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Abstract

Cystine-knot miniproteins (knottins) are promising molecular scaffolds for protein engineering applications. Members of the
knottin family have multiple loops capable of displaying conformationally constrained polypeptides for molecular
recognition. While previous studies have illustrated the potential of engineering knottins with modified loop sequences, a
thorough exploration into the tolerated loop lengths and sequence space of a knottin scaffold has not been performed. In
this work, we used the Ecballium elaterium trypsin inhibitor II (EETI) as a model member of the knottin family and
constructed libraries of EETI loop-substituted variants with diversity in both amino acid sequence and loop length. Using
yeast surface display, we isolated properly folded EETI loop-substituted clones and applied sequence analysis tools to assess
the tolerated diversity of both amino acid sequence and loop length. In addition, we used covariance analysis to study the
relationships between individual positions in the substituted loops, based on the expectation that correlated amino acid
substitutions will occur between interacting residue pairs. We then used the results of our sequence and covariance
analyses to successfully predict loop sequences that facilitated proper folding of the knottin when substituted into EETI loop
3. The sequence trends we observed in properly folded EETI loop-substituted clones will be useful for guiding future protein
engineering efforts with this knottin scaffold. Furthermore, our findings demonstrate that the combination of directed
evolution with sequence and covariance analyses can be a powerful tool for rational protein engineering.
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Introduction

Protein-protein interactions govern many biological processes in

the cell, often with high affinity and specificity. Such interactions

are typically mediated by a relatively small portion of the protein,

while the remainder of the molecule serves as a framework to

ensure the proper presentation of the binding epitopes. Many

naturally-occurring proteins with diverse functions are based on

common protein frameworks; for example, the immunoglobulin

fold is a widespread structural motif found in antibodies, enzymes,

and receptors. These common protein frameworks, or molecular

scaffolds, can be engineered for novel properties, such as altered

molecular recognition [1], increased stability [2], or improved

expression levels [3], through the incorporation or evolution of

functional epitopes. Ideally, molecular scaffolds should have high

intrinsic conformational stabilities and be structurally tolerant of

sequence modifications, including insertions, deletions, or substi-

tutions. While antibodies are the most developed class of

molecular scaffold, their application is limited in many cases by

their large size, complex fold, cost-intensive manufacturing, and

complicated patent considerations [4,5]. Thus, in the past decade

there has been much effort toward developing non-antibody

scaffolds with enhanced structural robustness, ease of modification,

and cost-efficient production. Examples of such alternative

molecular scaffolds include: fibronectin, protein A, ankyrin repeat

proteins, lipocalins, thioredoxin, ribose-binding proteins, protease

inhibitors, PDZ domains, and knottins (reviewed in [4–7]). These

alternative molecular scaffolds have been engineered for applica-

tions in biochemical assays [8], separation technologies [9], and

diagnostics and therapeutics [4,10].

Directed evolution of a protein scaffold for new molecular

recognition properties is often achieved by screening focused

libraries and isolating clones that bind to a target with high

affinity. Prior to screening, a library of protein variants is created

by replacing one or more existing loops or domains with new

sequences in which the amino acids are randomized at a few or all

positions. In some examples, such as the thioredoxin aptamer, a

single loop has been substituted [11], while in other cases, such as

the 10th domain of fibronectin, as many as three loops have been

engineered [12]. One major limitation of this approach is that

substitution of entire loops or functional domains may lead to

misfolding or loss of structural integrity [13]. In addition, while

some new loop sequences represented in the library will lead to

properly folded and functional proteins, other loop sequences may

not be tolerated and will lead to misfolded, aggregated, or

otherwise inactive proteins. Moreover, specific residues may be
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preferred in certain positions while forbidden in others, or the

presence of a specific residue in one position may dictate the

presence of another specific residue at a nearby position. In

addition to positional amino acid preferences, the length of the

substituted loop sequence may also be critical for the structural

integrity of the protein [14]. For example, steric or torsional

constraints may prohibit substituting a loop with a peptide of

shorter length, while substitution with a longer peptide may be

highly destabilizing due to entropic factors.

A better understanding of the tolerated loop lengths and

compositional parameters of a protein would be helpful for

evaluating its utility as a scaffold; such insight would allow for the

creation of optimal focused libraries and the prediction of

admissible sequence modifications that lead to correct protein

folding. Here, we describe a comprehensive study on the tolerance

of scaffold loop substitution with different sequences and loop

lengths using a small, highly structured polypeptide, the Ecballium

elaterium trypsin inhibitor II (EETI, UniprotKB/Swiss-Prot

P12071, Figure 1A). Further, our work applies the findings from

the study of EETI loop tolerance to the prediction of artificial,

loop-substituted knottin sequences that yield properly folded

proteins. This novel approach toward interrogating functional

tolerance in a predictive manner is useful not only for the EETI

scaffold, but also for the creation of optimally-designed libraries of

scaffold proteins in general.

EETI belongs to the cystine-knot (knottin) family of proteins

[15], a class of small polypeptides (typically 20–60 amino acids)

that possess several advantageous characteristics for their devel-

opment as molecular scaffolds [7]. Knottins contain three disulfide

bonds interwoven into a molecular ‘knot’ that constrain loop

regions to a core of anti-parallel b-sheets. The unique topology of

the knottin fold imparts high chemical and thermal stability [16]

and resistance to proteolysis [17], which are important for

biotechnology and biomedical applications. Moreover, knottins

can be chemically synthesized and folded in vitro [18] or produced

recombinantly in various expression systems [19–22]. As a

prototypical member of the knottin family, the folding pathway

and structure of EETI have been well studied [23–25]. EETI is

composed of 28 amino acids with three disulfide-constrained

loops: loop 1 (the trypsin binding loop, residues 3–8), loop 2

(residues 10–14), and loop 3 (residues 22–26) (Figure 1A).

Although the inhibition of trypsin is mediated exclusively through

binding of EETI loop 1 (Figure 1B), disruption of any of the three

disulfide bonds will abolish the EETI-trypsin interaction [26].

EETI has been the subject of previous mutagenesis studies aimed

at investigating its protein fold [26] or altering its binding

specificity through introducing diversity into loop 1[27–29]. While

these previous studies support the potential for using EETI as a

molecular scaffold, substitution of loops 2 and 3 has not been well

explored, and the tolerated sequence space for these loops is

unknown.

Here we present a novel combinatorial and computational

approach for interrogating functional tolerance of a molecular

scaffold in a predictive manner. We created libraries of EETI

mutants where loop 2 or loop 3 was substituted with randomized

sequences of varying lengths, and used high-throughput screening

to identify clones that were properly folded based on their ability

to bind to trypsin (Figure 1). We then performed a detailed

bioinformatics analysis on the sequences of isolated trypsin-

binding mutants, and used this information to successfully predict

new loop sequences that led to properly folded EETI variants.

