
ORIGINAL RESEARCH
published: 18 September 2020

doi: 10.3389/fimmu.2020.02191

Frontiers in Immunology | www.frontiersin.org 1 September 2020 | Volume 11 | Article 2191

Edited by:

Manuela Berto Pucca,

Federal University of Roraima, Brazil

Reviewed by:

Carlos Arterio Sorgi,

University of São Paulo Ribeirão

Preto, Brazil

Timothy Patrick Jenkins,

Technical University of

Denmark, Denmark

Euikyung Kim,

Gyeongsang National University,

South Korea

*Correspondence:

Denise V. Tambourgi

denise.tambourgi@butantan.gov.br

†ORCID:

Denise V. Tambourgi

orcid.org/0000-0003-1896-9074

Specialty section:

This article was submitted to

Vaccines and Molecular Therapeutics,

a section of the journal

Frontiers in Immunology

Received: 18 May 2020

Accepted: 11 August 2020

Published: 18 September 2020

Citation:

Villas-Boas IM, Pidde G,

Lichtenstein F, Ching ATC,

Junqueira-de-Azevedo IdLM,

DeOcesano-Pereira C, Madureira

Trufen CE, Chudzinski-Tavassi AM,

Morais KLP and Tambourgi DV (2020)

Human Chondrocyte Activation by

Toxins From Premolis semirufa, an

Amazon Rainforest Moth Caterpillar:

Identifying an Osteoarthritis Signature.

Front. Immunol. 11:2191.

doi: 10.3389/fimmu.2020.02191

Human Chondrocyte Activation by
Toxins From Premolis semirufa, an
Amazon Rainforest Moth Caterpillar:
Identifying an Osteoarthritis
Signature

Isadora M. Villas-Boas 1, Giselle Pidde 1, Flavio Lichtenstein 2, Ana Tung Ching Ching 1,

Inácio de Loiola Meirelles Junqueira-de-Azevedo 3, Carlos DeOcesano-Pereira 2,

Carlos Eduardo Madureira Trufen 2, Ana Marisa Chudzinski-Tavassi 2,

Kátia Luciano Pereira Morais 2 and Denise V. Tambourgi 1*†

1 Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil, 2Centre of Excellence in New Target Discovery

(CENTD), Butantan Institute, São Paulo, Brazil, 3 Special Laboratory for Applied Toxinology, Butantan Institute/Center of

Toxins, Immune-Response and Cell Signaling (CeTICS), São Paulo, Brazil

Pararamosis is a disease that occurs due to contact with the hairs of the larval

stage of the Brazilian moth Premolis semirufa. Envenomation induces osteoarticular

alterations with cartilage impairment that resembles joint synovitis. Thus, the toxic

venom present in the caterpillar hairs interferes with the phenotype of the cells

present in the joints, resulting in inflammation and promoting tissue injury. Therefore,

to address the inflammatory mechanisms triggered by envenomation, we studied the

effects of P. semirufa hair extract on human chondrocytes. We have selected for the

investigation, cytokines, chemokines, matrix metalloproteinases (MMPs), complement

components, eicosanoids, and extracellular matrix (ECM) components related to OA and

RA. In addition, for measuring protein-coding mRNAs of some molecules associated

with osteoarthritis (OA) and rheumatoid arthritis (RA), reverse transcription (RT) was

performed followed by quantitative real-time PCR (RT-qPCR) and we performed

the RNA-sequencing (RNA-seq) analysis of the chondrocytes transcriptome. In the

supernatant of cell cultures treated with the extract, we observed increased IL-6,

IL-8, MCP-1, prostaglandin E2, metalloproteinases (MMP-1, MMP-2, MMP-3 and

MMP-13), and complement system components (C3, C4, and C5). We noticed

a significant decrease in both aggrecan and type II collagen and an increase

in HMGB1 protein in chondrocytes after extract treatment. RNA-seq analysis of
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the chondrocyte transcriptome allowed us to identify important pathways related to the

inflammatory process of the disease, such as the inflammatory response, chemotaxis

of immune cells and extracellular matrix (ECM) remodeling. Thus, these results suggest

that components of Premolis semirufa hair have strong inflammatory potential and are

able to induce cartilage degradation and ECM remodeling, promoting a disease with

an osteoarthritis signature. Modulation of the signaling pathways that were identified as

being involved in this pathologymay be a promising approach to develop new therapeutic

strategies for the control of pararamosis and other inflammatory joint diseases.

Keywords: osteoarthritis, toxins, caterpillar, chondrocyte, mediators, cell signaling

INTRODUCTION

There are many venomous moth caterpillars from Order
Lepidoptera that can cause severe injuries to humans. The
reactions range from urticarial dermatitis, allergic reactions,
renal failure, and osteochondritis to intracerebral bleeding (1).
Among these venomous caterpillars, the Brazilian moth Premolis
semirufa (Erebidae family), known as pararama in its larval stage,
inhabits rubber plantations found in the Amazon forest and
produces a singular clinical manifestation of envenomation (2–
4). Pararamosis (pararama-associated phalangeal periarthritis) is
a disease caused by contact with P. semirufa urticating hairs.
This contact causes an intense itching sensation, followed by
symptoms of acute inflammation. After repeated contact with
this caterpillar, the inflammatory process becomes chronic,
leading to joint immobility that is characterized by articular
synovial membrane thickening with joint deformities (4–6).

Based on these clinical symptoms of pararamosis, previous
studies by our group (7) showed that P. semirufa hair extract
presents strong proteolytic activity and induces high antibody
titer production and an intense inflammatory reaction in
the tissues of inoculated mice that is characterized by the
presence of macrophages and neutrophils. We also demonstrated
using a murine model that the extract promotes activation
of T lymphocytes and antigen-presenting cells and increased
production of cytokines, such as IL-6, IL-10, IL-12, IL-17, and IL-
23 (8). Moreover, the extract activates the alternative and lectin
pathways of the complement system, generating biologically
active fragments, such as C3a, C4a, and C5a anaphylatoxins
in human serum, and direct cleavage of purified complement
components such as C3, C4, and C5. These results led us
to consider that the complement system plays a role in the
inflammatory process seen in humans after envenomation by this
caterpillar (9).

