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Identification of Tissue-Specific 
Protein-Coding and Noncoding 
Transcripts across 14 Human 
Tissues Using RNA-seq
Jinhang Zhu1, Geng Chen1, Sibo Zhu1,2, Suqing Li3, Zhuo Wen3,   Bin Li1, Yuanting Zheng1,2 & 
Leming Shi1,2

Many diseases and adverse drug reactions exhibit tissue specificity. To better understand the tissue-
specific expression characteristics of transcripts in different human tissues, we deeply sequenced RNA 
samples from 14 different human tissues. After filtering many lowly expressed transcripts, 24,729 
protein-coding transcripts and 1,653 noncoding transcripts were identified. By analyzing highly 
expressed tissue-specific protein-coding transcripts (TSCTs) and noncoding transcripts (TSNTs), we 
found that testis expressed the highest numbers of TSCTs and TSNTs. Brain, monocytes, ovary, and 
heart expressed more TSCTs than the rest tissues, whereas brain, placenta, heart, and monocytes 
expressed more TSNTs than other tissues. Co-expression network constructed based on the TSCTs 
and TSNTs showed that each hub TSNT was co-expressed with several TSCTs, allowing functional 
annotation of TSNTs. Important biological processes and KEGG pathways highly related to the specific 
functions or diseases of each tissue were enriched with the corresponding TSCTs. These TSCTs and 
TSNTs may participate in the tissue-specific physiological or pathological processes. Our study provided 
a unique data set and systematic analysis of expression characteristics and functions of both TSCTs and 
TSNTs based on 14 distinct human tissues, and could facilitate future investigation of the mechanisms 
behind tissue-specific diseases and adverse drug reactions.

Many genes have numerous splice variants, promoters and protein products. Determining how the selection and 
diversity of isoforms is regulated requires measuring changes in the expression of individual transcripts1,2. The 
transcriptome is the complete set of transcripts in a cell, and their abundance under a specific development stage 
or physiological condition. Understanding the transcriptome is essential for interpreting the functional elements 
of the genome and revealing the molecular constituents of cells and tissues, and also for understanding develop-
ment and disease3,4.

Different transcripts are expressed in diverse tissues or cell types, as well as in different developmental stages 
or diseases. With the development of next-generation sequencing, researchers can measure gene expression 
in various tissues at genome-wide scale5–8. Pathology caused by defects in human transcripts is usually highly 
tissue-specific. For example, tissue specificity of Parkinson disease, muscular dystrophy syndromes, and cardio-
myopathies have been identified9–11. Such studies have found an extensive list of tissue-specific molecular path-
ways, both known and unexpected, that might be disrupted in disease12–15.

Noncoding RNAs (ncRNAs) are involved in many biological processes and are increasingly seen as important 
regulatory molecules. They regulate gene expression via sequence-specific interactions with regulatory regions 
at the level of transcription, RNA processing, and translation. There are different types of noncoding transcripts 
including long noncoding RNAs, short noncoding RNAs, pseudogenes, and so on. microRNAs, the best-studied 
class of short ncRNAs, mainly regulate gene expression post-transcriptionally. Long noncoding RNAs (lncR-
NAs) are emerging as important regulators of tissue physiology and disease process. Previous studies suggested 
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that lncRNAs are expressed in a highly tissue-specific manner more than protein-coding transcripts are16–19. The 
emergence of high-throughput RNA-seq technology provides a revolutionary tool for systematically identifying 
diverse types of transcripts including both protein-coding and noncoding RNAs20.

Many published studies have investigated the nature of tissue-specific genes/transcripts on different species. 
For example, the Mouse ENCODE Consortium has gained great insights into both shared and species-specific 
transcriptional and cellular regulatory programs throughout the mouse genome in diverse cell and tissue types21. 
The SEQC consortium also described the landscape of tissue-specific gene expression based on 320 RNA-seq 
from 11 organs of both sexes of rats22. Public data sets such as the Illumina Human BodyMap 2.0 data set18 and 
more recently the Genotype-Tissue Expression Project (GTEx) data set23,24 included expression profiles of many 
different human tissue types, providing unique opportunities to comprehensively characterize the human tran-
scriptomes across tissues. However, the diversity of human tissue types makes it unrealistic for a single data set to 
include all tissues (Supplementary Fig. S1). Although more and more studies found that noncoding RNAs play 
important roles in diverse physiology and disease processes, few studies comprehensively compared the expression 
characteristics of tissue-specific noncoding transcripts with those of tissue-specific protein-coding transcripts.