Author Summary

The use of engineered proteins in medicine and biotech-
nology has surged in recent years. An emerging approach
for developing novel proteins is to use a naturally-
occurring protein as a molecular framework, or scaffold,
wherein amino acid mutations are introduced to elicit new
properties, such as the ability to recognize a specific target
molecule. Successful protein engineering with this strategy
requires a dependable and customizable scaffold that
tolerates modifications without compromising structure.
An important consideration for scaffold utility is whether
existing loops can be replaced with loops of different
lengths and amino acid sequences without disrupting the
protein framework. This paper offers a rigorous study of
the effects of modifying the exposed loops of Ecballium
elaterium trypsin inhibitor II (EETI), a member of a family of
promising scaffold proteins called knottins. Through our
work, we identified sequence patterns of modified EETI
loops that are structurally tolerated. Using bioinformatics
tools, we established molecular guidelines for designing
peptides for substitution into EETI and successfully
predicted loop-substituted EETI variants that retain the
correct protein fold. This study provides a basis for
understanding the versatility of the knottin scaffold as a
protein engineering platform and can be applied for
predictive interrogation of other scaffold proteins.

Figure 1. Schematic for interrogating the tolerance of sequence diversity in knottin loops. (A) Six libraries of loop-substituted knottin
variants were designed based on the wild-type sequence of EETI. Libraries were created by replacing cysteine-flanked loop 2 (green) or loop 3
(blue) sequences with peptides of randomized amino acids (X) and varying lengths (n). The trypsin binding loop (orange) was not replaced, but
instead used as a handle to evaluate the proper folding of EETI loop-substituted clones. Disulfide bonds are shown in yellow. (B) The binding
interaction between trypsin (light grey) and EETI (PDB 2eti and 1h9h) is mediated through the trypsin binding loop, and is dependent on the
correct formation of all three disulfide bonds. This interaction was exploited for high-throughput isolation of properly folded EETI loop-substituted
variants.
doi:10.1371/journal.pcbi.1000499.g001

Interrogation and Prediction of EETI Loops
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Results

Display of EETI loop-substituted libraries on the surface
of yeast

Wild-type EETI (EETIwt) was displayed on the yeast cell

surface as an N-terminal protein fusion to the yeast Aga2p

agglutinin subunit [30]. A schematic of the yeast display platform

is shown in Figure 2A. We measured cell surface expression levels

of the EETIwt fusion protein by flow cytometry, after staining

yeast cells with a primary antibody against a C-terminal cMyc

epitope tag followed by the addition of a fluorescently-labeled

secondary antibody. Next, we used fluorescently-labeled trypsin,

the native binding partner of EETIwt, to assay whether yeast-

displayed EETIwt was properly folded and functional [26]

(Figure 2). We showed that EETIwt was well-expressed on the

yeast surface and that fluorescently-labeled trypsin bound

specifically to yeast-displayed EETIwt with an approximate

equilibrium binding constant of 25 nM (data not shown).

Next, in order to explore the tolerance of the EETI scaffold

for different loop sizes and amino acid compositions, we created

yeast-displayed loop-substituted libraries in which a single

cysteine-flanked loop of EETI was substituted with randomized

amino acid sequences of varying lengths (Figure 1A). Libraries

were generated by overlap extension PCR using oligonucleotides

with degenerate NNS codons (where N = A, T, G, C and S = G

or C), which encode for all 20 amino acids and only the TAG

stop codon. We generated six libraries in total: two libraries of

EETI loop 2 variants with substitution lengths of 7 amino acids

(EL2-7) and 9 amino acids (EL2-9), and four libraries of EETI

loop 3 variants with substitution lengths of 6 amino acids (EL3-

6), 7 amino acids (EL3-7), 8 amino acids (EL3-8), and 9 amino

acids (EL3-9). We did not mutate EETI loop 1, which is

responsible for binding to trypsin, but instead used it as a handle

to probe the structural integrity of the EETI loop-substituted

clones (Figure 1B). To create the libraries, mutant DNA was

electroporated into the Saccharomyces cerevisiae EBY100 strain

along with linearized yeast-display plasmid as previously

described [31]. By performing dilution plating, we estimated

that the sizes of the loop-substituted libraries ranged from

56106–16107 transformants each.

Figure 2. Yeast surface display of EETI knottins and isolation of properly folded EETI loop-substituted clones. (A) Wild-type EETI or
loop-substituted clones were displayed on the surface of yeast as fusion proteins to the Aga2p yeast mating subunit and were flanked by N-terminal
HA and C-terminal cMyc epitope tags. Protein expression on the yeast cell surface was detected by flow cytometry with antibodies against the cMyc
epitope tag, and proper folding of the displayed proteins was determined by binding to fluorescently-labeled trypsin. (B) Yeast-displayed libraries of
EETI loop-substituted proteins were enriched for properly folded clones using dual-color fluorescence-activated cell sorting. Density plots depict
protein expression (x-axis) versus trypsin binding (y-axis) for enriched pools of loop-substituted clones after four rounds of sorting. EETIwt and potato
carboxypeptidase inhibitor, a knottin that does not bind trypsin, are shown as positive and negative controls, respectively. (C) The progression of
enrichment for properly folded EETI loop-substituted variants was monitored by flow cytometry and quantified by trypsin binding levels (at 25 nM),
normalized for differences in protein expression levels. Unsorted libraries (white), libraries after two rounds of sorting (light grey), and libraries after
four rounds of sorting (dark grey), as compared to EETIwt (striped). Trypsin-binding experiments were performed in triplicate and error bars denote
standard deviations.
doi:10.1371/journal.pcbi.1000499.g002

Interrogation and Prediction of EETI Loops
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Isolation of EETI loop-substituted trypsin-binding clones
Previous studies showed that trypsin binding can be used as a

convenient handle to examine formation of the correct pairings of

disulfide-bonded cystine residues in EETI [26]. Therefore, we

screened each of the EETI loop-substituted libraries for clones that

were both displayed on the yeast cell surface (as detected by

antibodies against the C-terminal cMyc epitope tag) and properly

folded (as determined by their ability to bind fluorescently-labeled

trypsin) using dual-color fluorescence-activated cell sorting (FACS)

(Figure 2). We performed multiple rounds of FACS on each yeast-

displayed library, each time collecting the 1–2% of clones that

were the best displayed and exhibited the highest levels of trypsin-

binding. The sorts were performed with this stringency in order to

enrich each library to near wild-type EETI trypsin binding levels

while maintaining as large a diversity of sequences as possible.

After four rounds of sorting, a pool of clones showing moderate to

wild-type levels of trypsin binding had been isolated from each

library (Figure 2B and C).

Sequence analysis of EETI loop-substituted libraries
We sequenced at least 50 clones from each of the six original

libraries to confirm that the substituted loops were of the correct

lengths and had diverse amino acid compositions (Dataset S1).

