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Structural basis for assembly of non-canonical
small subunits into type I-C Cascade
Roisin E. O’Brien1, Inês C. Santos2, Daniel Wrapp 3, Jack P. K. Bravo3, Evan A. Schwartz1, Jennifer S. Brodbelt2 &

David W. Taylor 1,3,4,5✉

Bacteria and archaea employ CRISPR (clustered, regularly, interspaced, short palindromic

repeats)-Cas (CRISPR-associated) systems as a type of adaptive immunity to target and

degrade foreign nucleic acids. While a myriad of CRISPR-Cas systems have been identified to

date, type I-C is one of the most commonly found subtypes in nature. Interestingly, the type I-

C system employs a minimal Cascade effector complex, which encodes only three unique

subunits in its operon. Here, we present a 3.1 Å resolution cryo-EM structure of the Desul-

fovibrio vulgaris type I-C Cascade, revealing the molecular mechanisms that underlie RNA-

directed complex assembly. We demonstrate how this minimal Cascade utilizes previously

overlooked, non-canonical small subunits to stabilize R-loop formation. Furthermore, we

describe putative PAM and Cas3 binding sites. These findings provide the structural basis for

harnessing the type I-C Cascade as a genome-engineering tool.
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CRISPR-RNA (clustered, regularly, interspaced, short
palindromic repeats-RNA) along with Cas proteins
assemble into RNA-guided adaptive immune complexes in

prokaryotes1. These CRISPR–Cas systems defend bacteria and
archaea against the invasion of foreign genetic elements2.
CRISPR–Cas systems can be divided into two major classes based
on their targeting complexes: multi-subunit effector (Class I) or a
single protein effector (Class II)3. The type I-C subtype is one of
the most prevalent systems found in bacteria4. However, rela-
tively little information exists about its effector complex.

Interestingly, type I-C Cascade only contains three unique Cas
proteins in its operon: Cas5c, Cas7, and Cas8c3 (Fig. 1a). The type
I-C Cascade uses Cas5c for processing the crRNA instead of a
separate Cas6 (refs. 3,5,6) and does not include a small subunit
(SSU) within its operon3, making this a minimal Cascade (Fig. 1a).
Previous studies hypothesized that the large subunit, Cas8c, was a
fusion of the larger and smaller subunits found in the type I-E
Cascade6. However, a recent report revealed that the Desulfovibrio
vulgaris Cas8c large subunit includes an internal ribosome-binding
site at the C terminus, which encodes a separate SSU7. This non-
canonical SSU was shown to be equivalent to the Cas11 SSU found
in type I-E and appeared widespread within the I-B, I-C, and I-D
subtypes7. Here, we demonstrate that this non-canonical subunit is
an integral component within the complex and is primed for sta-
bilizing the non-target strand during R-loop formation.

Results
Stoichometry, assembly, and cryo-electron microscopy (cryo-
EM) structure of type I-C Cascade complex. We purified the D.
vulgaris type I-C Cascade from Escherichia coli, which revealed
the presence of an additional 14 kDa protein, corresponding to
the recently identified SSU (Supplementary Fig. 1). We then
analyzed the complex using native mass spectrometry (MS)8–11,
which exhibited the presence of two dominant species with
masses of 275 and 371 kDa, respectively (Fig. 1b). The larger
species (371 kDa) corresponds to a fully intact type I-C Cascade
with a stoichiometry of Cas77Cas8c1Cas5c1SSU2/crRNA1. The
smaller species (275 kDa) is consistent with the Cascade lacking
Cas5c and Cas8c or lacking the two SSUs and Cas8c. Since pre-
vious isothermal titration calorimetry experiments6 have
demonstrated that Cas5c has a higher affinity for the crRNA than
Cas8c; the 275 kDa subcomplex most likely represents Cascade
after dissociation of the SSUs and Cas8c due to weakening of
hydrophobic interactions within the gas phase12. Application of
gentle collisional activation via in-source trapping (IST) was used
to disassemble the complexes prior to mass analysis, thus
allowing inspection of the composition of the individual subunits
and the architecture of subcomplexes (Fig. 1b, insets). The the-
oretical and experimental masses obtained from native mass
spectra with IST are provided in Supplementary Table 1.

