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Abstract: The growing market of smart devices make them appealing for various applications.
Motion tracking can be achieved using such devices, and is important for various applications such as
navigation, search and rescue, health monitoring, and quality of life-style assessment. Step detection
is a crucial task that affects the accuracy and quality of such applications. In this paper, a new
step detection technique is proposed, which can be used for step counting and activity monitoring
for health applications as well as part of a Pedestrian Dead Reckoning (PDR) system. Inertial and
Magnetic sensors measurements are analyzed and fused for detecting steps under varying step modes
and device pose combinations using a free-moving handheld device (smartphone). Unlike most of
the state of the art research in the field, the proposed technique does not require a classifier, and
adaptively tunes the filters and thresholds used without the need for presets while accomplishing
the task in a real-time operation manner. Testing shows that the proposed technique successfully
detects steps under varying motion speeds and device use cases with an average performance of
99.6%, and outperforms some of the state of the art techniques that rely on classifiers and commercial
wristband products.

Keywords: adaptive step detection; step counting; activity tracking; Pedestrian Dead Reckoning;
Magnetometer fusion; MEMS IMU

1. Introduction

Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology has made it feasible to
manufacture Inertial Measurement Units (IMU) sensors that are low cost, low on power consumption
on chip and also lightweight [1,2]. Most of the smart devices pedestrians use these days are enabled
with such technology. The presence of those sensors at the disposal of the user make them very
appealing to be used for various applications such as activity and health monitoring [3], gaming and
personal navigation [4], and emergency services [5].

An IMU is a group of sensors that can sense the motion of the user represented as accelerations
and angular rate changes of orientation. MEMS IMUs are low-grade sensors that are also referred
to as commercial-grade. In [6], a comparison of the different types and grades of IMU is presented.
The comparison shows the relatively high errors of the commercial-grade IMUs in comparison to the
higher more expensive counterparts. In [7], VecorNav—one of the leading inventors of embedded
navigation solutions—presents a comparison between the performance of the different grades of IMUs,
and the expected deterministic errors of each of them. In addition, Reference [8] provides a performance
comparison between the different underlying technologies used in IMU sensors. The performance
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charts show that MEMS technology suffers from the highest error budget. On the other hand, it is
not practical for a user to use those high-grade IMUs for navigation as they tend to be expensive, big,
heavy, and require higher power sources, and they cannot be installed on smartphones.

Applications that attempt to track pedestrian motion and activity for health purposes usually
require an accurate step detection technique. Step detection is of importance in health monitoring
applications where acceleration is the most exploited measurements for step detection [9]. Step count
can be used to assess the physical activity level of the user, providing feedback and motivating a
more active life style [10,11]. In [12], a list of some of the recent wearable technologies that provide
acceleration measurements and step counts is presented in light of showing the importance of such
devices in activity monitoring, and how the medical society can benefit from them. Objective physical
activity assessment require information regarding the type of motion taken and its effect; some of those
factors are the speed and displacement of motion [13]. Wireless Body Sensor Network (BSN) is a group
of wearable sensor nodes with computational, storage, and wireless transmission capabilities that are
allocated on different body parts to monitor body motion, skin temperature, heart rate, and more [14].
Other simpler approaches based on a single node such as smartwatches and fitness bands are also
available, where they rely on pedometry concept. There is a trade-off between the two approaches,
where the former one is more accurate and provide a lot of information that is useful for assessing the
overall health condition of the user but they are too complicated and expensive, and the later one is
much simpler and cheaper but less accurate.

Another category of applications that can be step-based is navigation applications. The primary
source for tracking a user’s location is the Global Navigation Satellite Systems (GNSS). GNSS systems
are always undergoing modernizations that increase their coverage and accuracy, and, although it can
provide reliable positioning and navigation information in most cases, it suffers from degraded service
in environments where the satellite signals are blocked, attenuated, or reflected [15]. Such environments
include urban canyons and indoors, where most of our day-to-day activities take place. An alternative
technology to GNSS is Inertial Navigation Systems (INS). Recent advances in INS [16] make them
appealing for the use as an aiding for the GNSS in the case of an outage or unreliable signal, and
they can also be very useful in the case of pedestrian navigation. When GNSS services are degraded,
the IMU measurements can be used for over a short period of time to aid the GNSS in providing a
continuous navigation solution that works under varying conditions. This integration is referred to as
coupling, and it can be in one of two forms: loosely-coupled, or tightly-coupled [6,17].