The amino acid frequencies of the loop-substituted regions were

generally similar to those expected from a degenerate NNS codon

library (Figure 3A). To obtain an analytical measurement of the

Figure 3. Sequence analysis of randomized peptides from EETI loop-substituted libraries. (A) Amino acid frequencies anticipated from an
NNS degenerate codon loop library (black) are shown compared to the observed frequencies of randomized peptides from unsorted EETI loop 2-
substituted (white) and EETI loop 3-substituted (grey) libraries. (B) The percent change of individual amino acid frequencies in the substituted loops
of enriched EETI loop 2-substituted (white) and EETI loop 3-substituted (grey) clones compared to their frequencies in the respective unsorted
libraries. (C) Amino acid frequencies in the randomized peptides of properly folded EETI loop 2-substituted (white) and EETI loop 3-substituted (grey)
clones enriched for trypsin binding.
doi:10.1371/journal.pcbi.1000499.g003

Interrogation and Prediction of EETI Loops
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diversity within each of the loop-substituted libraries, we applied

the method of Makowski & Soares [32] to the sequences of clones

from each original library. Using the population diversity

(POPDIV) algorithm, we determined that the functional diversities

(i.e. the percentage of possible library members of a population

that are present, adjusted for differences in copy numbers of the

members) of the EETI loop-substituted libraries ranged from 3%–

11%, corresponding to effective library sizes of 106–1010. These

functional diversity values are roughly as expected for randomly

generated libraries, due to differences in amino acid frequencies

resulting from inherent biases in the genetic code [32].

Next, to obtain information on the amino acid composition of

properly folded EETI loop-substituted proteins, we sequenced at

least 50 clones from each of the libraries after enrichment for trypsin

binders (Dataset S1). We examined the sequences from the enriched

libraries to determine whether their functional diversities had

changed over the course of enrichment for properly folded clones.

Using the POPDIV algorithm [32], we found that the functional

diversities of the enriched libraries had decreased 10–300 fold. Not

surprisingly, libraries that showed the greatest trypsin binding levels

after FACS (Figure 2C) also had the greatest decreases in diversity.

The amino acid compositions of the enriched library populations

also differed from their original, unsorted counterparts (Figure 3B

and C). Notably, the frequency of glycine increased in all enriched

EETI loop-substituted libraries compared to the starting libraries

and cysteine virtually disappeared from all trypsin-binding clones,

except in the EL3-7 library (see below) (Figure 3B and C).

Positional sequence analysis of properly folded EETI loop
2-substituted clones

To quantitatively assess the positional diversities along the

lengths of the loop-substituted peptides, we applied the amino acid

sequence diversity (DIVAA) algorithm [33] to the sequences of

enriched trypsin-binding clones. We found that EETI loop 2-

substituted clones isolated from both EL2-7 and EL2-9 libraries

were moderately tolerant of substitution across all loop positions,

with average diversity scores of 0.360.1 and 0.460.1 for loop

lengths of seven and nine amino acids, respectively (Figure 4). To

put this into context, a score of 0.05 indicates complete

conservation of a single amino acid and a score of 1.0 indicates

the presence of all amino acids in equal proportions. Glycine

comprised approximately 25–30% of all amino acids in EETI loop

2-substituted trypsin-binding clones at all but the second loop

position. On average, EETI loop 2-substituted sequences of both

7- and 9-amino acids contained approximately 2 glycine residues

per clone. Proline residues, which commonly populate turn

segments, predominated in the second position of EETI loop 2-

substituted variants (Figure 4).

Positional sequence analysis of properly folded EETI loop
3-substituted clones

The overall diversities of EETI loop 3-substituted clones were

slightly higher than those of loop 2-substituted clones, with average

diversity scores ranging from 0.460.1 (for EL3-6 clones) to

Figure 4. Positional diversities and amino acid preferences of EETI loop 2-substituted clones. Positional diversities of the (A) EL2-7 and
(B) EL2-9 libraries before sorting (grey) and after enriching for trypsin-binding clones (black) are depicted in the upper panels. A diversity score of 0.05
denotes complete conservation while a score of 1.0 signifies the presence of all 20 amino acids in equal proportions. Preferred amino acids at each
loop-substituted position of enriched libraries are shown in the lower panels, with amino acids colored according to chemical property: polar (green),
basic (blue), acidic (red), external polar (purple), and hydrophobic (black).
doi:10.1371/journal.pcbi.1000499.g004

Interrogation and Prediction of EETI Loops
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0.560.2 (for EL3-7 and EL3-8 clones) (Figure 5). The enriched

EL3-9 library had an intermediate average diversity score of

0.460.2, owing to the high conservation of the final two loop

positions (Figure 5). Although the average diversity scores of

enriched loop 2- and loop 3-substituted libraries were similar, the

amino acid variability for specific positions (positional diversity) in

loop 3-substituted clones had a larger range than that observed in

loop 2-substituted clones. We found that the greatest levels of

diversity occurred in the middle positions of the substituted

sequences of loop 3 variants while the first, penultimate, and final

positions had the lowest diversities (Figure 5). Nearly half of all

trypsin-binding EETI loop 3-substituted clones contained sequences

that began with one of three preferred residues: asparagine,

arginine, or aspartate (Figure 5). The most common amino acids

for the penultimate and final positions of EETI loop 3 were glycine

and tyrosine, respectively; nearly a quarter of all loop 3 substituted

sequences from enriched clones ended in a glycine-tyrosine doublet.

We observed the aforementioned trends in trypsin-binding EETI

loop 3-substituted clones across all loop lengths.

EETI loop 3 was tolerant of substitution with 6-, 8-, and 9-amino

acid sequences, but surprisingly did not appear to be tolerant of a 7-

amino acid loop. Roughly half of the enriched clones from the EL3-

7 library contained substituted loops whose length deviated from the

designed length of seven amino acids, despite the apparent absence

of clones with incorrect loop lengths in sequences identified from the

original library. We hypothesized that clones of incorrect loop

lengths likely arose from infrequent impurities in the degenerate

oligonucleotide or arose during the gene assembly process. To

determine whether the trend for isolating clones of the incorrect

lengths resulted from low library quality or from preference of the

EETI scaffold, we constructed a second EL3-7 library using a highly

purified degenerate oligonucleotide. After sorting the new EL3-7

library for trypsin binding as before, we again sequenced the

enriched clones, but now found that they were all of the correct

length. However, approximately 34% of the loop sequences

contained an internal cysteine residue, potentially shortening the

actual loop length from the intended seven amino acids to between

four and six amino acids (Dataset S1). When these cysteine-

containing loop sequences were disregarded, the remaining EL3-7

clones displayed sequence patterns in agreement with clones

isolated from other EETI loop 3-substituted libraries, but had a

higher frequency of proline residues.

Covariance analysis of properly folded EETI loop 3-
substituted clones

The enriched EL3-9 clones were chosen as a model group for

further exploration of the EETI knottin scaffold because their

trypsin-binding affinities were closest to that of EETIwt (Figure 2C).

We performed covariance analysis on the substituted loop

sequences of the enriched EL3-9 clones to determine whether the

amino acid preferences at one loop position influenced the amino

acid preferences at a second loop position. A comprehensive set of

commonly used scoring functions [34] containing the following

covariance algorithms was employed: Observed Minus Expected

Squared (OMES) [35], Mutual Information (MI) [36], Statistical

Coupling Analysis (SCA) [37], McLachlan Based Substitution

Correlation (McBASC) [38,39], and Explicit Likelihood of Subset

Co-variation (ELSC) [40]. To determine background levels of

covariance scores for each algorithm, we calculated the mean

covariance and standard deviation across all positional pairs in the

substituted loops of sequences from the unsorted EL3-9 library

(Dataset S2). We then used the resulting background values to

convert the covariance scores for positional pairs in enriched EL3-9

clones (Dataset S3) to standardized scores (z-scores).

