
j1/jn ;k1/kn

jj1/jnDCk1/knj

(Equation 33)

where jJiD are biseparable pure states defined in Equation (30) with density matrices jJiDA1/An
CJij : =P

j1 ;/;jn ;k1 ;/;kn

r
ðiÞ
j1/jn ;k1/kn

jj1/jnDCk1/knj. From the inequality (32), it follows that

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

0
!

n ; 1
!

n
r

1
!

n ; 0
!

n

p
= 2

����r 0
!

n ; 1
!

n

����
= 2

�����X
i

pir
ðiÞ

0
!

n ; 1
!

n

�����
%2

X
i

pi

�����rðiÞ0!n ; 1
!

n

�����
(Equation 34)

�� ��

%
X
i

pi
���1� r

ðiÞ

0
!

n ; 0
!

n

� r
ðiÞ

1
!

n ; 1
!

n

��� (Equation 35)

X � 	

=

i

pi 1� r
ðiÞ

0
!

n ; 0
!

n

� r
ðiÞ

1
!

n ; 1
!

n

(Equation 36)

= 1� r � r : (Equation 37)

0
!

n ; 0
!

n 1
!

n ; 1
!

n

Here, the inequality (34) is followed from the convexity of the function f ðxÞ= jxj: The inequality (35) is from

the inequality (32). The inequality (36) is obtained from the equality:

����1�r
ðiÞ
0
!

n ; 0
!

n

�r
1
!

n ; 1
!

n

ðiÞ
����= 1� r

ðiÞ
0
!

n ; 0
!

n

�

r
ðiÞ
1
!

n ; 1
!

n

because r
ðiÞ
0
!

n ; 0
!

n

; r
ðiÞ
1
!

n ; 1
!

n

R0 and r
ðiÞ
0
!

n ; 0
!

n

+ r
ðiÞ
1
!

n ; 1
!

n

%1: The equality (37) is from Equation (33). This

has proved the inequality (29). ,
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Now, continue to prove Theorem 2. The generalized GHZ-type entangled state reads

rA1/An
= EðjFðqÞDCFðqÞjÞ; (Equation 38)

where jFðqÞD is a generalized GHZ state given by

jFðqÞDA1/An
= cosqj0D5n

+ sinqj1D5n
; (Equation 39)

with q˛
�
0; p2

�
and Eð ,Þ is local phase transformation defined by EðrÞ=P

j
pjð5n

k = 1UjkÞrð5n
k = 1U

y
jkÞ;

Ujk =eiqjk j0DC0j+eiwjk j1DC1jwith unknown parameters qjk ;wjk˛ð0;pÞ; and any unknown probability distribution

fpjg: With these notions, the entanglement set Sghz is given by

Sghz = fr;cjFðqÞD; Eð , Þg (Equation 40)

The goal is to witness the entanglement set Sghz by using the generalized GHZ-like paradox (13) in the main

text and Lemma 2.

We firstly prove that any entanglement r˛Sghz satisfies the paradox (13). In fact, it is forward to check any

entangled state in Equation (38) satisfies the first three equalities of the paradox (14) from the fact that

jFðqÞDA1/An
in Equation (39) satisfies these equalities for any q˛ð0;pÞ:

For any state rA1/An
˛Sghz ; it is rewritten into

rA1/An
= r

0
!

n ; 0
!

n

��� 0!nDC 0
!

n

��� + r
0
!

n ; 1
!

n

��� 0!nDC 1
!

n

���
+ r

1
!

n ; 0
!

n

��� 1!nDC 0
!

n

��� + r
1
!

n ; 1
!

n

��� 1!nDC 1
!

n

��� (Equation 41)

where fr
0
!

n ; 0
!

n
; r

1
!

n ; 1
!

n
g is a probability distribution, and r

0
!

n ; 1
!

n
= r�

1
!

n ; 0
!

n

: From Lemma 2, r is an n-partite

entanglement in the biseparable model (Svetlichny, 1987) if r
0
!

n ; 1
!

n
s0:Otherwise, r is a biseparable state

with the following decomposition

r= r
0
!

n ; 0
!

n

��� 0!nDC 0
!

n

���+ r
1
!

n ; 1
!

n

��� 1!nDC 1
!

n

���=X
i

piðjFðqiÞDCFðqiÞj+ jFðqiÞtDCFðqiÞtj Þ (Equation 42)

where fjFðqiÞD; jFðqiÞtDg are orthogonal states for any qi. This further implies that the inequality (29) is suf-

ficient and necessary for witnessing the entanglement set Sghz . Hence, any state in Sghz is an n-partite

entanglement if and only if the paradox (13) holds.