With the high error magnitude and noise of MEMS IMU comes a limitation to their reliability
over time. The use of conventional Dead Reckoning (DR) methods tends to drift quickly over short
time span, yielding wrong navigational information. Methods for correction have been proposed and
used to enhance performance such as Zero Velocity Update (ZUPT) [18], Zero Angular Rate Update
(ZARU) [17], Magnetic Angular Rate Update (MARU) [19], and Heuristic Drift Reduction (HDR) [20].
The problem with these techniques is the requirement of certain conditions to be met before they can
be applied, which in most cases does not hold with handheld devices.

Pedestrian Dead Reckoning (PDR) is a special form of Dead Reckoning (DR) which exploits
information about the human motion, namely the Gait Cycle (GC) [21] to limit the drifting of the
solution. PDR is composed of three main algorithms, step detection, step length estimation, and
alignment, where the user location is obtained through the accumulation of steps, given a step length
and the direction of each step [22]. Hence, step detection is a crucial component of PDR.

The remainder of this paper is organized as follows: Section 2 presents the related work and state
of the art techniques for step detection. Section 3 discusses the proposed new methodology for the
step detection. Section 4 presents the experimental setup for testing the hypothesis, and the results of
the algorithm. Finally, Section 5 draws conclusions from the presented results.
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2. Background

This section presents some of the existing step detection and counting techniques. The techniques
presented can be categorized into two categories: strapdown systems and handheld devices. In some
research, the step detection device will be referred to as a pedometer.

2.1. Strapdown Systems

Multiple approaches rely on the use of an IMU strapped down to a segment of the body.
The advantage of such systems is the elimination of separate platform motion from the body, where
nearly all of the measurements captured by the system represent the motion of the body segment
it is connected to. Some of the developed systems are: foot mounted, waist belt mounted, or wrist
mounted. The most exhaustively tested approach for navigation purposes is foot mounted.

Foot mounted approach relishes the benefits of closely capturing the characteristics of the GC
and the underlying kinetics of it. For example, during the stance phase, it is expected that the IMU is
stationary, hence it is deduced that the measurements from the accelerometer tend to gravity value,
while the gyroscope value tends to zero. Exploiting this information, the stance phase can be easily
detected. Furthermore, the accurate detection of the stance phase would enable the use of correction
methods for compensating for the drift in the measurements. For the case of foot mounted sensors, the
detection process relies on the use of thresholds for detecting the stance phase in most cases, or the use
of GC state transition modeling.

A threshold-based approach that relies on the use of gyroscope measurements for the detection of
the stance phase is proposed in [23]. The stance is detected when the gyroscope measurements
fall within a predefined threshold. A more reliable approach presented in [24] where multiple
threshold-based constrains are defined for both accelerometer and gyroscope measurements, where
three threshold checks are carried out and a step is identified when all three conditions are met.
Another threshold-based approach is found in [25], it uses thresholds for acceleration measurements
to identify a stance, but it also incorporates a validation step through defining a minimum time span
for the stance.

Threshold-based detection can suffer from degraded performance especially in fast walking
and running modes, where the stance phase period is diminished or eliminated. To overcome this
limitation, some researches apply gait phase classifier, where the goal is to detect all GC phases to
detect the cases when the stance phase is undetected.