The MI scoring function failed to give scores detectable over

background noise, as the maximum z-score returned by this

algorithm for any covarying pair was less than 0.1. The SCA

algorithm identified the most covarying pairs. However, SCA-

identified covarying pairs mainly contained highly conserved loop

positions (i.e. positions 8 & 9), inhibiting the identification of

correlated amino acids within coupled positions. For this reason,

covarying pairs identified by SCA were discarded. The ELSC

scoring function identified only a single covarying pair; this pair

was redundant with results from the OMES algorithm. Therefore,

only covariance scores calculated using the OMES and McBASC

algorithms were considered for further analysis. Setting the

covariance threshold to pairs with a standardized score greater

than 2 (indicating a score two standard deviations above the

background mean, significance threshold p,0.025) identified four

covarying pairs of loop positions: positions 1 and 7, positions 2 and

4, positions 2 and 9, and positions 5 and 6 (Dataset S3). However,

there was minimal agreement in the results from the three

covariance algorithms used. Of the four covarying pairs, only one

(positions 2 and 4) was predicted by more than one algorithm.

To identify predictive residues at these coupled positions, we

manually analyzed each covarying position to uncover frequently

occurring correlated amino acid pairs. Our analyses revealed

multiple pairs of correlated amino acids (Table 1) at three of the

four covarying loop positions (Figure 6). While several of the

correlated amino acids were mutually predictive, other pairs

displayed uni-directional predictivities. Due to the high level of

conservation at loop position 9, we were unable to find correlated

pairs of amino acids at positions 2 and 9 whose paired frequencies

differed significantly from their occurrence rates in the overall

population, so this covarying pair was excluded from further

analysis.

Prediction of tolerated amino acid sequences for EETI
loop 3-substituted clones

We next used the results of our covariance analysis to predict

sequences of nine-amino acid peptides that could be substituted

into loop 3 of EETI without disrupting the knottin fold. Since loop

positions three, eight, and nine were not predicted by covariance

analysis, we constrained these residues using other observed

sequence patterns. EETI loop 3 positions eight and nine were fixed

to a glycine-tyrosine doublet because this combination of residues

was present at the final two loop positions in 52% of enriched

EL3-9 clones. EETI loop 3 position three was set to either

asparagine or threonine, since these two amino acids frequently

occurred in sequences containing a glycine-tyrosine doublet. We

constrained the remaining loop positions with the identified

covariance patterns and correlated pairs of amino acids (Figure 6

and Table 1). By exhaustively combining all possible pairs of

covarying residues, we predicted a total of 420 tolerated loop

sequences for substitution into EETI loop 3 (Dataset S4). Although

the predicted sequences were generated by combining pairs of

amino acids observed in the enriched EL3-9 library, none of the

predicted sequences were identical to any of the enriched EL3-9

clones.

We then ranked our predicted peptide sequences according to

the number of common motifs each shared with the loop 3

sequences of enriched clones from the EL3-9 library (Table S1).

Here, we define a common motif as a discontinuous three-amino

acid sequence pattern uncovered from analysis of enriched EL3-9

clones, not including the XXN/TXXXXGY motifs used to

generate the predicted sequences. Because the common motifs

used for ranking the predicted sequences all contained a C-

terminal tyrosine or glycine-tyrosine pair, inclusion of these motifs

Interrogation and Prediction of EETI Loops
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Figure 5. Positional diversities and amino acid preferences of EETI loop 3-substituted clones. Positional diversities of the (A) EL3-6, (B)
EL3-7, (C) EL3-8, and (D) EL3-9 libraries before sorting (grey) and after enriching for trypsin-binding clones (black) are depicted in the upper panels. A
diversity score of 0.05 denotes complete conservation while a score of 1.0 signifies the presence of all 20 amino acids in equal proportions. Preferred
amino acids at each loop-substituted position of enriched libraries are shown in the lower panels, with amino acids colored according to chemical
property: polar (green), basic (blue), acidic (red), external polar (purple), and hydrophobic (black).
doi:10.1371/journal.pcbi.1000499.g005

Interrogation and Prediction of EETI Loops
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allowed us to consider potential sequence preferences associated

with the C-terminal positions of loop 3 whose conservation levels

were too high to be detected by covariance analysis. We

hypothesized that predicted peptides containing the greatest

number of common motifs would be the least likely to disrupt

the EETI fold. We found that 40 of the 420 predicted sequences

contained four or more common motifs (Dataset S5) and 134 of

the sequences contained three common motifs (Dataset S6). We

aligned and grouped the 174 motif-filtered predicted sequences

using ClustalW [41] and then chose a representative clone at

random from each of the resulting fifteen subgroups to be tested

for its ability to bind trypsin (Figure 7A and B). In addition to

ranking our predicted clones by incorporation of common motifs,

we used a scoring function based on a modified BLOSUM62

amino acid substitution matrix [42] to rank the predictions

according to their similarities to clones isolated from the enriched

EL3-9 library. To test the lower limits of our predictive capability,

we used ClustalW to align predicted clones whose similarity scores

were in the lowest 10% and selected the clone with the lowest

similarity score from each subgroup to be tested for its trypsin-

binding ability (Figure 7C). Finally, for comparison, we used the

ExPASy RandSeq tool to generate random, nine-amino acid

peptides with frequencies typical of NNS codons for substitution

into EETI loop 3.

We prepared twenty-five yeast display plasmids containing

representative EETI loop 3-substituted clones that were predicted

to be properly folded, and hence bind trypsin: fifteen motif-filtered

sequences and ten least-similar sequences (Table S2). In addition, we

also constructed twenty-five clones where EETI loop 3 was replaced

by a randomly-generated nine-amino acid sequence (Table S2).

Plasmids containing DNA encoding for predicted and randomly-

generated clones were transformed into yeast and induced for

expression on the yeast cell surface as described above. Next, we

analyzed the predicted and randomly-generated EETI loop 3 clones

by dual-color flow cytometry for yeast cell surface expression and

binding to fluorescent trypsin, indicating retention of the knottin fold

(Figure 8). Remarkably, we found that all motif-filtered predicted

clones bound trypsin. Of the motif-filtered predicted clones, two (p1

and p9) showed trypsin binding levels roughly 1.5-fold higher than

that of EETIwt and one (p3) showed trypsin binding levels

approximately 70% that of EETIwt; these differences in binding

were statistically significant, as determined by single-factor ANOVA

(p,0.05). The remaining 12 motif-filtered predicted clones bound

trypsin at levels comparable to that of EETIwt. Overall, the least-

similar predicted clones also bound trypsin, but not as well as the

motif-filtered clones, as expected. The small differences in trypsin

binding levels of six of the least-similar predicted clones as compared

to EETIwt were deemed statistically insignificant, based on single-

factor ANOVA (p,0.05). Although two of the least-similar predicted

clones (p20 and p25) bound trypsin at levels approximately 30% that

of EETIwt, they still bound trypsin at levels that were statistically

significant over the highest-binding randomly-generated clone, as

determined by single-factor ANOVA (p,0.02). The majority of

randomly-generated clones showed trypsin binding levels compara-

ble to that of a negative control, the potato carboxypeptidase

inhibitor knottin, which does not bind trypsin (,5% of the wild-type

EETI trypsin binding level). Even the best randomly-generated clone

only bound trypsin at 16% of the wild-type EETI trypsin binding

level. The successful prediction of nine-amino acid sequences that

can be substituted into EETI loop 3 without disrupting the knottin

fold highlights the potential of this combinatorial approach for

rational protein engineering applications.

