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Abstract: Graphene is a new type of carbon material with a flexible, two-dimensional structure.
Due to the excellent stability of its lattice structure and its mechanical flexibility, graphene-based
materials can be applied in flexible humidity sensors. At present, the application of graphene-based
flexible humidity sensors in the fields of medical care and environmental monitoring is attracting
widespread attention. In this review, the basic properties of graphene oxide (GO) and reduced
graphene oxide (rGO) as moisture-sensitive materials and methods for their preparation were
introduced. Moreover, three methods for improving the performance of moisture-sensitive materials
were discussed. The working principle of different types of graphene-based humidity sensors were
introduced. The progress in the research on graphene-based flexible humidity sensors in four respects:
Human respiration, skin moisture, human sweat, and environmental humidity were discussed.
Finally, the future research, following the development trends and challenges, to develop the potential
of integrated, graphene-based flexible humidity sensors were discussed.
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1. Introduction

Flexible electronic sensors are sensors made of flexible materials that can be stretched, bent,
and even folded [1]. According to their different functions, flexible electronic sensors can be divided
into pressure sensors, temperature sensors, humidity sensors, etc. Flexible humidity sensors have
become the subject of international research due to their potential applications in bio-medicine and
electronic skin.

The selection of flexible moisture-sensitive materials is the key to preparing flexible humidity
sensors. In recent years, graphene has attracted a great deal of attention for various sensing applications.
The excellent electrical and mechanical properties of graphene have made it a widely used material in
lithium-ion batteries, supercapacitors, electronic products, and optical devices [2–9]. Because GO and
rGO are rich in oxygen-containing functional groups and have a large specific surface area for molecular
adsorption, they have the potential for broad application in the field of flexible humidity sensing. In fact,
in addition to GO and rGO materials, polymers, and other inorganic nanomaterials have also been
adapted to flexible applications, but most polymer composite materials and other types of inorganic
moisture-sensitive nanomaterials are irritating to human skin. Carbon-based moisture-sensitive
materials have an advantage over them in terms of bio-compatibility. In the literature on carbon-based
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inorganic nanomaterials published in recent years, there is a greater abundance of research results on
carbon nanotubes and graphene. The advantage of graphene over carbon nanotubes is that, in the
process for producing carbon nanotubes, it is easier to produce a mixture of carbon nanotubes of metal
and semiconductor materials. However, it is simpler to obtain pure and high-performance GO and
rGO. Moreover, when preparing moisture-sensitive films, GO and rGO sheets can be directly deposited
onto a large area of flexible substrate with good dispersibility [10].

In the 1990s, researchers began to use stretchable materials with a certain degree of flexibility to
prepare electronic sensors, and related research has developed significantly in recent years. In 2004,
single-layer graphene was isolated for the first time. The first graphene-based gas sensor detected a
single water molecule in 2007. Since that time, a number of graphene-based humidity sensors have
been prepared by researchers. Capacitive and quartz crystal microbalance (QCM) humidity sensors
based on a GO film coating appeared in 2011. Over the next few years, flexible humidity sensors based
on graphene appeared. With the development of materials science, researchers have begun to explore
humidity-sensitive materials with higher sensitivity, and have attempted to use different sensing
mechanisms to prepare better-quality humidity sensors. In 2016, a multi-functional all-graphene
flexible sensor capable of detecting pressure, temperature, and humidity appeared. In recent years,
in order to further develop flexible devices, researchers have conferred a number of innovative functions
on sensor systems, including self-powering and self-repairing functions. This was a brief timeline of
the development of graphene-based flexible humidity sensors [11–22].

In this paper, we review materials and methods for the preparation of graphene-based flexible
humidity sensors, and report methods for improving sensor performance. Then, according to the different
sensing mechanisms, we summarize progress in the research on graphene-based flexible humidity sensors
in terms of capacitance, resistance, and other mechanisms, and discuss their application and prospects in
the fields of human respiration, skin moisture, human sweat, and environmental humidity.