In our study, we deeply sequenced 14 human tissues including 10 types of important solid organ tissues and 4 
types of important immune cells. Six of them are not included in the GTEx or Illumina Human BodyMap 2.0 data 
set. We found that testis expressed the highest numbers of TSCTs and TSNTs. Brain, monocytes, ovary, and heart 
expressed more TSCTs, whereas brain, placenta, heart, and monocytes expressed more TSNTs than the other 
nine tissues. A co-expression network was constructed and hub transcripts were selected based on the TSCTs 
and TSNTs. Each hub TSNT was co-expressed with several TSCTs. Many important tissue-specific biological 
processes and KEGG pathways were enriched with TSCTs. These TSCTs and the enriched biological processes 
closely associated with the specific functions or diseases of each tissue.

Results
RNA sequencing quality was high and the expression profiles of the two technical replicates 
were consistent. In order to increase the reliability of the RNA sequencing data under the restriction of lack 
of biological replicates, we sequenced each tissue at two different sites, City of Hope (COH) of the United States and 
Beijing Genomics Institute (BGI) of China based on the Illumina platform, yielding two technical replicates for each 
tissue. After trimmed adapters and some low-quality reads, the overall quality of the remaining RNA-seq reads was 
examined using the package FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The medians of 
the sequence quality scores of all the reads across all the samples were above 30 and all samples passed quality check 
(Fig. 1a,b), indicating that the sequence quality was high. The trimmed high-quality reads were used for further data 
analyses. Mapping and quantification were conducted using the standard pipelines of TopHat and Cufflinks based 
on the human reference genome annotation file of Ensembl release 60 of GRCh37/hg19 that includes 52,465 genes 
and 157,480 transcripts25. On average, the mapping ratio across all the 14 tissues was high (94.6%, Fig. 1c).

Figure 1. Sequencing quality check and principal component analysis. Boxplots show the sequencing quality 
of BGI reads (a) and COH reads (b) X axis is the base position at each read. Y axis is sequence quality score. The 
median of the sequencing quality score less than 20 means that sequencing quality was bad, and higher than 30 
means that squencing quality was good. Mapping ratio of each sample (c) red and green bars represent samples 
sequenced at BGI and COH, respectively. Principal component analysis based on the protein-coding (d) and 
noncoding (e) transcripts. Principal component analysis based on the log2 (FPKM +  0.1).

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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After filtering lowly expressed transcripts based on the threshold of geometric mean of (FPKM +  0.1) <  1 
for all 14 tissues, 26,382 transcripts were retained. Among them, 24,729 (93.7%) were protein-coding tran-
scripts, and 1,653 (6.3%) were noncoding transcripts. Principal component analysis was performed based on 
log2 (FPKM +  0.1) values (Fig. 1d,e). We found that the expression profiles of the two technical replicates from 
the same tissue were highly consistent. Besides, Spearman’s correlation coefficients were calculated between the 
two technical replicates for all the 14 tissues based on protein coding (Supplementary Fig. S2) and noncoding 
(Supplementary Fig. S3) transcripts. The correlations ranged from 0.928 to 0.961 based on protein-coding tran-
scripts and from 0.809 to 0.919 based on noncoding transcripts. These results further indicate high quality of 
experimental data.

Eleven types of noncoding transcripts were identified. Because many noncoding transcripts includ-
ing pseudogenes have polyadenylation sites, a large number of noncoding transcripts have been selected during 
the standard polyA selection protocol for RNA-seq used in this study26–28. In addition to protein-coding tran-
scripts, 11 types of noncoding transcripts were annotated according to the Ensembl annotation29. The number 
and percentage of each noncoding transcript type were calculated, and most of the noncoding transcripts were 
processed transcripts, long intergenic noncoding RNAs (lincRNAs), and pseudogenes (Fig. 2). Processed tran-
scripts, which do not contain an open reading frame (ORF) compared with protein-coding transcripts, showed 
the maximum number of 930 (56%), followed by lincRNAs (330 or 20%) and pseudogenes (301 or 18%). The 
number of transcripts in the other eight noncoding transcript types ranged from 2 to 27, and the total number of 
transcripts in these eight types was 92 (6%). All of these 1,653 annotated noncoding transcripts were used in the 
further analyses.