Discussion

The trypsin binding loop of EETI (loop 1) has previously been

engineered for novel binding functionalities [15,27–29,43].

Although prior studies suggested that EETI loops 2 and 3 might

be amenable to mutagenesis [24,26], the potential for using these

loops to confer stability or new recognition properties has not been

previously investigated. In this study, we surveyed the tolerated

sequence and loop length diversity of the EETI knottin to assess its

utility as a scaffold for protein engineering applications. We

displayed EETI loop-substituted variants on the surface of yeast

and determined whether they retained the knottin fold by assaying

their ability to bind trypsin. In the process, we developed a new

method for understanding tolerated diversity based on isolating

properly folded protein variants from highly diverse libraries,

followed by comprehensive sequence analysis of the isolated

clones. EETI was chosen as an optimal knottin scaffold for this

study for a number of reasons. First, EETI has two solvent-

Figure 6. Covarying loop positions in EETI loop 3-substituted
clones. Coupled loop positions in enriched EL3-9 clones are shown
linked with their respective z-scores. Covariance patterns and correlated
pairs of amino acids at each of the coupled positions were used to
predict sequences of EETI loop 3 variants that adopt the knottin fold.
For purposes of generating predictions, position three was set to
asparagine or threonine, and positions eight and nine were set to
glycine and tyrosine, respectively.
doi:10.1371/journal.pcbi.1000499.g006

Table 1. Common correlated amino acid pairs occurring at
covarying loop positions.

Position i Position j Correlated Amino Acid Pairs (i, j)

1 7 (NuT), (NuR), (RuL), (VuL), (V)Y)

2 4 (RuR), (KuT), (TuN), (N(N), (P(N)

5 6 (RuR), (R)H), (N)S), (T(G), (H(G), (K(T), (G(T)

Directionality of arrows denotes amino acid predictivity.
doi:10.1371/journal.pcbi.1000499.t001
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exposed loops that are not involved in trypsin binding and do not

have steric or electrostatic interactions with the trypsin-binding

loop, making them well-suited for loop substitution [24]. Second,

trypsin binding can be used to assess proper protein folding since

removal of any of the three disulfide bonds in EETI (e.g. by

cysteine to serine mutations) prevents formation of the cystine-knot

and abolishes trypsin binding [26]. Third, the crystal structures of

EETI variants previously selected for binding to trypsin depict

wild-type-like knottin structures [24]. These studies provide

significant support that only properly folded EETI variants will

retain trypsin-binding capabilities, while variants that deviate from

the knottin fold will be unable to bind trypsin. Taken together, the

interaction between the N-terminal loop of EETI and trypsin

provided a conformational handle for probing the structural effects

of extended mutations on the remaining two EETI loops.

Moreover, EETI has already been shown to be amenable to yeast

surface display [28], as well as other directed evolution platforms

including Escherichia coli cell surface display [26,27], and mRNA

display [44].

Yeast surface display has proven to be a robust platform for

screening combinatorial libraries of proteins with disulfide bonds

and complex folds, including antibodies [45], cell surface receptors

[46], growth factors [47], and knottins [22,28]. Additionally, yeast

surface display allows for quantitative library screening using

FACS, which enabled knottin protein expression levels to be

correlated with trypsin binding levels with single-cell resolution.

Such normalization allowed us to isolate clones that possessed the

highest fraction of properly folded knottins over clones that

displayed a large amount of misfolded proteins with only a small

trypsin-binding subset. The quality control mechanisms of the

yeast secretory pathway should prevent misfolded or incompletely

folded proteins from being displayed on the cell surface [48,49].

However, others have reported limitations in the ability of the

yeast quality control system to differentiate between properly

Figure 7. Cladograms of predicted EETI loop 3 clones tested for their abilities to bind trypsin. Select predicted EETI loop 3 clones tested
for binding to fluorescently-labeled trypsin are shown in their relative groups: (A) clones containing four or more common motifs, (B) clones
containing three common motifs, and (C) clones least similar to those recovered from the enriched EL3-9 library. Names of the predicted clones are
shown in bold. Numbers above the branch lines denote the number of other predicted clones in the same cluster as the selected clone. Percentages
denote the average homology of the loop sequence of the predicted clone to those of the pool of enriched EL3-9 clones. The similarity rankings of
each clone to the pool of enriched EL3-9 trypsin-binding clones, based on a modified BLOSUM62 substitution matrix, are shown in parentheses
(where 1 is most similar and 420 is least similar).
doi:10.1371/journal.pcbi.1000499.g007
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folded and unfolded variants of proteins with high thermal

stabilities [50]. Therefore, it is possible that EETI loop-substituted

clones that were expressed on yeast but did not bind trypsin were

in an improperly folded state, such as the EETI two-disulfide

intermediate [25]. Such clones may be sufficiently stable to escape

the quality control machinery of the yeast secretory pathway.

Alternatively, it is possible that some of the loop-substituted

sequences introduced structural perturbations that were propa-

gated along the polypeptide backbone, preventing the proper

interaction of EETI loop 1 with trypsin despite retention of the

native topology of the knottin fold.

We designed EETI libraries where loop 2 or loop 3 was

substituted with randomized sequences to determine whether the

knottin fold was affected by sequence modifications. In addition, we

simultaneously tested the effects of varying loop size on the knottin

fold by replacing the loops with randomized peptides of different

lengths. For these studies, we explored only loop lengths longer than

those naturally occurring in the EETI knottin. Our choice of loop

lengths was influenced by several factors: 1) the utility of the knottin

scaffold for protein engineering applications relies on the ability to

evolve novel molecular recognition epitopes, and high-affinity

interactions typically require binding interfaces larger than the

native loop lengths of EETI (4–5 residues), and 2) although loop

lengths of 7–17 amino acids have previously been grafted in place of

the EETI trypsin binding loop [27,29], loops of longer lengths are

less structurally constrained and the entropic binding advantage of

presenting the loop on a scaffold is mitigated. Hence, we limited the

loop lengths tested to between six and nine amino acids.

In some previous examples of knottin engineering, a sequence of

interest was grafted into a constrained knottin loop on the premise

that the new sequence would be structurally tolerated [17,29,43].