To understand the molecular basis for small-subunit incor-
poration, we determined a 3.1 Å resolution cryo-EM reconstruc-
tion of the type I-C Cascade complex (Fig. 1c, Supplementary
Figs. 2–4, and Supplementary Table 2), suitable for de novo
model building (except for the flexible N terminus of Cas8c)
(Supplementary Fig. 5). The overall architecture of the complex
resembles a caterpillar. Seven Cas7 subunits form a right-handed
helical filament around the crRNA and Cas5c sits at the base of
the complex (Fig. 1d). Cas5c and Cas7.7 clamp around the crRNA
5′-handle (nucleotides U1–G12), forcing it into a hooked
conformation (Fig. 1d, inset). Cas5c residues “pinch” the
phosphate groups within the crRNA backbone on either side of
the U5 nucleobase, inducing a sharp (33°) kink. Nucleotides on
either side of this kink are captured by a network of Cas5c π–π
stacking interactions, while Cas7.7 makes non-specific contacts

with the phosphate backbone (Supplementary Fig. 6). These
highly conserved interactions (Fig. 1d, inset) suggest that the 5′
end of the crRNA handle is critical for type I-C Cascade assembly.

Seven Cas7 subunits span the length of the crRNA and are
capped by the 3′ end (Fig. 1c). While type I-E and type I-F Cascades
incorporate a Cas6 subunit, an additional Cas7 subunit forms the
head of the type I-C Cascade13,14 (Fig. 1c). Interestingly, when the
bottom Cas7 subunits from type I-F, I-E, IIII-A, and III-B are all
aligned to the type I-C Cas7.1, the type I-C crRNA backbone more
closely resembles that of type III-A and -B complexes (root-mean-
square deviation (RMSD) 7.8 Å), rather than the type I-E (RMSD
10.6 Å) or type I-F (RMSD 19.1 Å) Cascades (Fig. 1e)8–11. The type
III-A, type III-B, and type I-C crRNA lack a 3′ stem–loop, which
correlates with a more linear geometry of the crRNA backbone15,16

(Fig. 1e). Despite these differences, type I-C Cas7 maintains a highly
conserved region of positive residues to form non-specific
interactions with the phosphate backbone of the crRNA. (Fig. 1e,
inset, and Supplementary Fig. 7).

The belly of the complex contains the large subunit, Cas8c, and
two copies of the SSU, which nucleate and are derived from the C-
terminal domain of Cas8c (residues 489–612) (Fig. 1c). These SSUs
are structurally identical to the C-terminal domain of Cas8c (RMSD
of 0.59 and 0.67Å for SSU.1c and SSU.2c to Cas8c C terminus,
respectively) (Fig. 2a) and adopt a helical bundle topology typical of
other SSUs8–11 (Fig. 2b). In the type I-E system, the Cse2 SSUs are
responsible for supporting the non-target strand during R-loop
formation (Supplementary Fig. 8). Remarkably, the electrostatic
surface potential of the type I-C Cascade (Fig. 2c) reveals a
contiguous channel of positively charged residues that runs along
the length of this minor filament from the large subunit (Fig. 2c).
We then compared our model with a previous lower-resolution
reconstruction of type I-C Cascade6 (Fig. 2d). As anticipated,
additional density corresponding to the non-target strand follows
the positively charged path across the surface of the SSU (Fig. 2d,
inset), indicating that these non-canonical SSUs may accommodate
the non-target strand during DNA targeting.