2. Graphene-Based Humidity-Sensitive Materials

The core material of a humidity sensor is its humidity-sensitive material. When the humidity-
sensitive material interacts with humidity (chemical action, biological action, physical adsorption, etc.),
it can change the quality, thickness, and optical, mechanical, and electrochemical characteristics of the
humidity-sensitive material, thereby changing the impedance between the detection electrodes. So,
information about humidity can be obtained by detecting the impedance output signal.

2.1. Humidity-Sensitive Materials Based on Graphene Derivatives

GO is a derivative of graphene. Its structure maintains the hexagonal shape of graphene. After the
oxidation process, a large number of polar oxygen-containing groups, such as hydroxyl, epoxy,
and carbonyl groups, will be introduced onto the graphene layer. So, it can absorb a large number of
water molecules and, with an increase in humidity, it will agglomerate into a water molecular film
using the interaction between water molecules and GO materials. Due to the principle and the change
in structure after the action, GO is an outstanding humidity-sensitive material that is used in humidity
sensors [8,23–27].

GO, as a humidity-sensitive material, has many excellent properties. In terms of composition and
structure, GO has good hydrophilicity due to the presence of oxygen-containing functional groups.
Medheker put forward a theoretical analysis of the hydrophilicity of GO [28]. When the environment is
at a different humidity, oxygen-containing functional groups will form hydrogen bonds inside and on
the surface of the GO. The humidity will affect the strength and density of these interlayer hydrogen
bond networks. When the hydrogen–oxygen bond distance is 2.55 Å, it can be calculated as two water
molecular phases. This hydrophilic property makes it easier for GO to absorb water molecules from
the environment.

Moreover, the irregular oxygen-containing region of the intermediate structure of the GO sheet,
that is, the six-membered ring skeleton of carbon atoms, has hydrophobic properties, so the GO can also
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be dispersed in a large number of organic solvents, which demonstrates its amphiphilicity. By means of
a comparison of the dispersion of GO after ultrasonic treatment and after 3 weeks of standing, GO was
shown to be able to be stably dispersed in water, acetone, ethanol, ethylene glycol, and other organic
solvents, which is helpful for further processing and obtaining stable GO [29]. Obtaining a high-quality
and stable dispersion solution is beneficial to the production and application of moisture-sensitive
film materials.

In terms of electrical properties, GO will change the dielectric constant after adsorbing water
molecules. A mechanism analysis of the influence of GO on the dielectric constant of water molecules
was performed by Bi’s group [30]. Under a low humidity condition, the first layer of physical adsorption
of water molecules will occur on the GO membrane. Water molecules are mainly adsorbed on the
GO through the double hydrogen bond. The surface-active sites (hydrophilic group, vacancy) are
completed. Under the restriction of a double hydrogen bond, water molecules cannot move freely.
Proton transfer between adjacent hydroxyl groups also requires a large amount of energy, so GO
membranes have high resistance [31]. When the environmental humidity increases gradually, there will
be many layers of water molecules on the surface of the GO film. Starting from the second layer
of physical adsorption, water molecules can be physically adsorbed by a single hydrogen bond on
the hydroxyl and become mobile, gradually exhibiting similar behavior to liquid water. During the
process of multi-layer physical adsorption, water molecules ionize under the action of the electrostatic
field to form a large number of charge carriers (H3O+). Through the Grotthuss chain reaction (H2O +

H3O+
→H3O+ + H2O), proton transfer and charge transfer take place in the GO, thus reducing the

resistance of the GO membrane. Additionally, there is another sensing mechanism that produces the
opposite result and is worthy of discussion. When GO interacts with water molecules, GO materials
can act as electron donors and exhibit p-type semiconductor properties. As the electron density
increases, the number of holes in the sensing material itself decreases, so that the resistance of the
sensing layer increases. In addition, when the humidity is high, the resistance of the sensitive layer
increases significantly. This effect may be caused by the increase in molecular distance due to expansion
and the subsequent decrease in penetration pathways [32–34]. Muhammad Yasin’s group studied
the relationship between the electrical characteristics of GO film and the ambient temperature [35].
By drawing complex impedance spectra/Nyquist plots of GO film at different temperatures, it was
found that with the increase of temperature, the impedance characteristic curve of the GO film changed
more and more obviously from an approximate semicircle at low temperatures to a straight line.
Because of its high impedance, GO is suitable for use as a dielectric material in the preparation of
capacitive humidity sensors.