This assumption of tolerance was based on the lack of sequence

Figure 8. Trypsin-binding levels of EETI loop 3 predicted and randomly-generated clones. Motif-filtered clones (dark grey), least-similar
clones (light grey), randomly generated clones (white), negative control (potato carboxypeptidase inhibitor knottin, black), and EETIwt (striped) were
individually displayed on the surface of yeast and analyzed by flow cytometry. Predicted clones are preceded with a ‘p’ while randomly-generated
clones are preceded with an ‘r.’ Protein expression levels were quantified by immunofluorescence staining of the cMyc epitope tag. Retention of the
knottin fold was determined by binding of fluorescently-labeled trypsin (25 nM). Trypsin binding levels were adjusted to account for differences in
protein expression levels and then normalized to the trypsin-binding level of EETIwt. Trypsin-binding experiments were performed in triplicate and
error bars denote standard deviations. Predicted clones showing statistically significant differences in trypsin binding levels compared to EETIwt are
marked with an asterisk (*) or a double asterisk (**) to indicate lower and higher binding levels, respectively.
doi:10.1371/journal.pcbi.1000499.g008
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homology that exists between proteins that share the knottin fold.

We found a moderate degree of functional diversity amongst

properly folded EETI loop-substituted clones (0.01%–0.9%,

corresponding to enriched populations of 105–107), but not

complete tolerance. In addition, sequences of properly folded

EETI loop-substituted clones were largely composed of residues

that would likely maintain the local secondary structure of the

native EETI knottin fold. In wild-type EETI, loop 2 (KQDSD)

composes a loop and short alpha helix that lies directly after the

first beta sheet. It was therefore not surprising that the preferred

amino acid residues found to populate loop 2 in properly folded

EETI mutants were glycine, proline, and serine; these residues

typically disrupt secondary structures and would therefore be

conducive to the formation of a loop. Amino acids that

preferentially adopt alpha helical structures were the next most

abundant: alanine, leucine, and arginine collectively accounted for

35% of the remaining residues in properly folded EETI loop 2-

substituted clones. The wild-type EETI loop 3 sequence (GPNGF)

lies within a loop region and the beginning of the third anti-

parallel beta sheet in the native structure. Similarly, we observed

that properly folded EETI loop 3-substituted clones contained

amino acids at the beginning of their loop sequences that favor the

formation of a loop, such as asparagine, glycine, proline, and

serine. The preferred glycine-tyrosine doublet found at the C-

terminus of EETI loop 3 clones enriched for trypsin binding is

similar to the glycine-phenylalanine sequence at the same location

in the native loop; both doublets would be effective initiators of a

beta sheet secondary structure. It is interesting to note that while

histidine, threonine, tryptophan, and tyrosine are not present in

the wild-type EETI sequence, each appeared in the sequences of

loop-substituted clones, indicating there is not an intrinsic

structural bias against these amino acids.

While the observed sequence trends were found to be specific to

the location of the substituted loop, they were largely independent of

loop length. The overall tolerance of the EETI knottin fold to a

variety of substitution lengths in loop 2 and loop 3 is an important

attribute for its potential as a molecular scaffold. Interestingly, the

high tolerance of variations in loop length was greater than what

might be anticipated from analysis of natural loop lengths across

members of the knottin family. Over 40% of naturally-occurring

knottins have a loop 2 length of five amino acids, while less than

10% and less than 5% have loop 2 lengths of seven and nine amino

acids, respectively [51]. There is an intriguing parallel between

observed loop 3 lengths in naturally-occurring knottins and the

tolerated loop lengths we observed. The most common loop 3

lengths of knottins are four (more than 25%), six (nearly 20%), or ten

(nearly 15%) amino acids, while loop lengths of seven or eight amino

acids each occur in less than 5% of the knottin family [51]. This is

congruous to our findings here: a loop 3 substitution length of seven

amino acids was found unfavorable and EETI loop 3-substituted

clones with loop lengths of six or nine amino acids were enriched to

high levels of trypsin binding after FACS.

We used sequence covariance analysis to identify inter-residue

couplings at positions along the length of properly folded EETI loop

3-substituted clones. Covariance analysis can be applied to proteins

to highlight structurally or functionally important residues and has

previously been employed for a myriad of purposes, including

revealing inter-residue contacts within protein structures [38,52],

protein folding pathways [53], energetic coupling pathways [37],

communication pathways of allosteric proteins [35], and correlated

mutations involved in drug-resistance [54]. In addition, covariance

analysis has been used to predict protein structure [39], predict

protein-protein interactions [55], and guide protein docking

experiments [56]. Although we performed covariance analysis on

the loop 3-substituted sequences of trypsin-binding EETI mutants

using several different algorithms [34], only the results from the

OMES [35] and McBASC [38,39] scoring functions were used to

generate sequence predictions. The lack of agreement among results

calculated with the various covariance algorithms likely stems from

differences in their sensitivities to amino acid conservation levels.

Indeed, the OMES and McBASC scoring functions have been

reported to have similar sensitivities to background levels of

conservation, resulting in similar scoring performances for covari-

ance analysis on sets of Pfam protein families [34]. The sensitivity of

our covariance and correlated mutation analyses was limited by the

quantity of sequencing data available (52 and 56 sequences for the

enriched and starting EL3-9 libraries, respectively). Because of the

small sample size of our sequencing data, we were able to detect

only the strongest trends over background noise; we anticipate that

there exist other, more subtle connectivities and less prevalent

correlated pairs of amino acid residues within the substituted loop

regions that would be revealed with a larger data set. However, it is

notable that even a small dataset was able to predict hundreds of

functionally tolerated sequences.

We applied the results of our covariance analysis to predict nine-

amino acid sequences for substitution into EETI loop 3 that lead to

proper folding of the protein. The exhaustive combination of all

possible correlated mutations at three covarying positional pairs and

three constant loop positions afforded 420 predicted clones.

Although the rational design of a tolerated loop sequence was

aided by the stability of the knottin fold, there are 15 possible ways

to form three disulfide bonds from six cysteine residues, and folding

and oxidation must occur in coordination to result in a cystine-knot

topology [7]. The task of designing sequences for substitution into

EETI loop 3 was further complicated by the important role of this

loop in the folding of the knottin. The residues of EETI loop 3

initiate the folding of the knottin structure by forming a beta-turn

that is responsible for facilitating the association of the anti-parallel

beta sheets prior to disulfide bond formation [23,25]; furthermore,

mutations to EETI loop 3 have been observed to result in misfolded

by-products [26]. The results of our studies, in which EETI loop 3

clones that properly fold and bind to trypsin were predicted,

demonstrate that covariance and correlated mutation analysis can

be successfully used for rational protein engineering. Moreover,

trends identified by sequence and covariance analyses provide

guidelines for introducing diversity into knottin loop regions when

minimal structural disruption is desired, for example, when

performing directed evolution experiments.

Pál and colleagues previously used phage display and covari-

ance analysis to design pacifastin protease inhibitors with altered

binding specificities for trypsin [57]. In another study, Ranga-

nathan and colleagues used covariance analysis to computationally

predict artificial sequences of properly folded and functional WW

domain proteins [58,59]. These studies suggested that a combi-

nation of amino acid conservation and covariance analysis is

necessary and sufficient to inform successful protein design. This

finding is corroborated in our studies; we used both conserved

amino acids and covariance analysis with correlated mutations to

design EETI loop 3 variants that adopt the cystine-knot topology.