Thus, the disease caused in humans by contact with P.

semirufa caterpillar hairs, in contrast to the manifestations
observed due to exposure to other caterpillars, progresses to

deformity by osteoarticular changes, with cartilage impairment,

as observed in the clinical condition exhibited by joint

diseases. The most common and best-investigated joint
diseases are osteoarthritis (OA) and rheumatoid arthritis
(RA) (10–12). Osteoarthritis is a multifactorial, chronic
and degenerative disease of the joints that is characterized

by progressive degradation of cartilage and bone damage,
and the mechanisms that lead to it have largely been
investigated. Chronic and excessive or repetitive mechanical
loading of the articular cartilage produces hydrostatic
and elastic stress and fluid flow, leading to alterations in
chondrocyte morphology. These alterations induce expression
of matrix metalloproteinases (MMPs) and disintegrin and
metalloproteinase with thrombospondin motifs (ADAMTS),
followed by proinflammatory cytokine production by synovial
cells and chondrocytes (13, 14). In addition, endochondral
ossification is a characteristic of osteoarthritis. Therefore, the
imbalanced expression of MMPs and ADAMTSs play a central
role in the first steps of OA, and inflammation is one of the
first signals that persists during the whole process, as reviewed
by Ripmeester et al. (15). OA progression leads to apoptosis
and irreversible calcification of the cartilage matrix. In OA,
some cytokines are seemingly produced by cartilage rather
than synovial tissue (16, 17). The main pathological feature in
the joints is cartilage degradation, accompanied by secondary
synovitis (18).

In contrast, RA is a chronic, autoimmune, and systemic
disease that affects the joints. This disorder results in synovial
inflammation, hyperplasia within the inflammatory pannus, and
bone erosion. These processes involve a complex network
of interactions between innate and adaptive immunity
(19). Additionally, RA is characterized by the production
of rheumatoid factors and antibodies that are reactive to
citrullinated proteins and by the progressive destruction of
synovial and bone articular cartilage. The immune response and
cartilage destruction include the production of many cytokines
(20) and activation of effector cells and signaling pathways (21).

In view of the clinical similarities between pararamosis
and joint diseases, we hypothesized that pararama venom
components have the ability to interfere with the phenotype of
cells present in the joints, such as chondrocytes, resulting in
inflammation and promoting tissue injury. Therefore, to address
the inflammatory mechanisms triggered by envenomation,
we investigated the effect of P. semirufa hair extract on
human chondrocytes by evaluating the production of cytokines,
chemokines, MMPs, complement molecules, eicosanoids, and
extracellular matrix (ECM) components related to OA and
RA. In addition, we performed an RNA-sequencing (RNA-seq)
analysis of the chondrocyte transcriptome, which allowed us to
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identify important pathways related to the inflammatory process
of the pararamosis. Collectively, the chondrocyte molecular
alterations observed after venom exposure indicate a phenotype
signature in pararamosis that is similar to OA and RA.
Modulation of the signaling pathways triggered by the caterpillar
in human chondrocytes may be a promising approach for the
treatment of pararamosis and other inflammatory joint diseases.

MATERIALS AND METHODS

Preparation of Premolis semirufa Hair
Extract
We collected caterpillars from Premolis semirufa
Walker, 1856 (22) in areas of a rubber tree plantation
of the city of São Francisco do Pará in Pará, Brazil
{{Coord|1|10|08.7|S|47|47|26.3|W|}} and maintained them at the
Immunochemistry Laboratory of the Butantan Institute in SP,
Brazil. The ChicoMendes Institute for Biodiversity Conservation
(ICMBIO) of the BrazilianMinistry of the Environment provided
the license for capture, transportation, and maintenance of the
animals (permission # 45166-4). Access to the venom was
granted by the Brazilian Institute of the Environment and
Renewable Natural Resources (IBAMA), an enforcement agency
of the Brazilian Ministry of the Environment (010338/2014-4),
and by the National System of Genetic Resource Management
and Associated Traditional Knowledge (SisGen) (registration
number A05C092). We carried out the extraction procedure of
hair proteins and the determination of their enzymatic activity
according to Villas-Boas and colleagues (7).

Chondrocyte Culture and Cell Treatment
With P. semirufa Hair Extract
Normal human articular chondrocytes that were derived from
the knee (NHAC-kn) at the second passage were purchased from
Lonza (Lonza Walkersville, Inc.) and cultured in chondrocyte
growth medium (Lonza, Walkersville, MD, USA) containing
10% fetal bovine serum (FBS), growth factors and supplements
[0.2% R3-insulin-like growth factor-1 (R3-IGF-1)], 0.5% human
recombinant fibroblast growth factor-beta [hrFGF-β], 0.1%
transferrin, 0.2% insulin, and 0.1% gentamicin/amphotericin-B
[GA]-1000 at 37◦Cwith 5%CO2, according to themanufacturer’s
instructions. Cells were grown in monolayer cultures, and the
medium was changed every 2–3 days. For experiments, we used
NHAC-kn at the 6th passage.

Cells were seeded into 96-well plates at a concentration of 5×
104 cells/mL and incubated at 37◦C in an incubator with 5%CO2.
After 24 h, we treated the cells with increasing concentrations
of the extract (15, 30, and 60µg/mL), corresponding to 0.3, 0.6,
and 1.2 ng of protein/cell, in serum-free medium. We collected
supernatants at 24, 48, and 72 h, centrifuged them at 400 × g at
4◦C for 20min, and aliquoted and froze the samples at−80◦C for
further analysis. As negative and positive controls, chondrocytes
were cultured in the presence of phosphate buffered saline (PBS)
or 10 ng/mL of interleukin-1 beta (IL-1β/IL-1F2, R&D System,
code 201-LB-005), respectively.

Cell Viability Analysis by MTT Assay
We assessed the viability of the attached cells by an MTT
assay (23) based on the absorption of the MTT salt, 3-
(4,5-dimethylthiazol-2-yl)−2,5-diphenyltetrazolium bromide
(Invitrogen, Carlsbad, CA, USA). Viable cells (metabolically
active) metabolize the MTT salt, and its reduction leads to
insoluble formazan crystals accumulating in the cytoplasm.