In terms of mechanical properties, due to the presence of oxygen-containing functional groups,
the adsorption of water molecules from the environment will affect a GO membrane’s mechanical
properties. With the increase of humidity, the elastic modulus and tensile strength of the GO membrane
decrease. However, increasing the number of oxygen-containing functional groups will increase the
number of hydrogen bonds, which are directly connected to the adjacent GO sheets. This will improve
the elastic modulus and toughness of GO-based humidity-sensitive films, which is conducive to their
application to flexible substrates [24,28,36,37].

GO can be partially reduced by the controlled removal of oxygen-containing groups. The product
of the reduction is rGO. Compared with GO, it has higher electrical conductivity [8]. The structure of
rGO is similar to that of graphene. However, it has some oxygen-containing groups and its production
cost is relatively low. Certain methods can be used to regulate its structure and properties, so it has
certain applications in the field of humidity sensing.
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2.2. Comparison of rGO Preparation Processes and Their Influence on Sensor Performance

2.2.1. Synthesis of Graphene Derivatives

At present, there are three methods for preparing GO: Hummers’ method, the Staudenmaier method,
and Brodie’s method. The most commonly used preparation method is Hummers’ method [38–40].
The oxidants used in the Staudenmaier method and Brodie’s method need a longer time to complete
the oxidation reaction, and can easily explode in the case of a high concentration. Hummers’ method
uses KMnO4 to deoxidize graphite powder, which greatly improves the experimental safety. Moreover,
rGO can be more easily and quickly prepared using Hummers’ method. In addition, this preparation
method has the advantages of rapidness, simplicity, and a low preparation cost, which make industrial
production easier to realize [37,41,42]. Novel GO preparation methods based on Hummers’ method
and improvements to the process continue to be proposed [43,44].

The performance of rGO is related to the process for the reduction of GO, which can be reduced
by many methods, such as thermal reduction, chemical reduction, and light reduction. Controlled
removal of oxygen-containing functional groups on the surface of GO can change the properties and
structure of the material. The thermal reduction method uses the instability of oxygen-containing
functional groups on the surface of GO and can remove and form hole defects in the material through
thermal annealing reduction [45].

The chemical reduction method uses chemical reagents to remove oxygen-containing functional
groups on the surface of GO to achieve the reduction of GO. This method has less-stringent requirements
for equipment and the environment than thermal reduction methods, and the preparation process
is simpler and the cost is lower. Therefore, the chemical reduction method is suitable for use in the
large-scale production of rGO.

The reduction of GO using the above-mentioned two methods requires the consumption of a
large amount of energy and is not suitable for long-term development. It is also difficult to achieve
the integration of flexible devices using these two methods, which limits the application of rGO in
flexible electronics [31]. Photoreduction is one way to reduce GO by removing the oxygen-containing
functional groups on the surface of the GO through the interaction of oxygen-containing functional
groups and light. This method is a green and environmentally friendly way to reduce GO and has
become the main way to reduce GO in recent years. However, the development of this method requires
complicated preparation technology and expensive equipment.

2.2.2. Preparation of Humidity-Sensitive Films

One of the most important components of a humidity sensor is the humidity-sensitive thin
film. The commonly used methods for preparing GO composite films include titration, dip coating,
spraying, spin coating, electrophoresis, Langmuir–Blodgett (L-B) membrane technology, vacuum
filtration, in-situ polymerization, the sol-gel method, chemical vapor deposition, magnetron sputtering,
and vacuum evaporation [40,42,46–55]. The thickness, shape, uniformity, and stability of the film and
the performance of the humidity sensor will differ depending on the method used to prepare the film.
Therefore, it is necessary to consider the process for the preparation of the humidity-sensitive film in
advance before preparing the humidity-sensitive sensor. The advantages and disadvantages of several
preparation methods are shown in Table 1.
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Table 1. Comparison of processes for the preparation of graphene oxide (GO) humidity-sensitive films.