In the following, we prove any biseparable state violates one statement in the paradox (13). In fact, consider

an n-qubit biseparable pure state jFDA1/An
= j4DA1/Ak

jjDAk + 1/An
on Hilbert space 5n

j = 1HAj
: From all the

equalities of the paradox (13), j4D is represented by the state j0D5k
orj1D5k

while jjD is represented by the

state
��0D5n�k

or
��1D5n�k

:
��1D5n�k

Otherwise, jFD will violate one statement in the paradox (13). Generally,

consider a general n-qubit mixed biseparable state rbs on Hilbert space 5n
j = 1HAj

given by

rbs =
X
jk

pjkr
ðIÞ
j 5r

ðIÞ
k (Equation 43)

where r
ðIÞ
j denote pure states of the systems in the set I3fA1;/;Ang; rðIÞk denote pure states of the systems

in the complement set I= fA1;/;Ang � I; andfpjkg is a probability distribution. So, rbs can only be a diag-

onal state given by

rbs = p0

��� 0!nDA1/An
C 0
!

n

��� + p1

��� 1!nDA1/An
C 1
!

n

��� (Equation 44)

if all the equalities in the paradox (13) hold. This implies Csð1Þx 5/5s
ðnÞ
x Drbs = 0; that is ; rbs violates the last

inequality of the paradox (13). So, any biseparable state violates either one equality or the last inequality of

the paradox (13).
Verifying the nonlocality

We verify the nonlocality by using the generalized GHZ-type paradox (13). Denote the supposedly definite

real values of vj,z and vj,x for the j-th party, with vj;x ; vj;z˛ð1;�1Þ beyond the integers in the standard GHZ

paradox (Greenberger et al., 1989), j = 1;/;n:. Similar to the analysis of the GHZ paradox, classically we

have from the first two statements in Equation (13) that
iScience 25, 103972, March 18, 2022 13
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vj;z˛fG 1g; ðj = 1;/; nÞ: (Equation 45)

Moreover, combining with the third to sixth statements in Equation (13), we get

vj;x = 0; ðj = 1;/;nÞ: (Equation 46)

This contradicts to the last relation of
Qn

j = 1vj;xs0 in Equation (13). This completes the proof.

Robustness against white noise

Consider an unknown n-partite entangled state with white noise on Hilbert space 5n
j = 1HAj

as

9v = vrA1/An
+
1� v

2n
12n (Equation 47)

where 12n is a rank-2n square identity matrix, r is defined in Equation (38), and v˛½0; 1�: Its density matrix is

given by

9v =

�
1� v

2n
+ vr

0
!

n

	��� 0!nDC 0
!

n

��� + �
1� v

2n
+ vr

0
!

n

	��� 1!nDC 1
!

n

���
+ vr

0
!

n ; 1
!

n

��� 0!nDC 1
!

n

��� + vr
1
!

n ; 0
!

n

��� 1!nDC 0
!

n

���
+
1� v

2n

X
j
!

s 0
!

n ; 1
!

n

��� j!DC j
!���

(Equation 48)

where r
0
!

n ; 0
!

n
and r

1
!

n ; 1
!

n
satisfies r

0
!

n ; 0
!

n
; r

1
!

n ; 1
!

n
R0; and ; r

0
!

n ; 0
!

n
+ r

1
!

n ; 1
!

n
= 1; r

0
!

n ; 1
!

n
R0 from the

definition in Equation (38), j
!

= j1/jn is an n-bit series. From Lemma 2, the noisy state 9v is an n-partite

entanglement in the biseparable model (Svetlichny, 1987) if v satisfies the following inequality

v>
1

1+ 4r
0
!

n ; 1
!

n

: (Equation 49)

For 2n separable observables fsð1Þz 5 s
ðnÞ
x ; s

ðiÞ
z 5 s

ði + 1Þ
x ; s

ð1Þ
x 5 s

ðnÞ
z ; s

ðiÞ
x 5 s

ði + 1Þ
z ; i = 1;/; n � 1g, from

Equation (48) it is easy to prove that

Csð1Þ
z 5sðnÞ

x D9v = 0; (Equation 50)
ðiÞ ði + 1Þ
Csz 5sx D9v = 0; (Equation 51)
ð1Þ ðnÞ
Csx 5sz D9v = 0; (Equation 52)

ðiÞ ði +1Þ
Csx 5sz D9v = 0; ði = 1;/;n� 1Þ: (Equation 53)

Similarly, for n+ 1 observables s
ð1Þ
z 5s

ðnÞ
z ;s

ðiÞ
z 5s

ði + 1Þ
z ; ði = 1;/; n�1Þ and s

ð1Þ
x 5/5s

ðnÞ
x : from Equation (48) it

follows that

Csð1Þ
z 5sðnÞ

z D9v = v; (Equation 54)
ðiÞ ði + 1Þ
Csz 5sz D9v = v; (Equation 55)
Csx5sxD9v = 2v900;11: (Equation 56)