Numbers of expressed protein-coding and noncoding transcripts vary greatly across different 
tissues. To detect the expressed transcripts, we defined a transcript as expressed when its original FPKM ≥  1 
in one sample. The numbers of expressed transcripts from the two technical replicates for the same tissue 
were consistent (Fig. 3). The numbers of expressed transcripts across all the tissues were different. Based on 
protein-coding transcripts, the numbers of expressed transcripts ranged from 17,696 to 22,599. Ovary expressed 
the largest number of transcripts. Esophagus, prostate, and placenta expressed more transcripts than the rest 
tissues. Monocytes expressed the least number of transcripts, and brain and liver expressed fewer transcripts 
than the other tissues (Fig. 3a). Based on noncoding transcripts, the numbers of expressed transcripts ranged 
from 1,008 to 1,494. Prostate expressed the largest number of transcripts, and ovary and esophagus expressed 
more transcripts than the rest tissues. Liver expressed the least number of transcripts, and monocytes and colon 
expressed fewer transcripts than the other tissues (Fig. 3b). On average, 20,362 protein-coding and 1,283 noncod-
ing transcripts were expressed in each sample.

Expression profiles of protein-coding and noncoding transcripts across 14 tissues. The expres-
sion profiles of the 24,729 protein-coding and 1,653 noncoding transcripts were analyzed using boxplots and 
hierarchical cluster analysis (Fig. 4). We found that the overall expression levels of protein-coding transcripts 
were higher than those of noncoding transcripts (Fig. 4a,b). Hierarchical clustering of the tissues based on 
protein-coding and noncoding transcripts showed that immune cells clustered tightly as a group and tissues from 
solid organs clustered tightly in both protein-coding and noncoding transcripts as another group. In addition, tes-
tis and brain showed the most divergent expression profiles among all solid tissues. Monocytes showed the most 
divergent expression profiles among the 4 immune cells. Interestingly, prostate and esophagus clustered more 
tightly based on both protein-coding and noncoding transcripts, indicating that the overall expression levels of 
the transcripts were more similar in these two tissues (Fig. 4c,d).

Figure 2. Number and percetange of transcripts in each noncoding transcript type. (a) Number of 
noncoding transcripts in each type. (b) Percentage of noncoding transcripts in each type. Noncoding transcript 
type with small relative percentages are grouped together as “Others”.
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Figure 3. Numbers of protein-coding and noncoding transcripts expressed in the 14 human tissues. 
Numbers of protein-coding (a) and noncoding (b) transcripts expressed in the 14 human tissues. X axis is the 
samples; red and green bars represent samples sequenced at BGI and COH, respectively. Y axis is the number of 
expressed transcripts (×1,000). Expressed transcript detection was based on the raw FPKM values.

Figure 4. Overview of expression profiles of protein-coding and noncoding transcripts in 14 human tissues. 
Boxplots show the overview of expression profiles of protein-coding (a) and noncoding (b) transcripts in 14 
human tissues. X axis is the samples. Red and green boxes represent samples sequenced at BGI and COH, 
respectively. Y axis is the log2 (FPKM +  0.1) values. Hierarchical clustering analysis based on protein-coding 
(c) and noncoding (d) transcripts groups tissues of similar nature together. The intensity of the color scheme is 
scaled to the log2 (FPKM +  0.1) expression values that are Z-score standardized per transcript in (c,d), and blue 
and red represent low and high expression levels, respectively.
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Testis expressed the largest numbers of TSCTs and TSNTs. A threshold of FC (fold-change) ≥  2 was 
used for identifying tissue-specific highly expressed transcripts. A transcript was considered as tissue-specific 
when its expression level in one tissue was at least two times higher than that in any other 13 tissues. TSCT anal-
ysis was performed based on the 24,729 protein-coding transcripts. We found that testis expressed the largest 
number of TSCTs (1,294), followed by brain (736). The numbers of TSCTs in the other 12 tissues ranged from 21 
to 492 (Fig. 5a). The expression profiles of TSCTs in the 14 tissues were shown in Fig. 5b.