The authors in [26] define a Finite State Machine (FSM) with a probability transition matrix to
identify the four main phases of gait. The classification is based on the accelerations from a tri-axial
accelerometer and a single axis gyroscope. Similarly, in [27], a state transition is defined. The update
in this approach is the use of a tri-axial gyroscope instead of only a single axis gyroscope. In [28],
an FSM that assumes that the GC is a Hidden Markov Model (HMM) is proposed. The measurements
from the gyroscope and the force resistors installed on the sole of the shoe are used for the phase
classification along with the probability transition matrix. This work was modified in [29] to replace the
force resistors by accelerometer and redefining the probability transition matrix. A Bayesian Network
(BN) was proposed in [30]. The aim of the network is to distinguish the stance phase only using
a set of three threshold-based constraints for the accelerometer and gyroscope measurement, and
a predefined GC phase threshold defined by kinesiology. In [31], a study of the effect of footwear
effect on gait features is proposed. The study uses Artificial Neural Networks (ANN) for gait feature
detection for the same subject under the use of different footwear types. It is shown that different types
of footwear, namely: bare-foot, sneakers, and high heels, have different effects on the accelerations
generated during walking. From this study, it is drawn that some external conditions might affect the
performance of non-adaptive step detection techniques. More research based on ANN was presented
in [32], where an ankle–foot orthosis was used. The orthosis was equipped with an IMU, two Force
Sensitive Resistors (FSRs) mounted on the sole, and an angle sensor mounted vertical to the ankle.
The purpose of this research was to detect steps and classify the action being taken, such as stair
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ascent/descent, or level ground. By detecting the type of motion, the actuators of the orthosis can be
modified accordingly to facilitate the motion.

A different approach was presented in [33] that proposes the use of a magnetometer on one shoe,
while placing a permanent magnet on the other. The algorithm detects the steps through the processing
of the magnetometer measurements, which are no longer the magnetic north but the proximity of the
magnet on the other shoe.

Due to recent advances in wearable devices, namely smart watches [34] and fitness bands, they
have attracted a lot of research in the health monitoring applications. Those devices enabled with
IMU along with a variety of sensors such as heart rate, and temperature sensors. The use of wrist
strapdown systems utilizes the same techniques as the foot-mounted but suffer from the disadvantage
of the free motion of the arm, where the arm undergoes motion that is not related to walking behavior
in some cases, and hence require more analysis. On the other hand, the wrist placement can be more
beneficial for health applications for its direct contact with the skin, e.g. it can sample heart rate
and skin temperature along with other useful information. Two examples of recent patents for step
detection utilizing a wrist placement device can be found in [35,36]. Different kinds of pedometer
implementations and placements have been compared in [37], where the results show that the most
desirable place is the waist. It is also worth noting that the paper did not include foot mounted systems
and only evaluated smartphone performance in a pocket placement state.

For the use of threshold-based detection and state transitions, a predictable pattern should exist.
This hypothesis holds for tethered sensors in most cases such as the foot-mounted case, but, in the
case of a free-moving handheld device, there are no predictable outcomes at a given time, and hence
researchers resort to other methods as will be presented in the next subsection.

2.2. Handheld Devices

In the case of untethered-handheld devices, there is no detectable zero velocity region for the
stance phase of the GC as the human upper body half is in continuous motion unlike the foot, and the
device might exhibit non-walking related motion from the arm motion causing orientation changes
and accelerations that do not represent the walking behavior. Hence, methods for step detection rely
on peak extraction instead of zero acceleration periods. Regular peak detection techniques usually rely
on classifiers to determine the use of the handheld device—smartphone—to adaptively adjust the step
detection thresholds.

Peak detection has been exploited in many researches. In [3],a technique based on peak detection
is proposed. It requires a training phase to estimate the user dependent thresholds for step detection
before it can be used for navigational purposes. This is inconvenient, as the parameters estimated will
work for one user but it is not guaranteed to work for others, while another limitation is that it only
works in compassing mode.

A classifier is developed in [38] to identify the type of motion the device is experiencing. Once the
device use case is identified, a decision of using either the accelerometer or the gyroscope measurements
is made based on the class of motion identified. The steps are then detected through peak extraction
technique. The classifier proposed is a supervised classifier, which means a training phase was required
to obtain the thresholds for the decision making in the classifier.