So, from Equations 50–56 and the inequality (49), 9v is n-partite entangled (Svetlichny, 1987) if it satisfies the

following statements

Csð1Þ
z 5sðnÞ

x D9v = 0;

CsðiÞ
z 5sði + 1Þ

x D9v = 0;

Csð1Þ
x 5sðnÞ

z D9v = 0;

CsðiÞ
x 5sði + 1Þ

z D9v = 0; ði = 1;/;n� 1Þ;
CsðiÞ

z 5sðjÞ
z D9v + 2Csð1Þ

x 5/5sðnÞ
x D9v >1

(Equation 57)

for any ði; jÞ˛fð1;nÞ; ð1; 2Þ;/; ðn�1; nÞg: This has completed the proof. ,

Nonlocality verified by violating the Svetlichny inequality

Another method for verifying the multipartite nonlocality of noisy state is using the Svetlichny inequality

(Svetlichny, 1987) with the known density matrix. Take a tripartite GHZ-type state in Equation (48) as an

example. For simplicity, we can restrict measurement along directions lying in the x-y plane of Pauli sphere,
14 iScience 25, 103972, March 18, 2022
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so that two observables Ai and Ai
0 of the i-th party are specified by the azimuthal angles 4i and 4i

0; respec-
tively, for i = 1; 2; 3:. For the noisy state in Equation (47) with n = 3, it follows that

CA1A2A3D9v = 2vr000;111cosð41 +42 +43Þ;
CA1A2A3

0D9v = 2vr000;111cosð41 +42 +43
0Þ;

CA1A2
0A3D9v = 2vr000;111cosð41 +42

0 +43Þ;
CA1A2

0A3
0D9v = 2vr000;111cosð41 +42

0 +43
0Þ;

CA1
0A2A3D9v = 2vr000;111cosð41

0 +42 +43Þ;
CA1

0A2A3
0D9v = 2vr000;111cosð41

0 +42 +43
0Þ;

CA1
0A2

0A3D9v = 2vr000;111cosð41
0 +42

0 +43Þ;
CA1

0A2
0A3

0D9v = 2vr000;111cosð41
0 +42

0 +43
0Þ:

(Equation 58)

From Equation (58), we get

jSV j9v = CA1A2A3D + CA1A2A3
0D

+ CA1A2
0A3D + CA1

0A2A3D

� CA1
0A2

0A3
0D� CA1

0A2
0A3D

� CA1
0A2AD3 � CA1A2

0A3
0D

= 8
ffiffiffi
2

p
vr000;111;

(Equation 59)

where 41 +42 +43 =
3p
4 and 4i

0 =4i +
p
2 : The noise visibility is given by

1Rv�>
1

2
ffiffiffi
2

p
r000;111

(Equation 60)

for a known state 9v , as shown in Figure 4. It should be interesting to explore other Bell-type inequalities

with greater noise visibility.
Figure 4. (Color online) Visibility of white noise for 9v in Equation (47)

Here, n = 3. The blue line denotes the witnessed visibility given in Equation (49) with unknown density matrix. The red line

denotes the verified visibility given in Equation (60) by using the Svetlichny inequality (Svetlichny, 1987) with known density

matrix.
Verifying unknown W-type entanglement

Our goal here is for verifying unknown W-type entanglement. Consider a three-qubit system W-type en-

tangled state (Dür et al., 2000) on Hilbert space HA5HB5HC given by

jFDABC = a0j001D + a1j010D
+ a2j100D + a3j111D; (Equation 61)

where aj’s are real parameters satisfying
P3

j = 0a
2
j = 1:. Suppose jFDABC is shared by three parties, Alice, Bob,

and Charlie who only know the shared state being the following form:

rABC = EðjFDCFjÞ; (Equation 62)

where Eð ,Þ is a local channel defined by

Eð9Þ =
X
j

pj

�
Uj 5Vj5Yj

�
9
�
Uy

j 5V y
j 5Y y

j

�
; (Equation 63)
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according to local unknown phase rotations Ui,Vj and Yj defined in Equation (11) (in the main text), and fpjg
is an unknown probability distribution. The entanglement involved in the state rABC is named as theW-type

entanglement.

Under the local channel Eð ,Þ; the density matrix rABC in Equation (62) can be rewritten into the following

form

rABC =
X

j1 + j2 + j3 = 1;3

rj1 j2 j3 ;j1 j2 j3 jj1j2j3DCj1j2j3j (Equation 64)

where rj1 j2 j3 ;k1k2k3 ’s satisfy that frj1 j2 j3 ;j1 j2 j3g being a probability distribution and rj1 j2 j3 ;k1k2k3 = r�k1k2k3 ;j1 j2 j3 : Our

goal in what follows is to verify the entanglement set

Sw : = fEðjFDCFjÞ;cjFD; Eð , Þg (Equation 65)

which is spanned by the basis f��j1j2j3DCk1k2k3��;cj1 + j2 + j3 = 1; 3; k1 + k2 + k3 = 1; 3g:

The entanglement set Sw is not convex because the separable state rABC =
Pd�1

j = 0 rj1 j2 j3 ;j1 j2 j3

��j1j2j3DCj1j2j3�� has
the decomposition in Equation (64). This rules out the linear entanglement witnesses (Horodecki et al.,

2009). Similar to Theorem 2, we have the following Theorem 2’.