Tissue-specific analysis was also performed based on the 1,653 noncoding transcripts with relatively high 
expression values across the 14 tissues. Testis also expressed the largest number of TSNTs (100), followed by brain 
(55). The numbers of TSNTs in the other 12 tissues ranged from 1 to 27 (Fig. 5c). The expression levels of TSNTs 
in the 14 tissues were shown by the heat map (Fig. 5d).

Biological processes and KEGG pathways significantly enriched with TSCTs reflected 
tissue-specific functions or involved in tissue-specific diseases of each tissue. TSCTs were 
involved in many important biological processes and KEGG pathways enriched by DAVID30. Table 1 showed 
some enriched biological processes and KEGG pathways for the identified TSCTs of each tissue. TSCTs of tes-
tis were significantly enriched in spermatogenesis, sexual reproduction, and some other biological processes, 
which were related to testis-specific functions. TSCTs of brain were significantly enriched in neuron differenti-
ation, neuron projection development, and some other brain-specific biological processes. TSCTs of monocytes 
were enriched in the biological processes of immune response, inflammatory response, and so on (see Table 1 
and Supplementary Table S1). Moreover, some tissue-specific pathways related to tissue-specific diseases were 
enriched with TSCTs. For example, Alzheimer’s disease pathway was enriched with TSCTs of brain; dilated cardi-
omyopathy pathway was enriched with TSCTs of heart; and autoimmune thyroid disease pathway was enriched 
with TSCTs of B cells (see Table 1 and Supplementary Table S2). These results suggest that TSCTs are highly 
related to or may exert specific functions in certain tissue-specific diseases of each tissue.

Fourteen co-expression modules were constructed based on all the TSNTs and TSCTs. To gain 
insight into the interaction between TSNTs and TSCTs, we constructed a co-expression network based on all 
of the 4,471 TSNTs and TSCTs using weighted gene co-expression network analysis (WGCNA)31. VisANT was 

Figure 5. Expression profiles of TSCTs and TSNTs. (a) Number of TSCTs based on FC ≥  2. X-aixs is the tissue 
type and Y-axis is the number of TSCTs. (b) Expression profiles of TSCTs. Red indicates higher expression, 
and blue indicates lower expression. (c) Number of TSNTs based on FC ≥  2. (d) Expression profiles of TSNTs. 
Expression data are Z-score standardized per transcripts in (b,d). Tissue specific analysis was based on the log2 
(FPKM +  0.1) values.
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used to visualize the network of hub transcripts (highly connected transcripts) of each module32. In addition to 
the gray module consisting of 956 TSNTs and TSCTs of various nature, fourteen modules of highly correlated 
transcripts were identified in the co-expression network (Fig. 6a). Each module represented a group of transcripts 
with similar expression profiles across all the samples. The biggest module consisted of 549 TSNTs and TSCTs. 
The number of transcripts in the second biggest module was 501. The transcript numbers of the remaining 12 
modules ranged from 87 to 297. The regulatory functions of TSNTs with TSCTs could be accomplished by con-
structing a co-expression network.

Through further analysis of co-expression network between TSNTs and TSCTs of each module, many hub 
TSNTs were found highly co-expressed with several TSCTs. Take the brown module as an example. Thirty (30) 
hub transcripts (2 TSNTs and 28 TSCTs) of this module for testis were selected (Fig. 6b). The pairwise Pearson 
correlation coefficient between the expression profiles of these 30 hub transcripts ranged from 0.72 to 1. Grouping 
of highly correlated transcripts could be a result of transcriptional co-activation or the co-regulation of mRNA 
stability. Hence, these 2 TSNTs may regulate the expression level of the 28 TSCTs. Figure 6c was the co-expression 
pattern of these 30 hub transcripts. We found that these 30 transcripts were highly correlated and highly expressed 
in testis. Intriguingly, these 30 testis-specific highly expressed transcripts were also expressed a little bit higher in 
ovary than in the other 12 tissues (Fig. 6c). Therefore, this finding further demonstrated that these 30 testis-specific 