Analysis of Cytokines and Chemokines
Produced by Chondrocytes
We assessed the concentration of cytokines and chemokines
in chondrocyte culture supernatants by flow cytometry using
the following BD Biosciences kits: BDTM Cytometric Bead
Array (CBA) Human Inflammatory Cytokines, BDTM Cytometric
Bead Array (CBA) Human Th1/Th2/Th17 Cytokine and
BDTM Cytometric Bead Array (CBA) Human Chemokine.
The assays were performed according to the manufacturer’s
recommendations. The samples were evaluated for the presence
of the cytokines IL-1β, IL-6, IL-10, TNF, and IL-12p70, as
well as for the chemokines IL-8, CCL5/RANTES, CXCL9/MIG,
CCL2/MCP-1, and CXCL10/IP-10, and the concentration of each
factor was determined using FCAP Array 3.0 software (BD
Biosciences, San Jose, CA, USA).

Detection of Prostaglandins, Leukotrienes,
and Thromboxanes Produced by
Chondrocytes
We assessed eicosanoid production by chondrocytes using the
Prostaglandin E2 ELISA Kit – Monoclonal, Leukotriene B4
ELISA Kit and Thromboxane B2 ELISA Kit, according to
the manufacturer’s recommendations (Cayman Chemical, Ann
Arbor, MI, USA). The concentration of each eicosanoid was
determined according to the manufacturer’s recommendations.

Production of Components of the
Complement System by Chondrocytes
The supernatants of the chondrocyte cultures were also analyzed
for the secretion of complement components. We assessed the
concentrations of C1q, C3, C4, C5, and C9 using Complement
C1, Complement C3, Complement C4, Complement C5,
and Complement C9 Human ELISA kits, according to the
manufacturer’s recommendations (Abcam, Cambridge, UK). In
addition, we built a standard curve on the log-log graph
to quantify the component concentrations, with the standard
concentration listed on the x-axis and the absorbance on
the y-axis.

Evaluation of Matrix Metalloproteinases
(MMPs) and Tissue Inhibitors of
Metalloproteinases (TIMPs)
We analyzed the presence of MMPs and TIMPs in chondrocyte
culture supernatants by using MMP1, MMP2, MMP3, MMP9,
and MMP13 Human ELISA Kits and TIMP1 and TIMP2
Human Simple Step ELISA kits according to the manufacturer’s
recommendations (Abcam, Cambridge, UK). Moreover, we built
a standard curve on the log-log graph to dose each MMP
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concentration, with the standard concentration shown on the
x-axis and the absorbance on the y-axis.

Evaluation of the Presence of
Aggrecanase-1 (ADAM-TS4)
We assessed the presence of aggrecanase-1 in the supernatants of
chondrocyte cultures by using the Sensitive Aggrecanase Activity
Assay kit, following the manufacturer’s recommendations
(BioTeZ, Berlin, Germany).

Analysis of the Expression of Aggrecan,
Type II Collagen and HMGB1 by
High-Content Screening (HCS)
Normal human chondrocytes (NHAC-kn) at the 6th passage
were cultured in 96-well microplates (Greiner Bio-One, 655986)
at a density of 8× 103 cells/well in chondrogenic growthmedium
containing supplements and growth factors (Lonza, Walkersville,
MD, USA) at 37◦C and 5% CO2. After 24 h, the cells were treated
with increasing concentrations of extract at 12 and 49µg/mL,
corresponding to 0.3 and 1.2 ng of protein/cell, in serum-
free medium for 24, 48, and 72 h. These concentrations were
calculated based on the quantity of extract (µg) per cell and were
used throughout all 96-well plate experiments. As negative and
positive controls, we cultured chondrocytes in the presence of
PBS or 8 ng/mL interleukin-1 beta (IL-1β), respectively.

After the treatments, the cultures were washed with PHEM
buffer (2mMHEPES, 10mMEGTA, 2mMMgCl2, 60mMPIPES
pH 6.9) and fixed for 1 h with cold 4% PFA. The cells were
permeabilized with 0.1% Triton X 100 for 5min, blocked with 1%
bovine serum albumin (BSA) for 30min, and then incubated with
primary antibody overnight at 4◦C. After washing with PHEM
glycine (3×), the cells were incubated with the fluorescent dye at
room temperature for 1 h, and the plates were subjected to high
content imaging analysis by using MetaXpress High Content
Image Acquisition & Analysis Software (Molecular Devices).
The primary antibodies used were anti-Aggrecan (Abcam plc,
Cambridge, UK) diluted 1:100, anti-collagen II (Abcam plc,
Cambridge, UK) diluted 1:100, and anti-HMGB1 (Santa Cruz
Biotechnology, Inc., CA, USA) diluted 1:500 and were incubated
overnight at 4◦C. After washing with PHEM (3×), the cells were
incubated with Alexa Fluor 647 goat anti-rabbit and Alexa Fluor
488 rabbit anti-mouse secondary antibodies (Life Technologies,
Camarillo, CA, USA) at a 1:1,000 dilution for 1 h at room
temperature in the dark. The cells were washed with PHEM
(3×), nuclei were counted using Hoechst 33342 (5µM, Life
Technologies, Thermo Fisher Scientific) staining for 1 h, and
the stained samples were subjected to high content imaging
analysis. The image acquisition and fluorescence intensity
measurements were conducted by automatic scanning using
MetaXpress software with a 10× objective. For each treatment
condition and channel, nine images per well, in triplicate, were
acquired and analyzed. MetaXpress software (Molecular Devices,
Sunnyvale, CA, USA) was used to calculate the stained area using
the CustomModule and the fluorescence intensity was calculated
using the MultiWaveScoring module.

Transcriptomic Analysis
RNA Isolation
Cells were seeded into 24-well plates at a density of 1
× 105 cells/well in chondrocyte growth medium containing
supplements and growth factors (Lonza, Walkersville, MD,
USA) and incubated at 37◦C and 5% CO2. After 24 h, the
chondrocytes were maintained in serum-free medium with the
highest concentration of P. semirufa hair extract (60µg/mL per
well) for 24 h. In parallel, chondrocytes were maintained in the
presence of the same volume of PBS or 10 ng/mL of interleukin
1 beta (IL-1β) as negative and positive controls, respectively.
At the end of the treatment period, the growth media was
removed, and total RNA was isolated from the cell cultures (total
of 1 × 106 cells per treatment, in triplicate) by using TRIzol
(Life Technologies, Inc., Camarillo, CA, USA) according to the
manufacturer’s protocol. RNA samples were visualized with an
agarose gel, and their concentration was assessed on a Nanodrop
2000c spectrophotometer. The Agilent 2100 Bioanalyzer (RNA
6000 Nano LabChip, Agilent Technologies, Santa Clara, CA,
USA) was used to determine the RNA integrity number (RIN).
All RNA samples had a RIN > 9.10.