Another approach that uses a classifier was presented in [39]. It classifies the motion type to
two classes through the use a periodicity detection algorithm. Peaks are then extracted to represent
candidate steps and validated for removal of false steps. The validation of candidate steps is through
the integration of the measurements during the step duration to check if significant displacement
occurs. In [40], a classifier that for three use cases is used, namely holding, swinging, and pocket
placement. Based on the classification, the acceleration component to be used is selected, where it
can be the z-component, y-component, or the vertical acceleration from the leveled measurements.
A feedforward ANN with pattern recognition was proposed in [41]. The network has only directed
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connections and requires reference data for training. The approach used utilizes the ANN for the step
detection and step length estimation.

In some use cases of the phone, fake signals that look like human motion can be simulated leading
to false step counts. The authors in [42] propose an adaptive filtering method for eliminating false
peaks. Unlike most approaches, the presented work uses the norm of the acceleration measurements
from the accelerometer and not only vertical acceleration analysis for the step detection. The process
starts by extracting pairs of peak/valley. Each peak and valley being detected is a candidate until
verified through magnitude and temporal filtering. Upon the verification of a peak/valley pair, a step
is identified.

A different approach of classification is developed in [43] by employing a fuzzy-logic classifier.
Features from a Band-Pass filtered acceleration norm are extracted and evaluated with a membership
function. The output of the classifier is then processed through a set of rules for defuzzification to
identify the step.

While there are other approaches that utilize different techniques for step detection, peak detection
and threshold based techniques are usually employed due to their simplicity and low overhead.
A summary of different approaches that rely on the analysis of the IMU sensor measurements analysis
is found in [44]. The different approaches are evaluated on bases of complexity, computational
overhead, and real-time applicability.

Other methods for step detection that rely on other sensors have been suggested such as using
the camera for visual odometry. A camera-based step detection example can be found in [45].
The limitation of such approach is that the smartphone motion is restrained to count the steps,
the smartphone should be held in a position that captures the foot motion. Similarly, in [46],
visual odometry is utilized but with a different camera usage hypothesis. The hypothesis is that
the camera orientation captures the pedestrian’s first-person perspective. The proposed methodology
uses the Speeded Up Robust Features (SURF) algorithm for feature extraction from the captured frames.
This approach requires holding the device in a certain way, limiting the usability of the device.

Step detection and counting is of great importance for many applications, and although tethered
approaches show high accuracy, it would be more desirable to have a non-constrained device,
of multiple purposes use for the user to use such as a smartphone. The dynamics of the smartphone
along with the unpredictability of walking behavior changes of pedestrians make it a challenging task.
The authors of this paper propose an algorithm for step detection and counting that is unified for all
use cases of the smartphone and step modes of the pedestrian through using features that are invariant
to both.

3. Methodology

Using a handheld free-moving device, such as smartphones for motion tracking, exhibits a
different motion pattern from a strapdown system, such as placing an IMU on the shoe or waist belt
area. One of the main differences is the absence of the static period, which is usually exploited in the
foot mounted systems for step detection. The usual pattern that is expected in the case of a handheld
device in a static pose is represented as a sequence of alternating peaks and valleys, where each
peak/valley pair represents a single step.

In this section, a novel step detection algorithm is proposed that is independent from the
smartphone use case and does not require a classifier to adaptively tune the parameters for the step
detection. The algorithm is based on conclusions drawn from extensive analysis of the three signals
used for the step detection which are the acceleration norm, angular rates vector, and magnetic vector.

First, the acceleration norm is used without gravity compensation to avoid errors introduced
from the separation process and the transformation of measurements into the Local Level Frame
(LLF). From studying the norm of the accelerations in the case of a fixed device pose—compassing
mode—to obtain the pattern of accelerations exerted by the walking motion, it was concluded that the
acceleration norm has the following properties:
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• The acceleration norm computed from Equation (1) has a sinusoidal pattern where each pair of
peak/valley represents a step. Figure 1 shows an example of walking pattern with a smartphone
in compassing mode with peaks and valleys detected by the proposed algorithm.