Preparation Method Advantages Shortcomings Reference

Spraying method Simple, convenient, a high degree of
orientation, and large-scale production.

The resistance is limited by the
film’s thickness. [42,56,57]

Magnetron sputtering
High accuracy, an unlimited

preparation area, a low preparation
temperature, and a simple process.

A complex operation and uses
expensive machines. [42,58]

Sol-gel method
Good uniformity, strong operability,

and makes it easy to realize
large-scale production.

A complex operation, a long
preparation cycle, and it is

difficult to manipulate the ordered
assembly of graphene sheets.

[59]

Chemical vapor
deposition

High quality, good crystallinity,
and few defects. The film can be

deposited on large areas.

The thickness is limited by the
substrate, and this method

matches poorly with the device
manufacturing process.

[60,61]

Vacuum filtration Mature, simple, and improves the
orientation of lamellar.

Time-consuming, the film is too
thick, which causes surface

wrinkles, and the size is limited by
the size of the filter membrane.

[56]

Self-assembly A simple process. The film has a firm
structure and uniform thickness.

The membrane is too dense and
flat to adsorb and desorb water.

The size is limited by the substrate
and equipment. Difficult to use to

carry out mass production.

[60]

Inkjet printing Controllable thickness and improves
the rate of utilization of raw material.

The control accuracy of the print
head and printing system is

insufficiently high.
[62]

2.2.3. Methods for Improving the Performance of Humidity-Sensitive Materials

The performance of a flexible humidity sensor is closely related to the physical and chemical
properties of its humidity-sensitive materials. Combined with the physical and chemical properties of
humidity-sensitive materials, we can improve the performance of humidity-sensitive materials in the
following three respects.

1. Controlling the morphology (structure) of the composite. Hosseini and others developed a highly
sensitive flexible humidity sensor based on graphene quantum dots (QGDs) [63]. The QGDs,
which were synthesized using a simple hydrothermal method, have good selectivity, a good
response, a wide detection range, a short response time, a short recovery time, and a certain degree
of flexibility. This sensor was used to demonstrate the application potential of QGDs in wearable
electronic equipment and real-time monitoring of relative humidity (RH). Zhang and others
prepared a high-sensitivity humidity sensor made of GO foam [64]. The GO foam has dielectric
and direct-current (DC) conductive properties related to humidity and compression. It was found
that the dielectric constant, dielectric loss, and DC conductivity all increased with the increase of
RH. After compressing the GO foam, the sensitivity to humidity increased, and the maximum
sensitivity to dielectric loss was more than 12 times higher than that of the DC conductivity.
In addition, the dielectric properties of the GO foam enabled it to exhibit a stable and repeatable
humidity response, indicating that this GO foam has great potential in the assembly of highly
sensitive and lightweight humidity sensors with a repeatable humidity response.

2. Finding the best preparation conditions and methods, such as finding the most suitable annealing
temperature to control the number of oxygen-containing functional groups and using the
self-assembly method to make the structure stable and firm. Li prepared a flexible resistive
humidity sensor based on an rGO/WS2 composite film [42]. It was found that the number of
oxygen-containing functional groups on the surface of the composite material and the interaction
between the rGO and WS2 were different with different annealing temperatures, which would
affect the humidity sensitivity response characteristics of the sensor. Phan and others used rapid
thermal annealing (RTA) to control the number of oxygen-containing functional groups in the
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GO [65]. Through a study on annealing at different temperatures from 400 ◦C to 1200 ◦C, it was
found that with the increase of the annealing temperature, the resistance of the sample gradually
decreased, and the ability of the GO to adsorb water gradually weakened. The sensitivity of the
humidity sensor based on the non-annealed GO film was 35.3%. After annealing at 1200 ◦C,
the sensitivity of the humidity sensor decreased to 0.075%, and the response time increased,
but the non-annealed GO membrane was not stable in the humid environment. Therefore,
although reducing the number of oxygen-containing functional groups will reduce the sensitivity
of the humidity sensor, the sensitivity and stability should be considered comprehensively
when designing the sensor in order to achieve a balance between them. Su’s group prepared
an rGO-based flexible humidity sensor using the self-assembly method. First, they pretreated
a flexible electrode with lye, then assembled the GO material layer by layer with a coupling
agent, reduced the GO in situ, immersed the humidity sensor in water, and then dried it.
Their experimental data show that this flexible humidity sensor has strong water resistance and
its output response is unaffected and has long-term stability [66].