Theorem 2’. The entanglement set Sw is verifiable ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;111r111;000

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r010;100r111;000

p

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;010r111;000

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r100;111r111;000

p
>
1

4
:

(Equation 66)

Proof. Similar to the generalized GHZ-like paradox (13) in the main text, we present a paradox for W

states r˛Sw as

Csz5sz5szDr = � 1;

Csx5sz5szDr = 0;

Csz5sx5szDr = 0;

Csz5sz5sxDr = 0;

Csð1Þ
x 5sð2Þ

x Drs
ES
0;

Csð1Þ
x 5sð3Þ

x Drs
ES
0:

(Equation 67)

The proof of the nonlocality with definite real values of both parties is similar to its for Theorem 2. Specially,

denote the supposedly definite real values of v1,z and v1,x for Alice, v2,z and v2,x for Bob, and v3,z and v3,x for

Charlie, with vj;x ; vj;z˛ð1;�1Þ: From the first statement in Equation (67) we have v1;zv2;zv3;z = 1 while implies

vj;zs0:. Combined with the second to fourth statements in Equation (67), it follows that vj;x = 0 for any j.

This conflicts with the last relation.

Next, we prove any biseparable state would violate one statement in the paradox (67). For any biseparable

state rbs on Hilbert spaceHA 5HB 5HC , it violates the first statement in the paradox (67) if it does not has

the decomposition (64). Otherwise, rbs has the decomposition (64). From Equation (67), we have

Csz5sz5szDrbs = � 1;

Csx5sz5szDrbs = 0;

Csz5sx5szDrbs = 0;

Csz5sz5sxDrbs = 0;

Csð1Þ
x 5sð2Þ

x Drbs = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;111r111;001

p
+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r010;100r100;010

p

Csð1Þ
x 5sð3Þ

x Drbs = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;100r100;001

p
+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r010;111r111;010

p
:

(Equation 68)

It will violate the inequality (66), that is, for any bisparable state we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;111r111;001

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r010;100r100;010

p

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;010r010;001

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r100;111r111;100

p
%

1

2

(Equation 69)

Hence, this has completed the proof.
16 iScience 25, 103972, March 18, 2022



ll
OPEN ACCESS

iScience
Article
Now, before ending the proof we prove the inequality (69). Consider an arbitrary biseparable pure state on

Hilbert space HA5HB5HC as

jFDABC = j41DAj42DBC (Equation 70)

where j4Di = a0j0D+ a1j1Dand j42D=
P

i;j = 0;1

bij jijD;with
P1

j = 0a
2
j =

P1
i;j = 0b

2
ij = 1 and

��42D =
P

i;j = 0;1

bij

��ijD, with P1
j = 0a

2
j =P1

i;j = 0b
2
ij = 1: Similar to proof of Lemma 2, we can prove that

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;111r111;001

p
% r011;011 + r101;101; (Equation 71)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
2 r010;100r100;010 % r000;000 + r110;110: (Equation 72)

Moreover, from the positive semidefinite density matrix r, all the principal minors are positive semidefinite.

Combining with the Cauchy-Schmidt inequality, we get

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;010r010;001

p
%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;001r010;010

p
%r001;001 + r010;010;

(Equation 73)

and

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r100;111r111;100

p
%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r100;100r111;111

p
%r100;100 + r111;111:

(Equation 74)

From the inequalities (71)-(74), we getffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;111r111;001

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r010;100r100;010

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;010r010;001

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r100;111r111;100

p
%

X
j1 ;j2 ;j3 = 0;1

rj1 j2 j3 ;j1 j2 j3 = 1

(Equation 75)