Tissue type Biological process/KEGG pathway P-value Count

Testis

Spermatogenesis 1.96E-06 36

Male gamete generation 1.96E-06 36

Sexual reproduction 4.37E-05 43

Brain

Neuron differentiation 6.50E-10 42

Neuron projection development 5.32E-08 28

Alzheimer’s disease 6.82E-02 10

Monocytes

Immune response 1.02E-17 57

Defense response 1.48E-16 52

Inflammatory response 6.96E-12 32

Ovary Progesterone-mediated oocyte maturation 2.78E-03 7

Heart

Heart contraction 1.54E-09 8

Dilated cardiomyopathy 1.33E-07 11

Hypertrophic cardiomyopathy (HCM) 7.53E-07 10

Liver

Oxidation reduction 2.35E-13 33

Steroid metabolic process 6.01E-13 20

Response to nutrient 1.35E-02 6

Placenta

Positive regulation of developmental process 7.04E-03 9

Response to nutrient 1.35E-02 6

Female pregnancy 2.49E-02 5

Esophagus

Oxidation reduction 9.42E-04 13

Response to protein stimulus 5.40E-03 5

Glycerolipid metabolism 5.84E-03 4

B cells

Immune response 6.50E-06 16

Graft-versus-host disease 2.61E-02 3

Autoimmune thyroid disease 4.27E-02 3

CD8 +  T cell

Immune response 3.49E-02 8

Positive regulation of defense response 4.28E-02 3

Positive regulation of natural killer cell mediated immunity 6.98E-02 2

Prostate
Muscle contraction 5.31E-04 6

Gland development 2.10E-02 4

Colon

Carbohydrate biosynthetic process 5.36E-03 4

Response to nutrient levels 2.76E-02 4

Response to drug 3.49E-02 4

Gut

Protein digestion 1.10E-02 2

Multicellular organismal protein catabolic process 1.10E-02 2

Secretion 2.46E-02 5

CD4 +  T cells
Regulation of Ras protein signal transduction 3.12E-02 3

Regulation of small GTPase mediated signal transduction 4.35E-02 3

Table 1.  Tissue-specific Gene Ontology biological processes and KEGG pathways significantly enriched 
with TSCTs in each tissue. In this table, columns 1, 2, 3, 4 represent the tissue types, the significantly enriched 
tissue-specific biological processes or KEGG pathways, the enriched p-values, and the numbers of TSCTs 
involved in the biological processes or KEGG pathways, respectively.
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highly expressed transcripts may indeed have sex-specific functions. Furthermore, some of these 30 testis-specific 
transcripts/genes have been reported to be related with some testis-specific functions or diseases. For example, 
CSNK2A2 was found preferentially expressed in late spermatogenesis, and male mice with disrupted CSNK2A2 
were infertile with oligospermia and globozoospermia33. GKAP1 gene encodes a protein that is highly similar 
to the mouse cGMP-dependent protein kinase anchoring protein 42 kDa. The mouse protein has been found 
to localize with the Golgi and recruit cGMP-dependent protein kinase I alpha to the Golgi in mouse testis. It is 
thought to play a role in germ cell development34. These molecular biology results validated parts of our findings.

Validation of results using the GTEx dataset. The GTEx project has sequenced the largest number 
of normal human tissues including 43 body sites of 27 tissues. This project aims to describe the relationship 
among genetic variation, gene expression, and other molecular phenotypes23,24. In total, 8 tissues were in com-
mon between GTEx and our dataset (Supplementary Fig. S1). Therefore, we could validate our results using the 
transcriptomic dataset of the 8 overlapping tissues of GTEx.

The same pipeline for our dataset analysis was used for analyzing the RNA-seq data of the 8 overlapping tis-
sues of GTEx project, and some of our results were further validated. First, prostate and esophagus also expressed 
more protein-coding and noncoding transcripts, and liver expressed fewer protein-coding and noncoding tran-
scripts (Supplementary Fig. S4). Secondly, the overall expression levels of protein-coding transcripts were higher 
than those of noncoding transcripts (Supplementary Fig. S5a,b). Thirdly, testis exhibited the most different 
expression profiles among the 8 tissues based on both protein-coding and noncoding transcripts (Supplementary 
Fig. S5c,d). Fourthly, testis expressed the most TSCTs and TSNTs (Supplementary Fig. S6). These results were 
largely consistent with our results, further indicating the reliability of our results.