• The magnitude difference between the peak/valley pair is inversely proportional to the step
duration and proportional to the motion pace. Figures 2 and 3 elaborate the change in magnitude
in correspondence to pace variation with time.

• The use of net force acceleration norm—uncompensated for gravity component—as shown in
Figure 4, magnifies the pattern in the signal around the peaks and valleys while also smoothing
it around the gravity shift component. This is due to the combined factor from both linear
acceleration and gravity as presented in Equation (2).

• Although in many studies it is assumed that the measured norm is the root of sum of square of
gravity and linear acceleration, from physics, the resulting force from both vectors is computed,
as in Equation (2). Simply subtracting the gravity value from the resultant does not yield the
linear acceleration where residuals from gravity remains due to the component derived from the
angle between the vectors.

As for the case of angular rates measured by the gyroscope and the magnetic vector measured by
the magnetometer, the resulting signals are useful in the phone dangling use-case. In a phone dangling
state, the user holds the phone in his hand while swinging his arms in a normal motion as when
walking holding nothing or something of minimal weight that does not affect his motion. In this case,
the patterns generated also resemble a sinusoidal wave but each half of the signal represents a step.

Acc = 2
√

ax2 + ay2 + az2 (1)

Acc2 = Speci f ic f orce2 + g2 − 2 ∗ Facc ∗ g ∗ cos(∅) (2)

where Acc is the net acceleration magnitude; Speci f ic f orce is the linear acceleration vector norm;
g is the gravity norm; ∅ is the angle between gravity and linear acceleration; and ax, ay, az are the
accelerations in the body frame.
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Based on these findings, the proposed algorithm, shown in Figure 5 as a block diagram, starts
by filtering the measurements from the sensors using an adaptive low-pass filter that is discussed
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in Section 3.1; after that, it applies a peak/valley pair detection for the acceleration norm, with time
filtering based on the peak-to-valley magnitude and peak-to-valley delay, as per Sections 3.2 and 3.3.
Verification of peaks and valleys for cases of high device motion is also applied through further
investigating the dominant axis of angular rotation and magnetic change rate, as discussed in
Sections 3.4 and 3.5, where a peak/valley extraction is also applied conditionally in the case of
repetitive-high-variance patterns to the gyroscope and magnetometer measurements. The peaks and
valleys of the angular velocity and magnetic field should coincide within a threshold from the peaks of
the acceleration. Finally, the step is verified through the integration of the acceleration measurements
within the step window, as will be shown in Section 3.6. The conditional blocks are executed only in the
case of the detection of a dominant repetitive signal in the gyroscope or magnetometer measurements
or both.
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3.1. Adaptive Filter

Sensor signals are poised by different errors and inaccuracies due to many factors. In the case of
IMU measurements, the signals can be analyzed to compensate for deterministic errors. White noise
and process noise can be hard to determine and model, hence the need for digital filtering. For a signal
to be successfully filtered, the frequency of the desired signal needs to be estimated.

The proposed system makes use of an Infinite Impulse Response (IIR) Butterworth low pass filter
for its simplicity and low computational overhead. An adaptive cut-off frequency is continuously
tuned and updated based on the recently detected walking speed.

Selection of the filter order is important, as it affects two main aspects of the filter, the latency
and roll-off. In a Butterworth filter, the higher the order of the filter, the higher the steepness of the
transition between the pass and stop bands yielding fast roll-off which makes it closer to an ideal
filter, but, on the other hand, the group delay increases making real-time processing unachievable.
With a low order, the latency is low but the roll of is slower and hence frequencies from the stop band
still exist in the filtered signal. For the desirability of real-time processing in this application, a low
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filter order is needed to minimize the latency. To overcome the slow roll-off of the filter, the cut-off
frequency is slightly reduced to compensate for the effect of undesired frequency residuals.