For other two biseparable states, we can similarly prove the inequality (75). Moreover, for any mixed bise-

parable states rbs =
P
i

pijFiDCFij with product states jFiD; from the concavity of function f ðxÞ= ffiffiffi
x

p
it follows

that ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;111r111;001

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r010;100r100;010

p

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r001;010r010;001

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r100;111r111;100

p

%
X
j

pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
ðjÞ
001;111r

ðjÞ
111;001

q
+
X
j

pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
ðjÞ
010;100r

ðjÞ
100;010

q
+
X
j

pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
ðjÞ
001;010r

ðjÞ
010;001

q
+
X
j

pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
ðjÞ
100;111r

ðjÞ
111;100

q
%1

(Equation 76)

from the inequality (75), where r
ðiÞ
j1 j2 j3 ;k1k2k3

are density matrix elements defined by jFiDCFi j=P
j1 ;j2 ;j3 ;k1 ;k2 ;k3

r
ðiÞ
j1 j2 j3 ;k1k2k3

��j1j2j3DCk1k2k3j: This has proved the inequality (66).
Proof of Theorem 3

Consider an n-partite quantum network N q shared by n parties A1;/;An: The total state of N q is given by

rG = 5m1
j = 1rj5

m2
k = 19k (Equation 77)

where rj are generalized EPR entangled states defined in Equation (1) in the main text and 9k are multipar-

tite GHZ entangled states defined in Equation (12) in the main text. Denote the triple ðAj; qj; ðkj; sjÞÞ as the
specification of a local controlled-phase

CP
�
qj
�
= j00DC00j+ j01DC01j+ j10DC10j+ eiqj j11DC11j (Equation 78)

performed by Aj on two qubits from entangled states rkjand rsj : Let G= fðAj ; qj; ðkj; sjÞÞ;cjg be the set of all

specifications for generating a cluster state.

Define cluster-type entanglement set Scl as

Scl = fE + CðrGÞ;crG; Eð , Þ; Cð , Þg (Equation 79)

where Eð ,Þ is a blind quantum channel consisting of local phase rotations on each qubit, e.g., EðrÞ=
5m1

j = 1EjðrjÞ5m2

k = 1
bEkð9kÞwith Ejð ,Þ defined in Equation (2) (in the main text) and bE jð ,Þ defined in Equation (11)
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(in the main text), Cð ,Þ is a blind unitary transformation defined by5j˛GCPðqjÞ with unknown qj˛ ð0;pÞ: The
definition in Equation (79) is reasonable because Eð ,Þ and Cð ,Þ are communicative. The main goal in what

follows is to verify Scl.

We firstly prove two lemmas.

Lemma 3. Consider any unknown m-partite entanglement rA1/Am
in Equation (11) shared by n parties

A1;/;Am: Then any two parties Ai and Aj can share one unknown bipartite entanglement in Equation (2)

assisted by other’s local operations and classical communication (LOCC).

Proof of Lemma 3. Consider any unknown multipartite GHZ-type rA1/Am
given in Equation (11). For any

two parties Ai and Aj, suppose other parties perform local projection measurement under the basisn
jGD = 1ffiffi

2
p ðj0DGj1DÞ

o
and send out measurement outcomes ak ; k˛f1;/; ng � fi; jg: The resultant condi-

tional on outcomes ak ’s is given by

rAiAj
= r

0
!

n ; 0
!

n
j00DC00j+ r

1
!

n ; 1
!

n
j11DC11j+ ð�1Þ

P
k

ak
r

0
!

n ; 1
!

n
j00DC11j+ ð�1Þ

P
k

ak
r

1
!

n ; 0
!

n
j11DC00j
(Equation 80)

which can be locally transformed into

rAiAj
= r

0
!

n ; 0
!

n
j00DC00j + r

0
!

n ; 1
!

n
j00DC11j

+ r
1
!

n ; 0
!

n
j11DC00j + r

1
!

n ; 1
!

n
j11DC11j (Equation 81)

after one party performs a local rotation j0DC0j+ ð�1Þ
P
k

ak j1DC1j on its shared qubit. From Lemmas 1 and 2,

rAiAj
is an entanglement in Equation (2) if and only if rA1/An

is an entanglement ði:e:; r
1
!

n ; 0
!

n
; r

0
!

n ; 1
!

n
s0Þ:

This has completed the proof.

Lemma 4. Consider a chain quantum network consisting of any two unknown entangled states rAB and

rCD in Equation (2), where Alice has qubit A, Bob has two qubits B and C while Charlie has qubit D. Then

Alice and Charlie can share one unknown entanglement in Equation (2) assisted by Bob’s LOCC.

Proof of Lemma 4. Consider a chain quantum network consisting of any two unknown states

rAB =
P
i;j;k;s

rij;ksjijDCksjand r0CD =
P
i;j;k;s

r0ij;ksjijDCksj in Equation (2). Suppose Charlie performs joint measurement

on two qubits B and C under the Bell basis
n
j4GD = 1ffiffi

2
p ðj00DGj11DÞ; jjGD = 1ffiffi

2
p ðj01DGj10DÞ

o
: It follows the

resultant as

rAD =
1

r00;00r
0
00;00 + r11;11r

0
11;11

�
r00;00r

0
00;00j00DC00jGr00;11r

0
00;11j00DC11jGr11;00r

0
11;00j11DC00j+ r11;11r

0
11;11j11D

(Equation 82)

for the measurement outcomes j4GD: Both above states can be locally transformed into