Library Preparation and Sequencing
The messenger RNAs (mRNAs) were purified from the total
RNA isolated from the human chondrocyte cultures and used
to prepare complementary DNA (cDNA) libraries following the
protocol of the TruSeq RNA Sample Prep Kit V2 (Illumina,
San Diego, CA, USA). Briefly, mRNAs were isolated with dT-
oligos, purified, and fragmented by heating at 94◦C (4min)
in the kit fragmentation buffer. Double-stranded cDNAs were
synthesized, end-repaired and A-tailed. Sequencing adapters
were then ligated to the cDNA fragments according to the
manufacturer’s protocol. The cDNA fragments were enriched by
15 cycles of PCR amplification. The quality of the libraries was
evaluated by cDNA size distribution, as measured by a 2100
Bioanalyzer with DNA1000 assay (Agilent Technologies, Santa
Clara, CA, USA). An ABI StepOnePlus Real-Time PCR System
was used to estimate the size of the libraries before sequencing.
The cDNA libraries were sequenced on an Illumina HiSeq 1500
System in Rapid Run mode using a paired-end flow cell with a
2∗101 bp paired-end configuration.

Quality and Filtering FASTQ Reads
The raw sequencing read contaminants were removed with
Bowtie version 2 2.2.5 (24), and Trimmomatic version 0.36
was used to trim and remove reads with low-complexity
and homopolymer enriched regions, poly-A/T/N tails, adapter
sequences and low-quality bases. Reads were filtered out if more
than 90% of them corresponded to a homopolymer or low-
complexity regions and if the mean quality score was lower than
25 in a window size equal to 15. After trimming, all reads smaller
than 40 bp were discarded. A quality check was performed using
FastQC. Next, Hisat2 (25) was used to align reads from each
sample against the human reference genome (annotation version
92), generating the count values for the genes that were used in
the differential expression analysis, which were further described.
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The read quality results using FastQC and map quality plots
indicated that the lowest covered library had more than 20
million reads and that the percentages of mapped reads were
higher than 90% for all libraries. We also compared the LFC
(log2-fold change) of RNA-seq and RT-qPCR for Ext x Ctrl and
IL1B x Ctrl (further described). For Ext x Ctrl, the correlation
was ∼84%, and for IL1B x Ctrl, the correlation was ∼89%.
This accuracy shows the high quality of the RNA extraction, the
Illumina Rapid Run sequencing and the mathematical model.

cDNA Synthesis and RT-qPCR
For measuring protein-coding mRNAs, reverse transcription
(RT) was performed using SuperScript III according to the
manufacturer’s instructions (Thermo Fisher Scientific, Waltham,
MA, USA) followed by quantitative real-time PCR (RT-
qPCR). For all genes, oligo-dT primer reverse transcription
was performed using 350 ng of total RNA isolated from the
human chondrocytes in a 20 µL RT reaction with SuperScript
III, followed by qRT-PCR using 5 µL of 8-fold diluted RT
reaction in 20 µL of qRT-PCR (ViiA 7 Real-Time PCR System,
Thermo Fisher Scientific, Waltham, MA, USA). Transcript levels
were normalized to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), and the results are presented as the relative abundance
using the 2–11CTmethod (26). The primer sequences are listed
in Supplementary Table 1.

Bioinformatics and Systems Biology
Expression Analysis
RNA-seq in silico analysis included diverse quality
and quantity steps to assess transcriptome expression
(Supplementary Figure 1). We assessed read quality using
FastQC version 0.11.5. After the quality procedures, we used
Ensembl Gene ID transcripts to map the reference genome
(GRCh38) (annotation version 92). To quantify transcripts, we
used featureCounts (27) from subread version 1.6.2, resulting
in a table of 58,233 gene IDs as rows, with samples in columns
and cells as the raw read counts. Then, we removed genes with
low expression, i.e., row sum of expressions < 1, resulting in
18,671 valid transcripts. The data generated for this study were
deposited at the Sequence Read Archive (SRA) under SRA
accession number PRJNA592966.

By using edgeR version 3.26.8, we calculated the normalized
expression table in “counts per million” (CPM), which was input
to infer the differentially expressed genes (DEGs), which were
defined as an absolute value of log2-fold change between two
groups greater than one and a false discovery rate (FDR) <0.05.
For that, we only compared (a) Ext× Ctrl and (b) IL1B× Ctrl.

One approach that defined the experiment’s success was
evaluating data clustering using the multidimensional scaling
plot (MDS). The main idea was to verify whether the samples
clustered well as experimental groups.We observed that theMDS
plot showed accurate clustering among the control, extract and
IL-1β treatments (data not shown).

Enrichment Analysis
We performed an enrichment analysis with all recognized DEGs
from the extract treatment vs. the control comparison. For that,

we used two different techniques: (1) Gene Set Enrichment
Analysis (GSEA), based on Kolmogorov-Smirnov statistics, and
used fast-GSEA (fGSEA version 1.10.1) to calculate Pathway
Enrichment Analysis (PEA) and (2) Over-Representation
Analysis (ORA) using String-db (version 11.0)/KEGG and
MetaCoreTM (version 6.36 build 69400/2018). We also used
MetaCore to calculate Maps (pathways) and Network Statistics,
in addition to other methods. The FDR cutoff was set to 0.05 for
each technique.

In the present work, we focused our analysis on genes that
are associated with OA and evaluated expression of these factors
in the supernatant or in the extracellular matrix of chondrocyte
cultures. The preselected genes were ACAN, ADAMTS4, BGN,
C1QA, C1QB, C1R, C1S, C2, C3, C4A, C4B, C5, C7, C8A,
C8B, C9, CCL2, COL1A1, COL2A1, CXCL8, GJA1, GJC1, HAS2,
HAS3, HMGB1, HYAL1, HYAL2, HYAL3, IL18, IL1A, IL1B,
IL6, KRT19, MMP1, MMP2, MMP3, MMP9, MMP13, PTGES,
PTGES2, SOX9, TGFB1, TIMP1, TIMP2, TNF, and TP53.

Statistical Analysis
All reported experiments were performed independently at least
twice, and the data are expressed as the mean ± SEM. Statistical
comparisons for wet-laboratory experiments were calculated
using Student’s t-test or two-way ANOVA followed by Dunnett
post hoc tests. For these statistical calculations, we used GraphPad
Prism-7 (San Diego, CA, USA) and considered a p-value < 0.05
to be significant.