Discussion
We created and explored a unique data set of the transcriptomic profiles of 14 human tissues including 10 impor-
tant solid organ tissues and 4 immune cell types. Because of the difficulty of acquiring human normal tissues, we 

Figure 6. Co-expression network based on the TSNTs and TSCTs. (a) Clustering dendrogram based on the 
dissimilarity of expression profiles of all 4,471 TSNTs and TSCTs. Each colored bar (below) of the dynamic tree 
cut represents each module. (b) Network of the 30 most highly connected transcripts in the brown module. 
Each node is one transcript, represented by the gene name corresponding to the transcript. The 2 blue nodes 
correspond to 2 TSNTs, and the other 28 nodes are 28 TSCTs. Each edge represents the topological overlap 
or interconnectedness between two nodes. (c) Expression patterns of the 30 hub transcripts. Red lines are the 
expression levels of the 28 TSCTs and blue lines are the expression levels of the 2 TSNTs. X-axis is the sample 
names, and Y-axis is log2 (FPKM +  0.1) values.
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were unable to obtain biological replicates for our tissues, preventing rigorous statistical analysis in our study. 
Therefore, only fold change was used to identify tissue-specific transcripts. We took several steps to ensure the 
reliability of our results. First, we deeply sequenced each of the 14 tissues at two different sites and demonstrated 
high level of concordance between sites. Secondly, to minimize the sensitivity of fold change calculations to tran-
scripts with low expression25, we filtered low expressors with geometric mean <  1. Thirdly, our results are largely 
in agreement with those from our reanalysis of the GTEx dataset. In addition, our findings, e.g. testis-specific 
expression of transcripts/genes, have been previously reported in the literature, corroborating well with our 
results.

Through the tissue specific transcripts analysis, we found that testis expressed the largest number of TSCTs, 
followed by brain and monocytes. Similar results were reported previously based on tissues of human and other 
species18,22,35. Enrichment analysis showed that the TSCTs were involved in important tissue-specific biological 
processes that were highly correlated with the corresponding tissue-specific functions. For example, TSCTs of 
testis were most significantly involved in the sexual reproduction biological process, whereas TSCTs of brain were 
most significantly involved in the synaptic transmission biological process. Furthermore, some KEGG pathways 
related to tissue-specific diseases were enriched with TSCTs. For example, the Alzheimer’s disease pathway was 
enriched with TSCTs of brain, and the dilated cardiomyopathy pathway was enriched with TSCTs of heart, and 
so on. Therefore, these TSCTs and the enriched tissue-specific biological processes may determine the specific 
functions or involved in some tissue-specific diseases of each tissue. Consequently, they may be related to the 
tissue-specific diseases and adverse drug reactions. These results also indicated that our methods for searching 
TSCTs and TSNTs are reliable.

Expression of noncoding transcripts demonstrates tissue specificity and is involved in various kinds of dis-
eases36–39. In our study, we first identified 11 types of noncoding transcripts based on the Ensembl annotation 
system. We also investigated the nature of the TSNTs based on these 14 human tissues. We found that testis 
expressed the largest number of TSNTs just as it did in protein-coding transcripts, followed by brain, placenta, 
heart, and monocytes. Functional annotation of noncoding transcripts has been hampered by the lack of com-
prehensive noncoding transcript annotation resources19,40, and we tried to annotate the functions of these TSNTs 
using co-expression network analysis.

Modules of transcripts with expression profiles highly correlated could result from transcriptional 
co-activation, the co-regulation of mRNA stability, or a combination of both, thus accomplishing a group of 
related functions41,42. In our study, we investigated the co-expression network between TSNTs and TSCTs. 
Fourteen modules were formed and each module corresponded to one tissue type. Hub transcripts were of special 
interest because they were the backbones of the scale-free network architecture. For example, the testis module 
consisted of 30 hub transcripts including 2 TSNTs and 28 TSCTs. The high correlation of expression profiles 
between these 30 hub transcripts indicated that these 2 TSNTs may co-activate or co-regulate the expression level 
of the 28 TSCTs. Therefore, we could infer that these TSNTs may play biological functions of tissue specificity 
through regulating the expression level of TSCTs of each tissue type.

The immune cell type specificity of expression profiles of transcripts is related to autoimmune diseases43–45. 
The TSCTs and TSNTs of the 4 types of immune cells were analyzed in junction with the 10 solid organ tissues in 
our study. We found that monocytes showed the largest numbers of TSCTs and TSNTs in these 4 types of immune 
cells. Many immune cell-specific biological processes and KEGG pathways related to immunological reactions 
were identified. For example, pathogenic Escherichia coli infection pathways were enriched with TSCTs of mono-
cytes, and graft-versus-host disease and autoimmune thyroid disease pathways were enriched with TSCTs of B 
cells. These results could facilitate further understanding of immunological reactions and some immunological 
diseases.