rAD =
1

r00;00r
0
00;00 + r11;11r

0
11;11

�
r00;00r

0
00;00j00DC00j+ r00;11r

0
00;11j00DC11j+ r11;00r

0
11;00j11DC00j+ r11;11r

0
11;11j11DC

(Equation 83)

after one party performs a local rotation sz on its shared qubit for themeasurement outcome j4�D: Similarly,

for the measurement outcomes jjGD:, the resultant is given by

rAD =
1

r11;11r
0
00;00 + r00;00r

0
11;11

�
r11;11r

0
00;00

���j01DDCC01j���Gr00;11r
0
11;00j01DC10jGr11;00r

0
00;11j10DC01j+ r00;00r

0
11;11j1

(Equation 84)

which can be locally transformed into

rAD =
1

r11;11r
0
00;00 + r00;00r

0
11;11

�
r11;11r

0
00;00j01DC01j+ r00;11r

0
11;00j01DC10j+ r11;00r

0
00;11j10DC01j+ r00;00r

0
11;11j10DC

(Equation 85)
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with a local phase shift conditional on measurement outcome. So, from Lemmas 1 and 2, both states in

Equations (83) and (85) are entangled states in Equation (2) if and only if rAB and r0CD are entangled�
i:e:; r00;11; r11;00; r

0
00;11; r

0
11;00s0

�
: This has completed the proof. ,

Proof of Theorem 3. Note Cð ,Þ does not change the entanglement of the joint state EðrGÞ because it

consists of all the local unitary operations. From the equality of C+EðrGÞ= E+CðrGÞ; it is sufficient to verify

all the states EðrGÞ: Moreover, from the assumption of connectedness the joint state rG is entangled in

the biseparable model (Svetlichny, 1987) if the associated quantum network N q is connected. This can

be verified by using the recent method (Luo, 2021a, 2021b) combined with Lemmas 3 and 4, that is,

each pair can share one bipartite entangled state with the help of other parties’ local measurements

and classical communication. From Equation (79), it only needs to verify all the entangled states

E jðrjÞ and bE kð9kÞ:

Themain idea is to combine the paradoxes (5) and (13) in the main text. Specially, for a given N-partite clus-

ter state 9A1/AN
˛Scl on Hilbert space 5N

j = 1HAj ; it satisfies the following statements as

CsðiÞ
z 5sðjÞ

z D9 = 1;
�
Ai;Aj

�
˛frs;csgWftt ;ctg (Equation 86)

ðiÞ ðjÞ � �

Csz 5sx D9 = 0; Ai;Aj ˛frs;csgWftt ;ctg (Equation 87)

ðiÞ ðjÞ � �

Csx 5sz D9 = 0; Ai;Aj ˛frs;csgWftt ;ctg (Equation 88)

ES � �

CsðiÞ

x 5sðjÞ
x D9s; Ai;Aj ˛frs;csg (Equation 89)

ES

C5Ai˛9js

ðiÞ
x D9s0; tj˛ftt ;ctg (Equation 90)

where the statement for ðAi ;AjÞ˛frs;csgWftt ;ctg in Equations 86–88 means both qubits Ai and Aj belong

to one EPR-type entanglement (2) or one GHZ-type entanglement (12). The statement for ðAi ;AjÞ˛ frs;csg
in Equation (89) means both qubits Ai and Aj belong to one EPR-type entanglement (2). The statement of

tj˛ftt ;ctg in Equation (90) means all the qubits tj belong to one multipartite GHZ-type entanglement (12).

Similar to the paradoxes (5) and (13), Equations 86–90 are used for verifying the entanglement for single

EPR-type entanglement or GHZ-type entanglement in the cluster state 9. This completes the proof. ,

Verifying high-dimensional unknown GHZ-type entanglement

Our goal in this section is to extend Theorems 1 and 2 for verifying high-dimensional unknown GHZ-type

entanglement. Consider a d-dimensional Hilbert space H with computation basis fj0D;/; jd � 1Dg, where
dR2:. Denote u=expð2pi =dÞ as the root of unity, that is, ud = 1 and us1:. Define S1 be the shift operator

(Weyl, 2014, Ch.III) (similar to Pauli operator sx ) given by

S1 =
Xd�1

j = 0

jj + 1 mod dDCjj (Equation 91)

and S1 be the clock operator (similar to Pauli operator sz ) matrix given by

S3 =
Xd�1

j = 0

ujjjDCjj (Equation 92)

It is easy to check that

ðS1Þd�1 = ðS3Þd = 1 (Equation 93)

with the identity operator 1 on H. Both operators S1 and S3 are fundamental operations for quantum dy-

namics in high-dimensional spaces (Vourdas, 2004).