While both of these previous studies were based on genetic

information from naturally-occurring proteins, our study used

sequences isolated from a naive library of loop-randomized protein

variants. This distinction extends the applicability of covariance

analysis for protein design to include sequences that differ

significantly from their naturally-occurring counterparts not only

in amino acid composition, but also in sequence length. Indeed,

our approach successfully predicted artificial EETI-based knottin

proteins with substituted loop sequences 1.5–2 fold longer than
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those found in the most closely related, naturally-occurring knottin

family members. Further, the covariance analysis of clones isolated

from a naive loop-substituted library permits the exploration of

greater diversity than analysis of a family of naturally-occurring or

naturally-derived proteins, potentially resulting in predicted

artificial protein sequences with greater diversity. Simultaneous

maintenance of this diversity and compliance with minimal

structural requirements is essential for engineering novel charac-

teristics (e.g. molecular recognition) into scaffold proteins while

ensuring that the protein structure is not compromised.

Upon analysis of the knottin database [51,60], we found loop

sequences in naturally-occurring knottins that were homologous to

those of clones from the enriched EL3-9 library. Such homologous

sequences were found in several serine protease inhibitor knottins,

which are functionally related to EETI. Surprisingly, we also

found natural loop sequences that shared at least 50% homology

with those of enriched EL3-9 clones from knottin families

functionally unrelated to EETI, including conotoxin, spider toxin,

plant toxin, and scorpion toxin (Table S3). Further, the C-terminal

glycine-tyrosine doublet present in enriched EL3-9 clones was also

found in the sequences of many naturally-occurring knottins

belonging to the fungi, insect antimicrobial, plant antimicrobial,

and trematoda families (Table S3). The observation that sequences

similar to those of our enriched EETI loop 3-substituted clones

exist in the loops of naturally-occurring knottins that are

functionally unrelated to EETI suggests that the covariance

patterns we identified here may be useful for engineering other

members of the knottin family.

In summary, this work has shown the feasibility of using yeast-

displayed libraries of EETI loop-substituted proteins to investigate

the structural tolerances of a knottin fold in a predictive manner.

Since combinatorial library sizes are limited by host transforma-

tion efficiencies and rational design thus far has been met with

limited success, a set of guidelines for biasing starting libraries is

valuable. This is especially true for the knottin scaffold, whose

advantageous characteristics (e.g. high thermal stability and

resistance to proteolysis) are dependent on the correct disulfide-

bonded topologies. Finally, this work demonstrates the potential of

using directed evolution platforms in combination with covariance

analysis to guide future efforts in engineering functional proteins

whose sequences differ from their naturally-occurring counterparts

not only in amino acid composition, but also in sequence length.

Materials and Methods

Media and reagents
YPD media contained 20 g/L dextrose, 20 g/L peptone, and

10 g/L yeast extract. Selective SD-CAA media contained 20 g/L

dextrose, 6.7 g/L yeast nitrogen base without amino acids, 5.4 g/

L Na2HPO4, 8.6 g/L NaH2PO4?H2O, and 5 g/L Bacto casamino

acids. Selective SD-CAA plates were of the same composition as

the liquid media except with the addition of 182 g/L sorbitol and

15 g/L agar. SG-CAA media was identical to the SD-CAA media

except dextrose was replaced with galactose. PBSA was composed

of phosphate buffered saline containing 1 g/L bovine serum

albumin. Lyophilized trypsin was purchased from Sigma Aldrich

and fluorescently labeled with Alexa Fluor 488 tetrafluorophenyl

ester (Invitrogen). Mouse anti-cMyc antibody was purchased from

Covance and goat anti-mouse antibody conjugated to R-

phycoerythrin was purchased from Sigma Aldrich.

Construction of EETI loop-substituted libraries
EETI loop-substituted knottin libraries were constructed by

overlap extension PCR using KOD polymerase (Novagen) in the

presence of 1 M betaine and 3% dimethylsulfoxide. Oligonucle-

otides were designed using yeast-optimized codons, with random-

ized loop positions encoded by the degenerate NNS codon.

Assembled PCR products were amplified with Pfx50 polymerase

(Invitrogen) using forward and reverse oligonucleotides with 45 bp

homology upstream or downstream of the NheI and BamHI

restriction sites, respectively, in the pCT yeast display vector [31].

The pCT yeast display vector was digested with NheI and BamHI

restriction enzymes (New England Biolabs) and treated with calf

intestinal phosphatase (New England Biolabs). Amplified PCR

products of the correct lengths and linearized pCT vector

backbone were separated by electrophoresis on a 2% agarose gel

and purified using a QIAquick Gel Extraction Kit (Qiagen). EETI

loop-substituted DNA inserts (10–15 mg) and linearized pCT

vector (1–1.5 mg) were transformed into EBY100 yeast [30] by

electroporation [31] at a ratio of 10:1. After electroporation, yeast

were allowed to recover in YPD at 30uC for 1 h with shaking prior

to transfer to selective growth media. Libraries were propagated in

selective SD-CAA media and induced for protein expression in

SG-CAA media at 30uC. Library sizes were estimated by plating

serial dilutions onto selective SD-CAA agar plates and colony

counting.

Screening of EETI-loop substituted libraries
Four rounds of FACS were performed on each EETI loop-

substituted library to obtain an enriched pool of trypsin-binding

clones. Libraries of yeast clones induced for protein expression

were suspended in PBSA with mouse anti-cMyc monoclonal

antibody (1:50 dilution) and incubated for 1 h at room

temperature. Yeast were pelleted by centrifugation at 4,000 rpm

for 5 min, the supernatant was aspirated, and cells were washed

with ice-cold PBSA. Washed yeast libraries were resuspended in

PBSA with goat anti-mouse R-phycoerythrin secondary antibody

(1:25 dilution) and Alexa 488-labeled trypsin and incubated on ice

in the dark for 30 min. Yeast libraries were washed as before and

screened by dual-color FACS for mutants that were both displayed

on the yeast surface and bound to trypsin using a Becton

Dickinson FACSVantage SE instrument (Stanford FACS Core

Facility) and CellQuest software (Becton Dickinson). Collected

library clones were propagated in SD-CAA media with penicillin-

streptomycin (400 mg/mL), induced for protein expression in SG-

CAA media and subjected to three additional rounds of sorting.

For the first round of sorting, approximately 26107 yeast were

sorted from each library, and at least 10 times the number of

collected yeast were sorted in each subsequent round to decrease

the probability of losing unique clones. Sort stringency was

increased by gradually decreasing the concentration of Alexa488-

labeled trypsin from 200 nM in the first round to 25 nM in the

fourth round.