Using a static cut-off frequency for filtering a signal with varying frequency can lead to either
loss of information or left over residual noise that affects the system. The effects of over and under
estimating the cut-off frequency is shown in Figures 6 and 7, and are compared to the case of adaptively
tuning the cut-off frequency. Figure 8 elaborates on the specific effect of under-filtering in comparison
to the adaptive filter as residual fluctuations from motion noise remain in the signal.
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3.2. Temporal Filtering

Due to the noise in the signal, in some cases, two consecutive peaks or valleys can occur.
The adaptive filter helps in reducing the chances of this happening, yet a fail-safe is needed to
eliminate the undesired residual pikes. The temporal filtering works through adaptively tuning a time
threshold, where a detected peak/valley can be replaced by another one of higher/lower magnitude.
Occurrence of peak/valley outside the defined replacement zone is neglected unless it is an opposing
type of peak with high magnitude difference from the recently detected peak.

Originally, a peak or valley is detected if the value in the middle position of a window is greatest
or lowest respectively, as shown in Equation (3), where the detected peak/valley is a candidate that is
only verified if not replaced by another within a time threshold. Figure 9 shows the temporal threshold
for update and rejection, where the blue region is the update region and the red is the rejection region.
The update region is defined by a starting point that is based on a time threshold from the last detected
peak/valley, indicating the starting point for searching for a peak and replacing it if conditions are
met. The update region ending point is based on a time threshold starting from the first peak/valley
detected within this update region.

The rejection region is the intermediate time in transition from peak to valley and vice versa,
where no peaks are supposed to exist in regular motion. The thresholds for defining start and end of
the regions are adaptively tuned based on the estimated motion speed, as shown in Equations (4)–(8).

peak : an−1< an >an+1 valley : an−1 > an < an+1 (3)

∆t1 = t(p|v)n−1
− t(p|v)n−2

(4)

ths = 0.5 ∗ ∆t1 (5)

ths < ∆t2 = t(p|v)n
− t(p|v)n−1

(6)

the = 0.3 ∗ ∆t2 (7)

t(p|v)n/r
− t(p|v)n

< the (8)
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where a is the acceleration norm; t(p|v) is the time of peak or valley; ∆t is the time interval between
peak and valley; ths is the time threshold for start of search/update region; the is the time threshold for
end of update region; and t(p|v)n/r

is the time of replacement candidate for nth peak/valley.
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3.3. Peak-to-Peak and Pseudo Zero Crossing

For each detected sequence of peak/valley or valley/peak, the difference of the magnitudes
reflects the speed of motion during the step, while their average represents the pseudo zero crossing at
which a step starts or ends. The difference in magnitude referred to as the peak-to-peak value is used
along with the time difference between the pair to adaptively tune the cut-off frequency for the next
segment of the signal.

During regular motion, when a pedestrian is speeding up or down, the change of speed does not
occur instantaneously, rather increases or decreases gradually. A peak/valley magnitude difference
over time represents change in walking speed, and time difference represents a half step duration.
Both can be used to tune the cut-off frequency and the time thresholds for the expected upcoming
peak/valley. Equation (9) represents the magnitude at which a step is declared and the start of the next
coming step. Equation (11) represents the criteria for considering a change of walking pace, which
leads to the application of Equation (12).

pzc = avg
(
ap , av

)
(9)

∆an = apn − avn ∆an−1 = apn−1 − avn−1 (10)

∆an − ∆an−1 > suth ∆an − ∆an−1 < sdth (11)

f̃s =

⌈
F

∆t ∗ 2

⌉
(12)

where: pzc is the pseudo zero crossing; apn is the nth peak acceleration magnitude; avn is the nth
valley acceleration magnitude; ∆an is the nth peak/valley magnitude difference; suth is the speed up
threshold; sdth is the speed down threshold and is equal to −suth; f̃s is the estimated step frequency;
and F is the sampling frequency.

The peak-to-peak magnitude and the pseudo zero-crossing are also used for detecting sudden
changes of motion. When a peak/valley is detected in the rejection zone, if the magnitude difference
from the pseudo zero-crossing is sufficient, while the peak-to-peak is also of high magnitude,
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it indicates a sudden change in pace or rapid change in the device motion separately from the user.
In this case, although the peak/valley is in the rejection region, it will be accepted as a candidate.