Bipartite entanglement

Consider a two-qudit system jFDAB on Hilbert space HA5HB; where HA and HB are both d-dimensional

spaces. A bipartite entangled pure state shared by Alice and Bob is given by

jFDAB =
Xd�1

j = 0

ajjjjD; (Equation 94)
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where aj are real parameters satisfying
Pd�1

j = 0 a
2
j = 1. Suppose that both parties only know the shared state

has the following form:

rAB = EðjFDCFjÞ; (Equation 95)

where Eð ,Þ is a blind quantum channel defined by

Eð9Þ =
X
j

pj

�
Uj 5Vj

�
9
�
Uy

j 5V y
j

�
; (Equation 96)

with local phase transformations Uj and Vj given respectively by

Uj =
Xd�1

k =0

eiqkj jkDCkj;

Vj =
Xd�1

k = 0

eiwkj jkDCkj;
(Equation 97)

with unknown parameters qkj ;wkj˛ð0;pÞ; andfpjg is an unknown probability distribution. In general, Eð ,Þ
can be defined through semi-positive definite operators Mj’s as

Eð9Þ=
X
j

�
Mj5Nj

�
9
�
My

j5Ny
j

�
(Equation 98)

where Mj and Nj are Kraus operators defined respectively by Mj =
P
s

ffiffiffiffiffiffi
qjs

p jsDCsj;Nj =
P
t

ffiffiffiffiffi
rjt

p jtDCtj which satisfyP
j

My
j Mj =

P
j

Ny
j Nj = 1; fqjs;csgandfrjt ;ctg are unknown probability distributions. Under the blind channel

Eð ,Þ, the density matrix rAB in Equation (95) can be rewritten into the following form

rAB =
Xd�1

j = 0

rjj;jjjjjDCjjj+
X

jynot= k

rjj;kk jjjDCkkj; (Equation 99)

where rij;kl’s are the density matrix elements satisfying frjj;jjg is a probability distribution and rjj;kk = r�kk;jj :.
Our goal in what follows is to verify the entanglement set

S2 : = fEðjFDCFjÞ;cjFD; Eð , Þg (Equation 100)

which is spanned by the basis fjjjDCkkj;cj;kg:

It is easy to prove that S2 is not convex because the separable state rAB =
Pd�1

j = 0 rjj;jjjjjDCjjj has the decompo-

sition in Equation (99). This rules out the linear entanglement witnesses (Horodecki et al., 2009). Similar to

Theorem 1, we have the following Theorem.

Theorem 4. The entanglement set S2 is verifiable.

Proof. Similar to the generalized GHZ-like paradox (5) in the main text, we present a paradox for high-

dimensional quantum entanglement by using S1 in Equation (91) and S3 in Equation (92) as

CSk
35Sd�k

3 Dr = 1; ðk = 1;/;d � 2Þ
CS35S1Dr = 0;

CS15S3Dr = 0;

CS15S1Drs
ES
0:

(Equation 101)

This can be proved by a forward evaluation. The proof of the nonlocality with definite real values of both

parties is similar to its for Theorem 1.

The proof for witnessing the entanglement set S2 depends on the following nonlinear inequality

2
X

0%jsk%d�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rjk;jkrkj;kj

p
+
Xd�1

j = 0

rjj;jj � 1%0 (Equation 102)
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for any bipartite separable state. The proof will be presented in the later. From the inequality (102), r in

Equation (99) is entangled for rjj;kks0 for any two integers jsk; in other words, it is separable state if

and only if rjj;kk = 0 for any integers j and k with jsk:

Next we come to prove that any separable state would violate one statement in the paradox (101). For any

separable state rs, it violates the first statement in the paradox (101) if it does not has the decomposition in

Equation (99). Otherwise, rs has the decomposition in Equation (99). From Equation (101), we have

CSk
35Sd�k

3 Dr =
Xd�1

j =0

rjj;jj = 1;

CS35S1Dr = 0;

CS15S3Dr = 0;

CS15S1Dr =
Xd�1

j = 0

rjj;j + 1 j + 1 +
Xd�1

j = 0

rj + 1 j + 1;jj:

(Equation 103)

It means that rjj;kk = 0 for any integers j and k with jsk. This violates the fourth statement in the paradox

(101). Hence, this has completed the proof if we can prove the inequality (102).