Structural insights into PAM recognition and Cas3c recruit-
ment. In the type I-E Cascade, the large subunit Cse1 is
responsible for identifying the PAM (protospacer adjacent motif)
site on the non-target strand of the dsDNA target17–19. Notably,
the overlay of the target DNA density shows Cas8c is in a position
to interact with the PAM sequence in the duplex. A glycine loop
and adjacent positively charged residues create a putative PAM
binding site (Fig. 2d, inset) located near position 1- and 0-nt (C11
and G12), which are required for target recognition. Following
PAM recognition, a trans-acting nuclease-helicase Cas3 subunit is
recruited for target degradation in most type I systems, and
interacts exclusively with the large subunit20–22. To understand
Cas3c recruitment, we generated a homology model of Cas3c and
predicted its Cas8c-interacting surfaces using MorphProt23,
revealing regions of complementary charges and hydrophobicity
located on the surface of Cas8c and Cas3c (Fig. 2e). This binding
site positions Cas3c to favorably interact with the non-target
strand during R-loop formation (Fig. 2f) and is consistent with
previously reported Cas3-bound Cascade structures21.

Discussion
Our structural work provides the first molecular insights into the
sequence-specificity of Cas5c–crRNA interactions and non-
specific Cas7–crRNA interactions that are critical for type I-C
Cascade assembly. The Cas5c-Cas7.7 clamp around the crRNA
nucleates Cascade complex assembly, which is likely followed by
cooperative assembly of the Cas7 backbone. This culminates in
the addition of the Cas8c–Cas11.1c–Cas11.2c “belly” architecture.
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This hierarchical assembly is supported by our native MS data,
which demonstrate that Cas5c–Cas7–crRNA form a stable com-
plex in the absence of Cas8c and Cas11c (Fig. 1b). We reveal how
the incorporation of a previously overlooked SSU may stabilize
the non-target strand during R-loop formation. Furthermore, we

identify distinct, exposed surfaces on Cas8c that creates a central
hub for DNA duplex separation, PAM recognition, Cas3c
recruitment, and ultimately dsDNA degradation by the minimal
type I-C Cascade (Fig. 2f). Taken together, our model provides
functional insights into one of the most prevalent CRISPR–Cas
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systems in bacteria which may serve as a blueprint for developing
a minimal Cascade for genome editing24,25.

Methods
Protein purification. The D. vulgaris type I-C Cascade (addgene plasmid #81185)
and its crRNA (addgene plasmid #81186) were co-expressed in NiCo21(DE3) E.
coli cells. Cells were grown at 37 °C to an OD600 of 0.6–0.8 and induced by the
addition of 0.5 mM isopropyl-β-D-thiogalactopyranoside. After overnight growth at
18 °C, the cells were harvested and lysed by sonication in a buffer containing
50 mM HEPES–NaOH (pH 7.5), 500 mM KCl, 10% (v/v) glycerol, 1 mM tris(2-
carboxyethyl)phosphine (TCEP), 0.01% Triton X-100, 0.5 mM PMSF, and com-
plete mini protease inhibitor tablets. The lysate was centrifuged at 27,000 × g and
incubated with Ni-NTA affinity resin overnight. The protein-bound resin was
centrifuged and washed with buffer containing 50 mM HEPES–NaOH (pH 7.5),
500 mM KCl, 20 mM imidazole, 10% (v/v) glycerol, and 1 mM TCEP. Protein was
eluted with 50 mM HEPES–NaOH (pH 7.5), 500 mM KCl, 300 mM imidazole, 10%
(v/v) glycerol, and 1 mM TCEP. Approximately 1 mg of TEV protease was added
per 25 mg of protein and the protein-TEV mixture was dialyzed at 4 °C overnight
against size-exclusion buffer. The protein was then concentrated to approximately
10 mg/mL and run over a Superdex 200 Increase 10/300 GL size-exclusion column
in a buffer containing 50 mM HEPES–NaOH (pH 7.5), 500 mM KCl, 5% (v/v)
glycerol, and 1 mM TCEP. The proteins were analyzed for purity by 10–20% SDS-
Page (Fig. S1) and then dialyzed overnight into the storage buffer containing
20 mM HEPES–NaOH (pH 7.5), 100 mM KCl, 5% (v/v) glycerol, and 1 mM TCEP.
All proteins were finally concentrated, flash frozen in liquid nitrogen, and stored at
−80 °C. Source data is provided in the source data file.