RESULTS

Human Chondrocyte Activation by P.
semirufa Hair Extract: Production of
Cytokines, Chemokines and
Prostaglandin E2
To assess the effect of P. semirufa hair extract on human
chondrocytes, we analyzed the viability of these cells after
treatment with three extract concentrations (15, 30, and
60µg/mL) for 24, 48, and 72 h. Figure 1 shows that the lowest
extract concentrations (15 and 30µg/mL) induced a small
reduction in cell viability (9 and 11%, respectively) after 48 h
of incubation. After 24 h, the highest concentration (60µg/mL)
induced a reduction of ∼25% in cell viability. Based on these
results, we conducted the subsequent experiments using the
extract at 15 and 60µg/mL. The positive control, IL-1β, induced
a reduction in cell viability of∼20% or less over time.

Inflammatory mediator production is an essential event in
the progression of joint diseases and possibly in pararamosis.
Thus, we evaluated cytokines, chemokines, and eicosanoids in
the supernatants of chondrocytes treated with pararama hair
extract. Figure 1 shows that only IL-6, IL-8, and MCP-1 were
significantly induced in a dose- and time-dependent manner in
cell cultures treated with the extract compared to those of the
negative control (buffer). The positive control IL-1β was used to
mimic the pathophysiology of joint inflammation and induced
the production of the same cytokines and chemokines but at
increased concentrations.
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FIGURE 1 | Assessment of cytokines, chemokines, and eicosanoids in chondrocytes treated with the P. semirufa hair extract. Chondrocytes were cultured in 96-well

plates at a density of 5 × 104 cells/mL and treated with buffer, IL-1β (10 ng/mL) or pararama hair extract (15, 30, or 60µg/mL) for 24, 48, and 72 h. After each

treatment period, we measured the cell viability by an MTT assay. The supernatants were collected from cells treated with buffer , IL-1β [-x-], 15µg/mL or

60µg/mL pararama hair extract for 24, 48, and 72 h by centrifugation at 400 ×g at 4◦C for 20min to assess the concentration of cytokines, chemokines, and

eicosanoids. The results represent two separate experiments performed in duplicate and are expressed as the mean of the concentrations of the molecules ± SEM.

The data were analyzed using two-way ANOVA and Dunnett’s post hoc test. **p < 0.01; ***p < 0.001 vs. the control (buffer treatment).

Figure 1 also shows that only the extract induced the
production of prostaglandin E2 (PGE2). In the positive control
(IL-1β), thromboxane A2 (TXA2) and prostaglandin were
detected in the supernatants, and PGE2 was produced at higher
levels than that of the extract. LTB4 was not detected in these
treatment conditions (data not shown).

Pararama Hair Extract Induces
Chondrocytes to Produce Complement
System Components
Considering the importance of the complement system in the
inflammatory process, we evaluated the levels of C1q, C3, C4,
C5, and C9 in the supernatants of chondrocyte cultures treated
with the extract. Figure 2 shows that the production of C3,
C4, and C5 components was significantly higher in cells treated

with the extract than in the positive and negative controls (IL-
1β and buffer, respectively). Interestingly, the extract treatment
reduced the C5 component concentration over time. There was
no increase in the production of C1q or C9 by the treated cells
(data not shown).

Pararama Hair Extract Induces
Chondrocytes to Produce Molecules That
Act on the Extracellular Matrix
As mentioned before, MMPs and ADAMTSs are capable
of degrading several matrix components, as well as type
II collagen. Therefore, we assessed MMP production in the
supernatants of the cultures. Figure 3 shows a significant
increase in MMP-1, MMP-2, MMP-3, and MMP-13 in the
supernatants of chondrocytes treated with the extract compared
to those of the buffer treatment. The positive control (IL-1β)
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FIGURE 2 | Complement components analysis in the supernatant of chondrocytes treated with the P. semirufa hair extract. Chondrocytes were cultured in 96-well

plates at a density of 5 × 104 cells/mL and treated with buffer , IL-1β [-x-], 15µg/mL or 60µg/mL pararama hair extract for 24, 48, and 72 h. After each

treatment period, we removed the supernatants, centrifuged them at 400 ×g at 4◦C for 20min, and assessed the concentrations of complement components by

ELISA. The results represent two separate experiments performed in duplicate and are expressed as the mean of the concentrations of the complement components

± SEM. The data were analyzed using two-way ANOVA and Dunnett’s post hoc test. *p < 0.05; **p < 0.01; ***p < 0.001 vs. the control (buffer treatment).

induced an increase in the tested MMPs. On the other hand,
we did not detect any increase in aggrecanase (ADAMTS4)
activity or tissue inhibitor of metalloproteinases (TIMPs) in the
supernatants of the pararama hair extract- and IL-1β-treated
cells compared with those of the buffer-treated cells (data
not shown).

Pararama Hair Extract Reduces the
Expression of Aggrecan and Type II
Collagen and Increases HMGB1 in
Chondrocytes
The integrity of both Aggrecan and type II Collagen is
important in the structure of healthy cartilage. Therefore, we
assessed their presence by a high-content screening (HCS)
to evaluate the effects of the extract on these molecules in
human chondrocytes. In parallel, we also investigated the
presence of high mobility group box 1 (HMGB1), a protein
that is associated with inflammatory diseases, such as RA
and OA. Figure 4 shows a reduction in the stained area for
both Aggrecan and type II Collagen in cells treated with the
extract compared to that of buffer treatment. The Aggrecan
reduction was more pronounced after 24 h of treatment, whereas
we observed the reduction in type II Collagen at each time
point. For HMGB1 protein, there was an increase in the
fluorescence intensity within the nucleus after 24 and 72 h of
extract treatment.

RT-qPCR Analysis of Chondrocytes
Treated With Pararama Hair Extract
In this study, we performed quantitative real-time PCR
(RT-qPCR) to investigate the gene expression profile of some

molecules associated with OA and RA (Supplementary Table 1).
The gene expression results, shown in Figure 5, are consistent
with the results from other experiments, in which we observed
an increase in IL-6 and IL-8 in supernatants and a lack of IL-
1β following the extract treatment. IL-1α and IL-1β genes were
downregulated following extract treatment and were upregulated
by IL-1β treatment; however, IL-6 and IL-8 were both
upregulated following extract and IL-1β treatments. In addition,
IL-18, TNF, and TGF-β1 gene expression was downregulated in
chondrocytes after extract treatment (Figure 5).