Proof of the inequality (102). Similar to Lemma 1, consider an arbitrary separable two-qudit pure state

on Hilbert space HA5HB as

jFD = j41Dj42D (Equation 104)

With j4iD=
Pd�1

j = 0 ai;jjjD and
Pd�1

j = 0 a
2
j = 1; i = 1; 2: It follows that��rjj;j + 1 j + 1

�� = ��a1;ja2;ja1;j + 1a2;j + 1

��
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rj j +1;j j + 1rj + 1 j;j +1 j

p
:

(Equation 105)

This implies that

2
��rjj;j + 1 j + 1

��% rj j + 1;j j + 1 + rj + 1 j;j + 1 j; (Equation 106)

due to the Cauchy-Schwarz inequality of 2
ffiffiffiffiffiffiffiffijxyjp

%x2 + y2:

Consider an arbitrary mixed separable state on Hilbert space HA5HB as

r =
X
i

pijFiDCFij : =
X

j1 ;j2 ;k1 ;k2

rj1 j2 ;k1k2 jj1j2DCk1k2j=
X
i

pi

X
j1 ;j2 ;k1 ;k2

r
ðiÞ
j1 j2 ;k1k2

jj1j2DCk1k2j (Equation 107)

with separable pure states jFiD’s, where fpig is a probability distribution, and r
ðiÞ
j1 j2 ;k1k2

= jFiDCFi j: Similar to the

inequalities (18)-(20), from Equation (106) we get

2
��rjj;j + 1 j + 1

�� = 2

�����X
i

pir
ðiÞ
jj;j + 1 j + 1

�����%rj j + 1;j j +1 + rj + 1 j;j + 1 j (Equation 108)

Similarly, we can prove that

2
��rjk;jk��% rjk;jk + rkj;kj; jsk (Equation 109)

So, from the inequality (109) we have

2
X

0%jsk%d�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rjk;jkrkj;kj

p
= 2

X
0%jsk%d�1

��rjk;jk��% X
0%jsk%d�1

�
rjk;jk + rkj;kj

�
= 1�

Xd�1

j =0

rjj;jj (Equation 110)

This has completed the proof.
Multipartite entanglement

Consider an n-qudit system jJDA1/An
on Hilbert space5n

j = 1HAj , whereHAj ’s are all d-dimensional spaces. A

generalized n-partite entangled pure state shared by A1;/;An is given by
iScience 25, 103972, March 18, 2022 21
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jJDA1/jn =
Xd�1

j = 0

ajjj;/; jD; (Equation 111)

where aj ’s are real parameters satisfying
Pd�1

j = 0 a
2
j = 1: Suppose that all the parties only know the shared state

has the following form:

rA1/An
= EðjJDCJjÞ; (Equation 112)

where Eð ,Þ is a blind quantum channel defined similar to Equation (96) by using unknown local phase trans-

formations for each party. Under the blind channel Eð ,Þ, the density matrix rA1/An
in Equation (111) can be

rewritten into the following form

rA1/An
=
Xd�1

j = 0

r
j
!

n ; j
!

n

���� j!nDC j
!

n

����+X
jsk

r
j
!

n ; k
!

n

���� j!nDC k
!

n

���; (Equation 113)

where j
!

n denotes n number of j, i.e., j
!

n = j/j, r
j
!

n ; k
!

n
are the density matrix elements satisfyingPd�1

j = 0 r j
!

n ; j
!

n
= 1 (fr

j
!

n ; j
!

n
g is a probability distribution) and r

j
!

n ; k
!

n
= r�

k
!

n ; j
!

n

: Our goal in what follows is

to verify the entanglement set

Sn : = fEðjJDCJjÞ;cjJD; Eð , Þg (Equation 114)

which is spanned by the basis f
���� j!nDC j

!
n

����; ���� j!nDC j
!

n

����;cj;kg:

Similar to Theorem 2, we have the following Theorem 5.
Theorem 5

The entanglement set Sn is verifiable.

The proof of Theorem 5 is based on two facts. One is from the generalized GHZ-like paradox given by

C
�
S

ð1Þ
3

�k

5
�
S

ðnÞ
3

�d�k

D= 1; ðk = 1;/;d � 1Þ;

C
�
S

ðjÞ
3

�k

5
�
S

ðj +1Þ
3

�d�k

D= 1;

CSð1Þ
3 5S

ðnÞ
1 D= 0;

CSðjÞ
3 5S

ðj + 1Þ
1 D= 0;

CSð1Þ
1 5S

ðnÞ
3 D= 0;

CSðjÞ
1 5S

ðj + 1Þ
3 D= 0; ðj = 1;/; n� 1Þ;

CSð1Þ
1 5/5S

ðnÞ
1 Ds

ES
0;

(Equation 115)

for all the entangled states in Sn, while it will be violated by any biseparable state. Here, S
ðjÞ
i denotes the

local observableSi performed byAj: The paradox (115) can be proved similar to its for the paradox (13). The

other is from the nonlinear inequality given by

2
X

0%isk%d�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

j
!

n ; k
!

n
r

k
!

n ; j
!

n

q
+
Xd�1

j = 0

r
j
!

n ; j
!

n
%1; (Equation 116)

which holds for any biseparable state. This can be proved similar to Lemma 2 and the inequality (102), where

j
!

= j1/jn and k
!

= k1/kn; j1;/; jn;k1; /; kn˛f0;/;d � 1g:
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