3. Modifying the structure of the graphene derivative according to need, such as using functional
group materials to modify the GO to enhance the humidity sensitivity response, doping
heteromorphic semiconductor materials to form a Schottky barrier, and preparing composite
materials to improve the self-adsorption capacity and permeability structure. Su’s group modified
graphene using GO as a precursor material [67–69]. It was found that, of the different functional
groups, the amino group, the carboxyl group, and β-cyclodextrin can be used to modify GO
to improve the material’s sensitivity to humidity. The amino group has relatively high activity
and can easily be compared with GO. The sensor, after the reaction and modification, exhibited
a good humidity sensitivity response, high sensitivity, low humidity lag, and good long-term
stability. Wang’s group doped rGO with the urchinlike CuO [70]. The work function of rGO
is about 4.6 ev, while that of CuO is about 5.2 ev. In a humid environment, the adsorption of
water molecules reduces the Schottky barrier between rGO and CuO, thus strengthening the ion
conduction strength inside the sensitive film. Compared with sensors based on the original rGO
and CuO, the output sensitivity and response time of the sensors made of the composite material
were improved. They all exhibited relatively good humidity sensing performance. The research
group briefly explained the reasons for the increase in the impedance and the improvement in the
humidity sensing performance. The water molecules adsorbed by the humidity-sensitive materials
release electrons into the Schottky barrier and reduce the barrier height. This phenomenon greatly
promotes the electrical conductivity of the humidity-sensitive film and improves the humidity
sensing performance.

3. Graphene-Based Flexible Humidity Sensors

A flexible humidity sensor is generally composed of a flexible substrate, a humidity-sensitive film,
and a metal detection electrode. At present, there are many kinds of graphene-based flexible humidity
sensors [71–73]. A comparison of these sensors is shown in Table 2. The most widely used types of
humidity sensors are resistive humidity sensors and capacitance humidity sensors.

3.1. Realization of Flexibility

The biggest challenges for flexible humidity sensors involve their manufacture, their mechanical
properties, the stability of the electrochemical performance, and their ability to maintain sensitivity after
repeated bending deformations. The key to their manufacture lies in the flexibility of the electrodes/
circuits. At present, the theoretical research on the design and manufacturing of graphene-based
flexible electronic devices mainly focuses on the flexible substrate transfer method and the strain
structure design method, as shown in Figure 1 [74,75].
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The flexible substrate transfer method is a method for sequentially transferring one electrode
structure to another flexible substrate. It has the advantages of strong technical compatibility and
simplicity, and the operation is carried out at a normal temperature, avoiding the possibility of the
temperature affecting the device’s function. Polydimethylsiloxane (PDMS) is often selected to be the
flexible substrate for the transfer method. PDMS is a stretchable material that is highly transparent,
chemically inert, and non-toxic. It can be applied to human skin, implanted in the body, or applied in
wearable devices. In addition, polyurethane (PU), polyester resin (PET), and so on can be chosen [76].
These organic polymer materials have good flexibility and good compatibility with graphene, so they
may become excellent substrates for the preparation of graphene-based flexible humidity sensors.

The strain structure design method is used mainly to provide the electrode material with a higher
degree of flexibility by designing the strain structure, which can not only avoid significant deformation
of the electrode material under normal working conditions, but also alleviate damage during stretching.
According to the shape of the conductive layer, there are serpentine structures, paper-cut structures,
three-dimensional network structures, and so on [77–81]. The research results on the above-mentioned
methods for manufacturing flexible sensors not only provide theoretical guidance on the construction
of graphene-based flexible electronic sensors, but may also further promote the innovation of related
theories and technologies.