3.4. Gyroscope Fusion

In some use cases, the angular rates generated have a dominant repetitive pattern in one of the
gyroscope axes. The signal pattern is similar to that of the acceleration norm but half its frequency.
The acceleration norm represents the full motion of the platform—the pedestrian in this case—hence
capturing the patterns from both right and left legs. In the case of the gyroscope, if it is placed in a shirt
pocket by the torso, it will capture the sway motion of the torso, while, if it is place in a pants pocket,
whether a side pocket or rear pocket, it will sense the motion of the leg it is appended to. In both cases,
the generated signal is repetitive for a full stride, which is equivalent to two steps. If the phone is
handheld, under regular motion conditions the arm swings forward when the opposing leg is moving
forward and swings backwards when the leg nearby moves forward. Hence, the cyclic arm motion
represents two steps being taken. In the previously mentioned motion cases, the generated signal has
a frequency that is half that of the acceleration.

First, a dominant axis of rotational motion is determined using the variance of the signal. Then,
a periodicity check is applied. If a periodic signal is found, it is used for step detection along with
the acceleration, where, for each peak or valley detected in the gyroscope signal, there should exist
a peak in the acceleration norm. If high angular rates exist but no periodicity, it is an indication that
the device is undergoing irregular motion that does not match the walking behavior. In such a case,
the gyroscope measurements are neglected and not used for detection.

When the condition is stand, peak detection is applied to dominant axis of motion in the gyroscope
measurements, where, for each detected peak and valley in the gyroscope, there are two corresponding
peaks in the acceleration norm with a valley in between. The peak matching utilizes a time window
threshold for verifying the validity of the peak. Figure 10 shows the angular rates of a regular
swinging motion while walking, where it can be seen that the z-axis measurements are periodic
with distinguishable peaks and valleys, the matching process is then elaborated in Figure 11, where,
for each peak in the acceleration norm, there exists a peak/valley match in the dominant angular rate
signal extracted.
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3.5. Magnetometer Fusion

The surrounding magnetic field sensed by the magnetometer over a period is supposed to be
consistent if no interference occurs. The magnetic vector has been previously used for heading
estimation and for positioning using magnetic map matching. In this paper, the magnetic vector sensed
by the magnetometer is used for purposes of step detection.

The hypothesis is that the magnetic field does not abruptly change within a step. Hence, any
changes in the magnetic intensity measurements by the magnetometer represent a change in the
orientation of the device with respect to the surrounding magnetic field.

In a dangling use case of the phone, the magnetometer axes orientation change with respect to
the surrounding magnetic field resulting in a periodic signal in one or more axes of the magnetometer.
This signal is similar to that generated in the gyroscope measurements and having the same properties
where the signals frequency is half that of the acceleration norm of walking. For this approach to be
beneficial for step detection, the magnetic change rate induced by the change of the device pose must
be of higher order than the interference from surrounding sources.

As illustrated in Figure 12, the magnetic field norm is computed based on Equation (13). As the
magnetic field remains nearly constant based on Equation (14), the changes in measured components
are due to changes in the orientation of the sensor frame with respect to the vector, as shown in
Equation (15). Each of the axes of the sensor measure a component from the magnetic field vector
depending on the non-coplanar angle between the vector and the axis based on the cosine rule. As the
frame orientation changes during the motion of the user, the component will vary in a repetitive
form. Figure 13 shows the variations in magnetic components in 3-D magnetometer measurements,
while nearly maintaining a constant net magnitude. It is also shown in Figure 14 how the variations in
the magnetic measurements coincide with the acceleration norm induced by the walking motion.