MMP-1 and MMP-3 were upregulated and highly expressed
following both extract and IL-1β treatment, with MMP-13 only
upregulated in cells that were treated with IL-1β (Figure 5).
These results showed a positive correlation with the protein data
obtained in IL-1β- and pararama-treated cell supernatants.

The hyaluronan synthase 2 (HAS2) gene was upregulated
following both extract and IL-1β treatments; however,
HAS3 was not changed by treatment with the extract
but was upregulated by IL-1β treatment. In addition,
hyaluronidase (HYAL), HYAL-1, HYAL-2 and HYAL-
3 genes were downregulated following the extract
treatment but were not modulated in the positive control
group (Figure 5).

Gene expression analysis showed a reduction in the
expression of some inflammatory joint disease markers,
such as Aggrecan and types I and II Collagen, after extract
and IL-1β treatment. Genes related to intracellular proteins,
such as HMGB1 and SOX9, were downregulated following
extract treatment but were upregulated in the positive
control. However, P53 showed a distinct behavior; it was
downregulated by the extract but was not altered by IL-1β
treatment (Figure 5).
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FIGURE 3 | Matrix metalloproteinases analysis in the supernatant of chondrocytes treated with the P. semirufa hair extract. Chondrocytes were cultured in 96-well

plates at a density of 5 × 104 cells/mL and treated with buffer , IL-1β [-x-], 15µg/mL or 60µg/mL pararama hair extract for 24, 48, and 72 h. After each

treatment period, we removed the supernatants, centrifuged them at 400 ×g at 4◦C for 20min, and assessed the concentration of matrix metalloproteinases by

ELISA. The results represent two separate experiments performed in duplicate and are expressed as the mean of the concentrations of the metalloproteinases ±

SEM. The data were analyzed using two-way ANOVA and Dunnett’s post hoc test. *p < 0.05; **p < 0.01; ***p < 0.001 vs. the control (buffer treatment).

Transcriptome Analysis of Human
Chondrocytes Treated With Pararama Hair
Extract
In this study, we performed transcriptomic analysis to elucidate

the response of human chondrocytes to P. semirufa hair extract

treatment after 24 h of in vitro stimulation. We used edgeR

to normalize the gene expression in “counts per million”

(CPM) over the 18,671 valid transcripts and to calculate the

differentially expressed genes (DEGs), and here we show only two
comparisons: “extract treatment x buffer treatment” (Ext× Ctrl)

and “IL-1β treatment × buffer treatment” (IL-1β × Ctrl). There

were 3,553 DEGs in the Ext × Ctrl group, of which 1,583 were

upregulated and 1,970 were downregulated, and 5,506 DEGs in
the IL-1β × Ctrl group, of which 2,601 were upregulated and

2,905 were downregulated.

The gene expression analysis focused on chondrocyte

molecules that were predicted to be found in the culture

supernatants, on the extracellular matrix or on those genes
evaluated by RT-qPCR analyses, totaling 46 selected genes.
A broader whole transcriptome data analysis remains to be
explored and will be the scope of a future study.

Thus, 13 out of the 46 selected genes were DEGs:
ACAN, C3, CCL2, CXCL8, GJA1, HAS2, IL6, MMP1, MMP2,
MMP3, MMP13, PTGES, and SOX9. We did not detect the
transcription of genes coding for C1QA, C1QB, C2, C7,
C8A, C8B, C9, or IL18 in the control, extract, or IL-1β
treatment groups. We observed the transcription of some
other genes, such as ADAMTS4, BGN, C1R, C1S, C4A,
C4B, C5, COL1A1, COL2A1, GJC1, HAS3, HMGB1, HYAL1,
HYAL2, HYAL3, IL1A, IL1B, KRT19, MMP9, PTGES2, TGFB1,
TIMP1, TIMP2, TNF, and TP53, but they were not DEGs
(Supplementary Table 2).

Supplementary Figure 2 shows a heatmap of the selected
transcribed genes, in which the hierarchical clustering analysis
shows consistent grouping among the treatments. In addition,
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FIGURE 4 | Evaluation of aggrecan and type II collagen production and HMGB1 expression by high-content screening (HCS). Chondrocytes were cultured in 96-well

plates at a density of 4 × 104 cells/mL and treated with buffer, IL-1β or pararama hair extract (12 and 49µg/mL) for 24, 48, and 72 h. After each treatment period, the

cells were fixed and blocked. Then, the cells were incubated with anti-Aggrecan, anti-collagen type II or anti-HMGB1 antibodies. In parallel, the cell counts were

assessed using Hoechst 33342 staining. The image acquisition and fluorescence intensity measurements were conducted by automatic scanning by using

MetaXpress software and a 10× objective, with the Custom Module to calculate the stained area and Multi Wave Scoring Module. For each condition and channel,

nine images per well in triplicate were acquired and analyzed. Representative fluorescence microscopy images correspond to the cells obtained after 24 h of treatment.

The results were normalized and represent two independent experiments performed in triplicate and are expressed as the mean of the stained area ± SEM or the

mean of the median fluorescence intensity ± SEM. The data were analyzed using Student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001 vs. the control (buffer treatment).

although IL-1β treatment showed more upregulated genes
compared to those of extract treatment, we can see that the
response to these treatments was very similar.

We also performed a MetaCore enriched pathway (map)
analysis to investigate the relationships between the DEGs
and to find the most important signaling pathways in P.
semirufa hair extract treatment (Extr × Ctrl). MetaCore
identified 452 enriched pathways for Ext × Ctrl, of which 260

contained at least one of those selected genes. We selected
19 out of the 260 pathways associated with inflammation and
OA (Supplementary Table 3), some of which will be further
discussed here. This rationale led us to identify pathways
associated with the immune response, angiogenesis, ECM
remodeling, and release of proinflammatory mediators as the
most significant signaling pathways associated with pararamosis
pathogenesis (Figure 6).
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FIGURE 5 | Gene expression profile in chondrocytes treated with the P. semirufa hair extract. Chondrocytes (1 × 105 cells/well) treated with buffer, IL-1β or extract

(60µg/mL) were collected, and total RNA was extracted using TRIzol. Relative mRNA quantification was carried out by RT-qPCR. All experiments were performed in

triplicate, and the values are presented as the mean ± SEM normalized to GAPDH as an endogenous control. The data were analyzed using Student’s t-test.