3.2. Sensing Mechanisms

3.2.1. Resistive Type

The working principle of a resistive humidity sensor is that the moisture-sensitive film changes its
impedance characteristics by adsorbing water molecules. These sensors measure the environmental
humidity by changing the output electrical signal. The sensitivity of a resistive humidity sensor can be
defined as:

Response =
∆R
Rair
× 100% =

Rhumid −Rair

Rair
× 100% (1)

where Rhumidity is the resistance measured under humid conditions and Rair is the resistance measured
under dry air conditions [32]. Resistive humidity sensors have been studied and developed in theory
for a long time. They have also been mass-produced for a long time and applied in practical work.
This kind of sensor deposits a humidity-sensitive film on a flexible interdigital electrode by means of a
special film-forming process, which has the advantages of a simple preparation process, a simple circuit,
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high sensitivity, a low cost, and a small volume. Due to its excellent conductivity and easy-to-process
thin films, rGO is often used in resistive-type humidity sensors.

3.2.2. Capacitive Type

The working principle of a capacitive humidity sensor is that it detects the environmental humidity
by changing the dielectric constant of the humidity-sensitive film through changing the transmission
capacitance value. The capacitance value can be expressed by the following formula:

Cpu =
εrε0S

d
(2)

where Cpu is the capacitance value, S is the effective electrode area of the capacitive sensor, d is the
thickness of the moisture-sensitive polymer film layer, ε0 is the dielectric constant of classical vacuum,
and εr is the dielectric constant of the moisture-sensitive polymer material. The structure of a capacitive
flexible humidity sensor is similar to that of the resistance type, and the dielectric layer is covered on
two of the flexible cross finger electrodes. At present, most humidity sensors use capacitance sensing
technology [82,83]. This kind of humidity sensor is very sensitive to changes in humidity, and has the
advantages of low power consumption, a high output signal, a short response time, a small temperature
coefficient, and great product interchangeability, so it is widely used in practice. Compared with
resistance humidity sensors, high-resistance GO is more suitable for use as a dielectric layer in the
preparation of capacitive humidity sensors.

3.2.3. Other Types of Graphene-Based Flexible Humidity Sensors

In addition to resistive flexible humidity sensors and capacitive flexible humidity sensors, there are
also high-performance humidity sensors based on other technologies and instruments, such as optical
fiber humidity sensors and QCM humidity sensors. In addition to GO-based and rGO-based humidity
sensors, graphene derivatives, such as graphene quantum dots prepared from GO, can be used to
prepare flexible humidity sensors. GQDs have also been combined with optical fiber technology to
prepare a new type of humidity sensor with higher sensitivity [73]. The sensors mentioned above is
shown in Figure 2, which have their own advantages and specific application conditions [71].
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1. The humidity sensing mechanism of a fiber-optic humidity sensor is that the properties of refracted
or reflected light waves are changed after the moisture-sensitive material adsorbs water molecules.
The changes in properties can be detected by the amplitude, polarization amplitude, frequency
shift, or phase shift of the light waves. Because of their small volume and light weight, optical
fiber sensors have low transmission loss and a strong multiplexing ability and can also realize
multi-parameter and long-distance detection. Because of their excellent corrosion resistance and
anti-electromagnetic interference ability, optical fiber sensors are suitable for use under strong
magnetic conditions and in harsh environments [84–86].

2. QCM is a non-destructive technology. The sensing mechanism of a QCM humidity sensor is to
coat a layer of humidity-sensitive film on the electrode. After the moisture-sensitive material is
deposited on the electrode, Sauerbrey’s equation can be used to convert the dynamic adsorption
mass into a resonance frequency shift.

f = −
2 f02

A
√
ρu

∆m (3)

where f 0 is the resonance frequency of the QCM, A is the effective area, and ρ and µ are the density
and shear modulus of the quartz crystal, respectively [87,88]. Compared with the traditional
humidity sensors, QCM humidity sensors have the characteristics of a small size, a high frequency,
and intelligence.

3. GQD material is an important graphene derivative whose sheet size is smaller than 100 nm,
and it has a quantum confinement electron state. GQD material has excellent hydrophilicity,
a large specific surface area, and a small sheet size [89,90]. The film, which is formed by stacking,
has a large number of voids, which enable water molecules to penetrate into the inside of the
humidity-sensitive thin film more quickly and accelerate the sensor’s humidity-sensitive response.
It has received a great deal of attention as a new type of moisture-sensitive material.