We found that testis exhibited the most significant tissue-specific characteristics in two aspects. First, testis 
exhibited the most diverse expression profiles both in protein-coding transcripts and in noncoding transcripts 
seen through the hierarchical clustering analysis based on the 10 solid organ tissues. Secondly, we found that testis 
expressed the largest numbers of TSCTs and TSNTs. In our study, the testis tissue came from a male adult donor 
who was sexually mature. Testicular cells are different from other somatic cells and play important roles in sper-
matogenesis, steroidogenesis and development of male sex characteristics46–48. These results suggested that testis 
may need the expression of more specific transcripts for maintaining its complex functions.

In summary, we generated high quality RNA-seq data from a set of 14 diverse human tissues. We found that 
testis expressed both the largest numbers of TSCTs and TSNTs. Some hub TSNTs were highly co-expressed with 
the hub TSCTs. Important tissue-specific biological processes and KEGG pathways were enriched with TSCTs, 
indicating that they participated in the specific biological functions or specific diseases of each tissue. Our find-
ings could help researchers to further investigate the mechanisms of tissue-specific diseases and adverse drug 
reactions in the future.

Methods
Cell and solid organ tissue samples. The 10 human solid tissues were collected post mortem as part of 
a rapid autopsy program from 2 individuals, one of them was a fetus. The 4 haematopoietic cells were isolated 
from leukopaks obtained from a healthy volunteer participating in routine platelet pheresis. Therefore, the 14 
human tissues were from 3 individuals, denoted as A, B, and E. Samples from colon, esophagus, prostate, and 
testis were collected from individual A. Samples from B cells, monocytes, CD4 +  T cells, and CD8 +  T cells were 
collected from individual B. Samples from brain, gut, heart, liver, ovary, and placenta were collected from a fetus 
E. All of the 14 tissues were a subset of the 30 tissues studied using high-resolution Fourier–transform mass spec-
trometry, and the corresponding proteomic results were published in 2014 in Nature49. That study was approved 
by the Johns Hopkins University’s Institutional Review Board for use of human tissues and informed consent 
was obtained from all subjects from whom blood samples were obtained for isolation of haematopoietic cells. 
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The methods were carried out in accordance with the approved guidelines. All the samples were histologically 
confirmed to be normal, and stored at − 80 °C all the time. Total RNA was extracted from tissue by using the 
miRNeasy Mini Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol. RNAs longer than 
18 nucleotides were recovered with this method. RNA sample information along with RNA integrity numbers 
(RINs) was shown in Supplementary Table S3. In addition, the Bioanalyzer profiles of all 14 samples were pro-
vided in Supplementary Fig. S7. As can be seen, most samples are of good quality with the lowest RIN of 6.2 and 
the mean RIN of 8.4. We thank Prof. Akhilesh Pandey for providing us the 14 RNA tissues sequenced in our study.

Library preparation and deep RNA sequencing. We used a polyA selection protocol coupled with the 
Illumina TruSeq RNA-seq library protocol to construct the human body map RNA-seq libraries. RNA-seq librar-
ies were sequenced using Illumina’s TruSeq Cluster V3 flow cells and TruSeq SBS Kit (Illumina). The 14 human 
tissues were sequenced completely independently at two sites (BGI with HiSeq 2000 and COH with HiScanSQ). 
About 127 million pair-end reads of 90 bp were generated for each sample at BGI, and about 57 million pair-end 
reads of 101 bp were generated for each sample at COH.