*p < 0.05; **p < 0.01; ***p < 0.001 vs. the control, which was arbitrarily set to 1 (buffer treatment).

DISCUSSION

Pararamosis is caused by accidental penetration of human
subcutaneous tissue by P. semirufa caterpillar hairs. Over time,
this condition can evolve into osteoarticular deformities due
to impaired cartilage resulting from an inflammation of the
joints, similar to other joint diseases. Understanding of the
molecular mechanisms involved in pararamosis may contribute
to establishing more effective therapeutic approaches for this
occupational neglected disease, which affects communities such
as the rubber tappers of the Amazon rainforest.

This study aimed to assess the effects of the P. semirufa hair
extract on chondrocytes, an important cell type that is present
in the joint and is involved in the onset of joint diseases. We
treated these cells with IL-1β, as a positive control, since this is
a well-known mediator that is involved in the pathophysiology
of joint inflammation (28). We investigated a panel of cytokines,
chemokines, MMPs, complement components, eicosanoids, and
ECM components related to OA and RA that are potentially
produced by chondrocytes in response to the pararama
hair extract or IL-1β treatment. Another approach was the
transcriptomic analysis of treated cells and the selection and
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FIGURE 6 | Possible intracellular signaling pathways activated in chondrocytes upon treatment with pararama hair extract. (A) Activation of cells by the complement

system or by the interaction between low molecular weight hyaluronan and TLR2/TLR4. (B) Activation of cells by the interaction between low molecular weight

hyaluronan and CD44 or by interaction between TGF-β receptors and TGF-β1. Illustration based on the data obtained with the use of the MetaCore pathway analysis

tool (GeneGO/Thomson Reuters) and enriched with DEGs, which are highlighted in red boxes. Red boxes with black borders are the molecules that were validated in

this study. Studies that assessed proteases that are able to cleave the C3 component and hyaluronidase that is able to cleave HA in the extract: (**7, *9).

testing of 46 genes involved in OA to verify whether the extract
induced a disease with an OA signature.

The analyses of cytokines and chemokines in the supernatant
of chondrocytes treated with the P. semirufa hair extract showed
a time-dependent increase in the levels of IL-6, IL-8, and MCP-
1 (Figure 1), which was confirmed by RT-qPCR experiments
(Figure 5). IL-6 and CXCL8 (IL-8) are proinflammatory and
angiogenic cytokines that are potent chemoattractants for
neutrophils. Several studies have shown increased levels of IL-
6 and IL-8 in peripheral blood mononuclear cells or the bone
marrow of patients with rheumatoid arthritis (29). Moreover,
IL-8 expression is associated with chondrocyte hypertrophy and
cartilage destruction in osteoarthritis (30, 31). CCL2 (MCP-1)
is a member of the β-chemokine family and, when produced at
high levels, it regulates the immune process, triggers chemotaxis,
activates macrophages and takes part in the activation of mast
cells and the production of leukotrienes (32). Some authors have
reported increased MCP-1 levels in the inflammatory process,
both in RA and in OA (32, 33).

The extract also induced chondrocytes to produce PGE2
(Figure 1). In patients with OA, PGE2 expression is elevated,
and it is associated with bone degeneration, cartilage metabolism,
inhibition of proteoglycan biosynthesis, and joint pain (34–36).
PGE2 is spontaneously released, and its production is induced
by cyclooxygenase-2 (COX-2) expression (37). Thus, the extract

may modulate chondrocytes to a proinflammatory profile similar
to that found in patients with joint diseases, such as OA.
In addition, the transcriptome analysis showed that the genes
PTGS2 (prostaglandin-endoperoxide synthase 2 or COX-2) and
PTGES (prostaglandin E synthase) were highly upregulated in
chondrocytes treated with the extract.

Additionally, we verified a time-dependent increase in MMP-
1, MMP-2, MMP-3, and MMP-13 in the pararama hair extract-
treated cultures (Figure 3), which was confirmed by RT-qPCR
and transcriptome analyses, except for MMP-13 (Figure 5,
Supplementary Table 2). MMPs play an important role in ECM
turnover during embryogenesis, morphogenesis, normal tissue
remodeling and repair, but in uncontrolled conditions, MMPs
contribute to the pathogenesis of several diseases associated with
tissue destruction, such as arthritis (38–42).

During OA progression, cytokines and chemokines such as
IL-6, IL-8, MCP-1, and CCL5 (RANTES) actively participate in
catabolic activities and are involved in cartilage destruction, such
as through the production of MMP-1,−3 and−13 (28, 43–48).
In addition, other proteinases produced by chondrocytes, such
as MMP-2 and MMP-9, may also play a role in the degradation
of several matrix components (49). Furthermore, IL-6 is an
essential cytokine that triggers osteoclast differentiation and
bone resorption (50, 51). Thus, increased release of cytokines
and chemokines by chondrocytes treated with the pararama
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extract indicates a direct effect of extract component(s) on
these cells, activating chondrocytes to produce cytokines and
chemokines that may induce the production of MMPs by these
same cells, which degrade matrix components. In addition,
the downregulation observed in the SOX9 gene following
extract treatment (Figure 5) positively correlated with the
downregulation of ECM transcription, since SOX9 is responsible
for the transcription of some ECM molecules, such as aggrecan
and type II collagen (52).

Complement factors present in the synovial fluid originate
from synovial cells, chondrocytes, infiltrating leukocyte or
traumatic hemarthrosis (53–57). Analysis of complement
components in the supernatants of chondrocyte cultures showed
that C3, C4, and C5 were significantly higher in cells treated with
the extract than in cells treated with buffer or IL-1β (Figure 2).
This result suggests that the extract induces complement
component production by direct action on chondrocytes or by
indirect induction through cytokine production. Despite the
increased production of C5, the concentration of this component
in the supernatant decreased over time. As the extract contains
serine proteases that are capable of cleaving complement
components, including C5 (9), a reduction in this component
may result from cleavage by the hair extract proteases.