Table 2. Graphene-based sensor performance and comparison.

Sensor Type Sensitive
Material

Preparation
Method

Measurement
Range Sensitivity Response

Time Reference

Resistive type G/methyl red
M-R

Ink jet
printing 5–95% 96.36% (∆R/R) 0.25 s [91]

Resistive type G/PEDOT:PSS/PI Ink jet
printing 31–95% 40% (∆R/R) 20 s [92]

Resistive type PEDOT:
rGO-PEI/Au

Ink jet
printing 11–98% 51.6% (∆R/R) 20 s [93]

Capacitive type GO/paper Self-assembly 30–90% 38% (∆C/C0) Not given [94]

Capacitive type GO/PEDOT:PSS Sedimentary
method Not given 1220 pF/%RH Not given [95]

Capacitive type GO/Ag Drop coating 11~97% 25,809 pF/%RH 8 s [42]
Optical type rGO self-assembly 50.5~85% –4.118 dB/%RH Not given [96]
QCM type rGO/PEO Layering 11.3 to 84% 20 Hz/%RH 11 s [97]

GQD type GQD/PI Drop-casting 1~100% (~390 for a RH
change of 99%) 12 s [63]

4. Applications of Graphene-Based Flexible Humidity Sensors

Due to their high sensitivity, excellent flexibility, good stretchability, and stability, graphene-based
flexible humidity sensors have great potential for application in such fields as electronic skin, personal
health monitoring, and wearable and stretchable humidity sensors [98–101]. They can be placed on the
human body or clothes to detect signals from human activity and obtain various kinds of physiological
information according to the object of implementation. As shown in Figure 3, the applications of
graphene-based flexible humidity sensors can be classified into four categories: Monitoring human
respiration, monitoring skin moisture, detecting sweat, and detecting environmental humidity.
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4.1. Human Respiration

Respiratory rate can be considered to be a key indicator of human health, and monitoring changes
in an individual’s respiratory rate and depth of breath can be used in medical diagnosis [102,103].
Traditional breath monitoring instruments have the disadvantages of a large volume, a high production
cost, and using rigid materials as substrates, which leads to an inability to fold and poor portability.
However, due to their mechanical toughness, large specific surface area, and high conductivity,
graphene-based flexible humidity sensors can provide excellent humidity sensing performance in the
field of respiratory monitoring, have a certain degree of flexibility and a low cost, and can make up for
the shortcomings of traditional rigid respiration monitoring instruments. To date, a number of studies on
graphene-based flexible humidity sensors for application in this field have been performed. Ye’s team
prepared a GO humidity sensor that can self-supply energy by means of ink-jet printing [104]. By using
the humidity-sensitive characteristics of GO material after spontaneous polarization, the device’s
structural parameters were optimized, and a humidity sensor with excellent sensitivity, rapid response
and recovery times, multiple circulation stability, and long-term aging stability was obtained. Based on
this sensor, the detection of different respiratory frequencies, such as normal static respiration and
rapid respiration, in the human body can be realized. Moreover, the humidity sensor is simple to
prepare, low in cost, not easily interfered with by human actions and the external environment, and has
practical value.

4.2. Skin Moisture

The moisture content of human skin is also a key indicator of human health. Graphene-based
flexible humidity sensors can detect skin moisture and show great potential for use in wearable devices
suitable for evaluating moisturizing products. At present, there are few research results on this kind of
sensor. On the one hand, for contact sensor equipment, when in contact with skin, the sensor needs
to have a certain degree of flexibility, a better fit for the skin, and be harmless to the skin to prevent
damage with long-term use. On the other hand, the preparation of non-contact sensor equipment
needs theoretical guidance. Graphene-based flexible humidity sensors for the detection of moisture
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and humidity in the skin have yet to be developed. However, researchers have attempted to establish
a functional relationship between the sensitivity of PIM-based sensors and the moisture content of
human skin and developed high-precision skin moisture measurement instruments that may provide
a solution for graphene-based flexible humidity sensors [101].