Mass spectrometry. Prior to mass spectrometric analysis, the CRISPR complex
solution buffer was exchanged to 100 mM ammonium acetate using Micro Biospin
P-6 gel columns (Bio-Rad Laboratories Inc., Hercules, CA). MS measurements
were performed in positive mode using a Thermo Scientific Q Exactive Plus
UHMR instrument (Bremen, Germany). Samples were loaded into gold/palladium-
coated borosilicate capillaries fabricated in-house. An electrospray voltage of 1.0 kV
was applied. The concentration of the CRISPR complex in solution was estimated
as ~6 μM. Trapping gas pressure was set to 10 (~1.0 × 10−9 mbar) for high mass
analysis and to 1–3 (~1.0 × 10−10−2.5 × 10−10 mbar) for low mass analysis. For the
detection of the subunits, the in-source-trapping voltage (ranging from −100 to
−300 V) was optimized for the release and transmission of the individual proteins
as well as subcomplexes. In order to trap the macromolecular complexes, lower RF
amplitudes of the bent flatapole and injection flatapole (range of 300 V instead of
900 V) and IST voltages (−120 and −300 V) were used. MS1 and in-source
trapping mass spectra were decharged and deisotoped using Xtract with a signal-
to-noise ratio of 2, fit factor of 44%, and remainder of 25%. Additionally, raw
spectra were deconvoluted using UniDec26.

Cryo-EM sample preparation and data collection. Purified type I-C Cascade was
diluted to a concentration of 0.3 mg/mL in a buffer containing 20 mM
HEPES–NaOH (pH 7.5), 100 mM KCl, and 1 mM TCEP. The CF-2/2 grids were
first glow discharged for 60 s and then a layer graphene oxide was added27,28. Three
microliters of protein were deposited on the grid and excess protein was blotted
away after a 0.5 s incubation time for 4 s using filter paper at 4 °C in 100%
humidity. The grid was then plunge frozen into liquid ethane using a Vitrobot
Mark IV (Thermo Fisher). Frozen-hydrated samples of type I-C Cascade were
directly visualized using a FEI Titan Krios microscope equipped with a Gatan K3
direct electron detector. Using the automated data-collection software LEGI-
NON29, we acquired ~5400 movies at a magnification of ×22,500, corresponding to
a calibrated pixel size of 1.047 Å/pixel. A full description of the cryo-EM data
collection parameters can be found in Table S2.

Cryo-EM data processing. Motion correction, CTF (contrast transfer function)
estimation, and non-templated particle picking were performed in Warp30. Extracted
particles were imported into CryoSPARC31 for 2D classification, 3D classification, and
non-uniform 3D refinement. The final reconstruction was sharpened in CryoSPARC
and subjected to density modification in PHENIX32,33. A final structure of type I-C
Cascade at 3.13-Å resolution was determined using the 0.143 gold standard Fourier
shell correlation—calculated from two independent half-sets—criterion. The model
was built de novo in Coot34, and refined in PHENIX, ISOLDE35, and NAMDI-
NATOR36. The full cryo-EM data processing workflow is described in Fig. S2, and the
model refinement statistics can be found in Table S2 and Fig. S3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding author
upon request. The cryo-EM structure of the type I-C minimal Cascade have been deposited
into the Electron Microscopy Data Bank with accession number EMD-22876. The

associated atomic models have been deposited into the Protein Data Bank with PDB code
7KHA. Source data are provided with this paper.
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