During activation of the complement system, anaphylatoxins
C3a and C5a are typical cleavage products that bind to their
respective receptors C3aR and C5aR, expressed on a wide variety
of cell types and induce inflammatory responses (58, 59). Nozaki
et al. (60) identified these anaphylatoxins as proangiogenic
factors that induce vascular endothelial growth factor (VEGF)
expression in chorion tissue. Notably, VEGF expression has
been observed during OA (61). Transcriptome analyses of
chondrocytes treated with the extract and MetaCore analyses
highlighted a complement activation pathway. Considering that
C3 is a DEG and is present in the supernatants of chondrocyte
cultures treated with the extract and that the extract proteases are
able to directly cleave C3 and generate C3a (9), C3a fragments
might bind to C3aR (also a DEG in our transcriptome analysis),
activating nuclear factor kappa B (NF-κB) and the production
of inflammatory cytokines, such as IL-6, and factors involved in
angiogenesis, such as IL-8 and VEGF, thus resembling the events
observed in joint diseases (Figure 6A).

Sequential events affect the homeostatic integrity of the
extracellular matrix during OA progression, including a decrease
in the amount of aggrecan and an increase in collagen (62–
64). These changes also modify the collagen type composition
from type II to type I, thereby affecting the mechanical stability
of the extracellular matrix (65, 66). Results from the HCS
experiments of chondrocyte cultures treated with the extract,
confirmed by RT-qPCR (Figures 4, 5), suggest that the extract
induces a reduction in aggrecan and type II collagen (I) by
direct cleavage by extract proteases, (II) by inducing proteases
expression, such as MMPs, by these cells, or (III) by inhibiting
their gene expression. Transcriptome analysis showed thatACAN
(aggrecan) was a highly downregulated DEG, while COL2A1 was
not a DEG but was a downregulated gene with low expression
(Supplementary Table 2).

The protein high-mobility group box 1 (HMGB1) induces
cytokine production and blood vessel formation and plays an

important role in cell proliferation, differentiation, andmigration
(67). High levels of HMGB1 are observed in inflamed joints
and serum of people with RA (68). HMGB1 was detected in
chondrocyte nuclei, after 72 h of treatment with the extract
(Figure 4), though both RT-qPCR, and the transcriptome
analyses did not show any increase in HMGB1 expression,
perhaps due to differences in the treatment times used in
the experiments.

Hyaluronic acid (HA), a polymer composed of glucuronic
acid and N-acetyl glucosamine, is produced by hyaluronic
acid synthases (HAS), expressed in fibroblast-like cells in the
synovial lining and cartilage chondrocytes. HAS2 is the major
isoform responsible for HA production in cartilage (69, 70). In
chondrocytes, HA retains proteoglycans, such as aggrecan, and
interweaves with collagen, providing a protective load-bearing
surface (71, 72). Binding of HA to its primary receptor CD44
induces TGF-β receptor (TGFBR) activation, disturbances in
cell adhesion to extracellular matrix components, inflammation,
development, tumor growth, and metastasis (73, 74). RT-qPCR
revealed an increase in HAS2 expression and a reduction in
HYAL1, HYAL2, and HYAL3 expression after extract treatment
(Figure 5). Transcriptome analysis showed an increase in the
expression ofHAS2,HAS2-AS1 (anti-sense), CD44, and TGFBR2.
We found a significant hyaluronidase activity in the hair extract
(7), which may act on hyaluronic acid present in the chondrocyte
ECM and activates the TGF-β pathway by increasing the HA-
CD44-TGFBR interaction. TGF-β receptors interact with their
ligand, TGF-β1, which is highly expressed in chondrocytes (75–
77). We detected a slight increase in TGF-β1 expression in
treated cells (Supplementary Table 2). This interaction leads to
the phosphorylation of SMAD2, which interacts with SMAD4.
The SMAD2-SMAD4 complex translocates to the nucleus, where
it modulates the transcription of TGF-β regulated genes, such
as COL3A1 (Type III collagen) (Figure 6B). COL3A1 is a DEG
that is highly expressed in chondrocytes treated with the extract,
is related to the fibrosis process, and its expression is more
pronounced in OA cartilage (78).

TGF-β receptors TGF-β1 interactions also activate MAP
kinase pathways, such as the extracellular signal-regulated kinase
(ERK) 1/2 pathway and the c-Jun N-terminal kinase (JNK)
pathway. In the latter pathway, the transcription factor activator
protein 1 (AP-1) is considered a key factor for MMP expression
(79). MAP kinases are involved in MMP gene transcription (80),
and in our study, they may be involved in the transcription
of genes for matrix metalloproteinases such as MMP-1, MMP-
2, MMP-3, and MMP-13 (Figure 6B). Tenascin-C (TNC), a
hexameric glycoprotein component of the ECM, is a highly
expressed molecule that participates in this pathway and was
upregulated in extract treated chondrocytes. TNC interacts with
over 25 different molecules, such as pathogenic components,
matrix constituents, soluble factors, and cell surface proteins (81).
TNC is a key molecule in tissue remodeling, and its deregulated
increased expression is linked to joint diseases, including OA and
RA. Thus, we again identified a proinflammatory profile induced
by the extract in chondrocytes.

Low molecular weight hyaluronan (LMW-HA) is increased in
joints in OA and has been shown to interact with TLR2/TLR4
in chondrocytes (82). In our model, this association also
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occurred in pararama hair extract treated chondrocytes. In fact,
our transcriptomic analysis showed upregulation of the TLR2
in treated chondrocytes. This ligand and receptor interaction
activates NF-κB, which is responsible for the transcription
of chemokines (IL-8, MCP-1, CXCL16, GRO1, and GRO2),
cytokines (IL-6), and MMP-1 by chondrocytes. These molecules
contribute to chemotaxis, activation of inflammatory cells
and ECM remodeling (Figure 6A). These factors were all
highly expressed DEGs in chondrocytes that were treated with
the extract.

In conclusion, our data shows that pararama hair extract
induces chondrocyte inflammation, with the production of il-6,
il-8, mcp-1, pge2, and complement components such as c3, c4,
and c5. In addition, cartilage degradation and extracellularmatrix
remodeling features, such as increased expression of mmp1,
mmp2, mmp3, and mmp13, and reduced type ii collagen and
agrecan, were also observed. Transcriptomic and bioinformatics
analyses of these cells indicated that the extract can activate
important pathways related to the inflammatory process of
joint diseases, such as the inflammatory response, chemotaxis
of immune cells and extracellular matrix remodeling. Since the
phenotype found in the human chondrocytes, treated with the
extract, resembles those seen in joint diseases, such as oa, these
data highlight the oa signature in pararamosis that should be
further investigated in order to determine strategies to treat this
and other joint diseases.
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