4.3. Human Sweat

There are many ions in human sweat. The composition and content of ions in human sweat
are also key indicators of human health. It is very important to personal health monitoring and
exercise monitoring to sample and analyze fresh sweat using sensors. At present, there are many
types of studies on the implementation of personalized health monitoring by means of wearable
sensor technology. The monitoring of ions in sweat requires the wearable sensor to capture fresh
sweat. Guijun Li and others reported on the development of wearable sweat capture devices using
patterned graphene arrays with controllable wetness and conductivity for the simultaneous capture
and electrochemical measurement of sweat droplets [99]. Sweat droplets showed strong adhesion
to and moderate movement on the super-hydrophilic patterned graphene arrays. These sensors can
be used for personalized, whole-body, and real-time monitoring of sweat for the purpose of sports
performance optimization, and physiological health tracking.

4.4. Ambient Humidity

Life depends on environmental moisture. Life needs to sense the humidity and temperature of the
outside world and provide feedback. As an important organ for sensing the outside world, the skin
needs to be repaired by electronic equipment and medical means if it is damaged or even necrotic.
Electronic skin is a system that can simulate human skin, sense the external pressure, temperature,
and humidity, obtain other information, and provide feedback, which also requires the integration of
flexible humidity sensors in the electronic skin. Most sensors that can sense pressure, temperature,
and humidity are rigid and cannot perform synchronous monitoring. Recently, a multifunctional sensor
was prepared by means of spraying a mixture of carbon black (CB) and rGO on a paper substrate [105].
It can detect external strain, humidity, temperature, and pressure with a single device and has high
sensitivity. In addition, the sensor is easily degraded in water, but it can be reused after drying,
which illustrates its strong stability.

In general, graphene-based flexible humidity sensors are widely used in the field of respiratory
monitoring. Moreover, the technology for their preparation is becoming increasingly simple, their cost
is gradually being reduced, and their performance is constantly being improved, which should also
promote the development of wearable medical systems.

5. Summary and Outlook

Due to its large specific surface area and the large number of hydrophilic oxygen-containing
functional groups, GO has an excellent capacity for water absorption. GO and rGO are two common
humidity-sensitive materials. By controlling and optimizing these materials’ structure, improving
the preparation conditions and methods, or directly modifying them, the sensing performance of
the sensor can be improved. In addition, GQD material has a small sheet size that enables a film
formed by stacking to contain a large number of voids, which enable water molecules to penetrate
into the humidity-sensitive film more quickly and accelerate the humidity-sensitive response of
the sensor. GQD material is a graphene-based material with the potential for broad application in
humidity-sensitive materials.

The large-scale production of high-quality humidity-sensitive materials is a basic premise of the
application of graphene-based flexible humidity sensors. The existing spin-coating and inkjet printing
technologies can be used to realize the preparation of low-cost humidity-sensitive films [104,106,107].
These two technologies are simple to operate, but the control precision needs to be improved.
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The development of manufacturing technologies with a higher control accuracy will be beneficial to
the large-scale production of graphene-based flexible humidity sensors.

In the process of preparing graphene-based flexible sensors, the flexible substrate transfer method
and the stress structure design method can be used to obtain a high degree of flexibility. Different
graphene-based materials have different sensing mechanisms. QCM sensors and fiber-optic sensors
use QCM sensing devices and fiber-optic sensing technologies, respectively. As new types of sensors
that integrate multiple technologies, they have excellent humidity sensing characteristics, including a
short response time, low humidity hysteresis, and high sensitivity. In addition, these two new types of
flexible humidity sensors have high repeatability, good long-term stability, and a long life. They have
very broad future research prospects.

Finally, the actual application of graphene-based flexible humidity sensors in human respiratory
monitoring, skin moisture detection, sweat analysis, and environmental humidity detection requires us
to integrate sensor technology with other technologies. Currently, the main problem of multi-function
sensors is that the recognition accuracy between multiple signals still needs to be improved. Sensor
materials need to have a high degree of stability in order for us to complete the integration of data
transmission and processing units and ultimately achieve the goals of minimizing equipment size and
optimizing performance.
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