Mapping, quantification and primary analysis of the RNA-seq data. RNA-seq fastq raw data were 
trimmed to remove adapters and low quality reads using Trimmomatic v0.3050. The trimmed reads were mapped 
to the Ensembl hg19 reference genome using TopHat v2.0451 , allowing a maximum of 2 mismatches, and default 
values for all the other parameters were used. Transcripts assembly and quantification were done using Cufflinks 
v2.0252, with all default parameter settings based on the human annotation file of Ensembl GRCh37. After quan-
tification using Cufflinks, we obtained a matrix of expression values in FPKM with 156,600 transcripts and 14 
samples. Except for the detection the number of expressed transcripts where raw FPKM values were used, a value 
of 0.1 was added to each raw RPKM value of the expression data matrix before being transformed to log2 scale 
and downstream data analysis. It should be noted that the choice of a pseudo value of 0.1 added to RPKM in 
some of the downstream analysis is arbitrary, but consistent with previous publications favoring a relatively large 
FPKM pseudo value such as 1.022,35. Among the 156,600 transcripts, 25,273 transcripts were not expressed at all 
in any of the 14 tissues. In addition, the average expression value (FPKM) of 67,661 transcripts (43.2%) was below 
0.1. We analyzed our data sets with different pseudo values (1, 0.1, and 0.01). While large pseudo values lead to 
fold-change compression for low expressors as expected, using small pseudo value (e.g. 0.01 or lower) made the 
fold changes and the resulting lists of tissue-specific genes unstable, in line with observations in a recent refer-
ence benchmark study of RNA-Seq53. In that study, the issue was resolved by an additional threshold for expres-
sion strength. We here chose to employ a relatively large pseudo-count which, by attenuating fold-change values 
for low expressors, effectively introduces a soft thresholding for weak expressors. As a consequence, our survey 
has a focus clearly expressed genes. After filtering transcripts with low expression values using the geometric 
mean of (FPKM +  0.1) <  1 for the 14 tissues as the threshold, 26,382 transcripts remained, of which 24,729 were 
protein-coding and 1,653 were noncoding transcripts. The resulting data matrix of 26,382 rows by 14 columns 
was used to identify TSCTs and TSNTs. All the statistical analysis was conducted using R statistical programming 
language (http://www.r-project.org/).

Identification of noncoding transcripts. In the human transcriptome annotation file of Ensembl 
GRCh37, each transcript was classified as one of many biotypes, including protein-coding, processed, pseu-
dogene, and so on. In our study, all the transcripts rather than protein-coding were termed as noncoding tran-
scripts. We used in-house R scripts to classify the 1,653 noncoding transcripts according to the human annotation 
file. In addition, all kinds of pseudogenes (such as miRNA_pseudogene, snRNA_pseudogene, IG_pseudogene, 
and so on) were merged as pseudogene; all kinds of TR_gene were merged as TR_gene; all kinds of IG_gene were 
merged as TG_gene, and so on. At last, 11 types of noncoding transcripts were identified.

Selection of TSCTs and TSNTs. TSCTs and TSNTs were selected using threshold of FC ≥  2 to select the 
TSCTs and TSNTs. A transcript was considered as tissue-specific when its expression level in one tissue was at 
least two times higher than that in any other 13 tissues. After selection of TSCTs and TSNTs, 2 smaller matrices 
were constructed corresponding to the expression values of all the TSCTs and TSNTs. Each column represents 
a sample and each row represents a transcript in these 2 matrices. The transcripts were sorted according to the 
numbers of TSCTs and TSNTs from maximum to minimum. These 2 matrices were Z-score standardized (mean 
of zero and s.d. of one) per transcript. Function heatmap.2 of gplots R package was used for the heatmap drawing 
based on these 2 standardized matrices with the parameters of Rowv =  F, Colv =  F.

Weighted transcripts co-expression network construction and module detection. The WGCNA 
package in R was used for step-by-step network construction and module detection. Weighted network uses soft 
threshold of the Pearson correlation between the expression profiles for determining the connection strengths 
between two transcripts. The connection strength between the expression profiles of transcripts xi and xj across 
all samples is defined as α ij =  |cor(xi, xj)|β. We chose the soft thresholding power β  =  20 based on the criterion of 
scale-free topology. Average linkage hierarchical clustering was performed to group transcripts based on topo-
logical overlap dissimilarity measurement of their network connection strengths. Modules were identified with a 
dynamic tree-cutting algorithm with a minimum module size of 60 transcripts. In our study, all of the TSNTs and 
TSCTs were used for constructing the co-expression network. Most of the TSNTs and TSCTs of the same tissue 
were found in the same module, allowing us to investigate the relationship of the TSNTs and TSCTs of each tissue. 
Hub transcripts were extracted using the function exportNetworkToVisANT of the WGCNA package, and their 
interactive network was visualized using VisANT.

http://www.r-project.org/
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Accession codes. The RNA-seq data set of 14 human tissues has been deposited in NCBI Gene Expression 
Omnibus (GEO) under accession code GSE83115. 
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