Sequence analysis of EETI loop-substituted clones
Plasmid DNA from the original and FACS-enriched libraries

were recovered from the yeast using a Zymoprep kit (Zymo

Research) and then transformed into XL1-blue supercompetent E.

coli (Strategene). Transformed E. coli were incubated in SOC

media (Invitrogen) at 37uC for 1 h with shaking before plating on

LB agar plates with ampicillin (100 mg/mL). At least 50 unique

clones from each of the original and enriched EETI loop-

substituted libraries were recovered and sequenced. Elim Bio-

pharmaceuticals (Hayward, CA) and MCLAB (South San

Francisco, CA) performed plasmid sequencing services. Only

clones without truncations and with loops of the correct target

length were included in the analysis below. Library sequences were

analyzed using programs available on the RELIC bioinformatics
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server [61]. The AAFREQ program was used to calculate overall

and positional frequencies of each amino acid residue in the

substituted loop regions. POPDIV [32] was used to estimate the

diversity within the original and sorted EETI loop-substituted

library populations. The DIVAA program [33] was used to

quantify the tolerated diversity at each position of the randomized

loops of EETI loop-substituted library clones, both in the original

and enriched libraries. The MOTIF1 and MOTIF2 programs

[61] were used to identify continuous and discontinuous motifs,

respectively, within the loop regions of EL3-9 clones isolated from

the fourth round of FACS.

Covariance analysis of EETI loop 3-substituted clones.
Substituted loop sequences from the original and enriched EL3-

9 libraries were aligned using ClustalW2 [41] with default

parameters, except the penalty for opening a gap was set to 100

instead of 15. Covariance analysis was performed on the aligned

sequences to identify coupled loop positions. The analysis was

conducted using the OMES, ELSC, MI, SCA, and McBASC

algorithms as previously described [34]. Covariance analysis with

each of the algorithms was first performed on sequences from the

original, unsorted EL3-9 library, which served as a negative

control for covariance since it was designed to have randomized

loops. To quantify the average background covariance score

inherent to each method, we calculated the average scores and

standard deviations obtained using each of the algorithms across

all positional loop pairs in the unsorted EL3-9 library.

Covariance analysis was then performed on the aligned

sequences from the enriched EL3-9 library. The resulting

covariance scores for each positional pair were converted into z-

scores using the average and standard deviation values obtained

for the original library with each corresponding algorithm.

Positional pairs with z-scores greater than or equal to 2 were

individually analyzed for common correlated mutations in amino

acid residues. Those positional amino acid pairs (i, j) whose

frequency was at least 50% greater as a matched pair than their

individual frequencies in the sorted population were used to

predict tolerated loop sequences. To minimize error introduced by

small sample sizes, only those residues that populated the predictor

position in at least 10% of the sequences were considered for

analysis. Further, predicted amino acids were only considered if

they occurred at least twice in the general population.

Prediction of tolerated nine-amino acid sequences for
substitution into EETI loop 3

Predicted peptide sequences were generated for substitution into

EETI loop 3 by combining the trends uncovered in the sequence

and covariance analyses of the enriched EL3-9 trypsin-binding

clones. The third position of EETI loop 3 was set to either

asparagine or threonine based on frequently-occurring motifs and

positions 8 and 9 were set to the observed glycine-tyrosine

consensus sequence. The remaining positions of EETI loop 3 were

predicted according to the results from covariance analysis. All

possible combinations of correlated amino acid pairs were used to

generate 420 clones that we predicted would retain binding to

trypsin. The predicted clones were then filtered based on their

inclusion of common motifs observed in the EL3-9 sorted library.

Predicted clones whose loop 3 sequences contained 3 or 4

common motifs were aligned using ClustalW2 [41] and 15 clones

representative of the predicted sequence space were chosen at

random for testing of their trypsin-binding abilities. Additionally,

the 420 predicted clones were ranked according to their

similarities (calculated based on a modified BLOSUM62 matrix)

to clones from the enriched EL3-9 library using the FASTAskan

program [42] from the RELIC bioinformatics server [61].

Predicted clones whose similarity scores were in the lowest 10%

were aligned with ClustalW2 and the 10 lowest ranked clones

representative of the sequence space were selected for testing.

Additionally, we used the RandSeq tool (http://ca.expasy.org/

tools/randseq.html) from the ExPASy server to generate 25 EETI

clones whose loop 3 sequences were replaced with randomized,

nine-amino acid sequences. For this purpose, amino acid

compositions were set according to the frequencies expected from

degenerate NNS codons.

Testing predicted EETI loop 3 clones for trypsin binding
The 25 predicted EETI loop 3 clones and the 25 randomly-

generated EETI loop 3 clones were constructed by PCR with

overlapping primers, digested with NheI and BamHI restriction

enzymes, and ligated into linearized pCT vector with T4 DNA

ligase (New England Biolabs). Ligated pCT-EETI loop 3 predicted

and randomly-generated plasmids were transformed into XL1-blue

supercompetent E. coli (Stratagene) for plasmid miniprep and

sequencing (MCLAB). Clones of the correct sequences were

transformed into S. cerevisiae strain EBY100 yeast by electroporation

and grown on selective SD-CAA agar plates. For each EETI clone,

three individual yeast colonies were selected from the corresponding

transformation plate, propagated in selective SD-CAA media, and

induced for protein expression in SG-CAA media at 30uC. Thus,

triplicate samples of yeast-displayed EETI loop 3 clones were

analyzed by dual-color flow cytometry for protein expression and

trypsin binding at 25 nM as described above.
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and are named according to their UniprotKB/Swiss-Prot

accession numbers.

Found at: doi:10.1371/journal.pcbi.1000499.s003 (0.07 MB

DOC)

Dataset S1 Recovered sequences of randomized loops from the

unsorted and enriched EETI loop-substituted libraries.

Found at: doi:10.1371/journal.pcbi.1000499.s004 (0.37 MB

DOC)

Dataset S2 Raw covariance scores for the unsorted EL3-9

library calculated using the OMES, SCA, ELSC, MI, and

McBASC scoring functions.

Found at: doi:10.1371/journal.pcbi.1000499.s005 (0.09 MB

DOC)

Dataset S3 Raw covariance scores for the enriched EL3-9

library calculated using the OMES, SCA, ELSC, MI, and
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McBASC scoring functions. Scores shown in bold are those whose

corresponding z-scores are greater than 2.

Found at: doi:10.1371/journal.pcbi.1000499.s006 (0.10 MB

DOC)

Dataset S4 Predicted nine-amino acid sequences for substitution

into EETI loop 3.

Found at: doi:10.1371/journal.pcbi.1000499.s007 (0.07 MB

DOC)

Dataset S5 Multiple sequence alignment of predicted EETI

loop 3 sequences containing four or more common motifs.

Numbers correspond to clone numbers as assigned in Dataset S4.

The alignment was generated with ClustalW v.2.0.10.

Found at: doi:10.1371/journal.pcbi.1000499.s008 (0.05 MB

DOC)

Dataset S6 Multiple sequence alignment of predicted EETI

loop 3 sequences containing three common motifs. Numbers

correspond to clone numbers as assigned in Dataset S4. The

alignment was generated with ClustalW v.2.0.10.

Found at: doi:10.1371/journal.pcbi.1000499.s009 (0.06 MB

DOC)
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