Mk =
2
√

mx2 + my2 + mz2 (13)

Mk−1
∼= Mk (14)

mxk = Mk cos(θxk) myk = Mk cos
(
θyk

)
mzk = Mk cos(θzk) (15)

where: θxk, θyk , θzk are the angles from the vector to each of the body frame axes at time K mx, my, mz

are the magnetic intensities in the body frame; and MK is the magnetic norm at time K.
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The peak matching for the magnetometer detected peaks follows the same rules as those of the
angular rates. A magnetic peak should fall in the same window as that of the acceleration norm and
angular rates. The peak matching is used to indicate magnetic perturbations, where, if an angular
rate peak is found while the magnetic changes are high but has no coinciding peak, it is recognized as
magnetic interference.

3.6. Step Validation

A step validation method is needed to verify if the detected sequence is an actual step or a
mimicking behavior, where, in some use-cases, the smartphone acceleration signals with sequences
of peak/valley pairs can be induced, even though the platform is not in motion. The validation
in this algorithm is a simple double integration of the acceleration signals after the removal of the
gravity vector to obtain the corresponding displacement for the detected pattern. The gravity can be
compensated for by transforming the measurements from the sensor frame to the Local Level Frame
(LLF). The algorithm proposed in [47] was used for tracking the orientation of the device to be able to
obtain the measurements in the LLF where the gravity component is all summed up in the vertical
axis to earth, making the separation of gravity and only obtaining the linear accelerations achievable,
after which this displacement is compared to a significant motion threshold that is adaptively tuned
based on the user previous steps. If the displacement is found to be greater than the threshold, the
step is valid and is counted, otherwise considered as a false positive and removed. Equations (16)–(18)
represent the displacement of the current step, the step threshold computation, and the condition for
accepting a step. The step displacement is the double integration of the linear acceleration within the
detected step period denoted by start (s) and end (e). The step threshold is computed as 0.6 of the
average of the previous k steps.

The step window k is set to 3 to keep information of recent step sizes while being able to adapt
to changes in walking speeds. As the window size increases, the capability of the algorithm to cope
with changing walking speed would degrade at transition points with fast speed change. On the other
hand, if the window is set too small, there will not be enough information to represent the motion
speed when the user is walking with a nearly steady pace.

The 0.6 factor used is to compensate for sudden drop in step length when transitioning from
running to walking, while neglecting displacement from accelerations integration over time from arm
motion in static mode.

dn =
ex

s
lanorm (16)

ths =
0.6
k

k

∑
i=1

dn−i (17)

dn > ths (18)

where: dn = nth step displacement; lanorm = linear acceleration norm; and ths = step
displacement threshold.

3.7. Proposed Step Detection Algorithm

The proposed step detection and counting technique applies a sequence of algorithms to detect
the steps taken by a user and verify them. The algorithm is a real-time processing of the sensor
data with only a one epoch delay for detecting the peaks and valleys in the signal. Table 1 shows
the notations of the variables used in the algorithm. Algorithms 1–6 show the main modules of the
proposed methodology, while Algorithm 7 shows the main operation framework of the system.



Sensors 2017, 17, 2573 16 of 24

Table 1. List of variable notations used in the algorithm.

Notations

an Acceleration magnitude at time n
Ask Accelerations during Kth detected step

apeakk Kth peak magnitude
avalleyk Kth valley magnitude
LPD Last peak/valley pair difference

F Sampling frequency
Fi Frequency index for selecting filter coefficients, where 5 is the max index
fω Estimated angular rates frequency
fm Estimated magnetic intensity frequency
fa Estimated acceleration frequency
S Peak detection state: 1 for peak, −1 for valley, and 0 for intermediate point

ω(n) A window of size n of angular rates vector
m(n) A window of size n of magnetic intensity vector
σωk Variance for angular rates of axis k
σmk Variance for magnetic intensities of axis k
dr Dominance rank

ta peak Time of latest acceleration peak
tavalley Time of latest acceleration valley
tω peak Time of latest angular rate peak/valley
tm peak Time of latest magnetic intensity peak/valley
tth peak Time threshold for peak matching

ta/r Time threshold for end of rejection zone and beginning of candidate detection
thu Time threshold for updating acceleration peak/valley
ths Significant displacement threshold for step validation

Algorithm 1. Detect candidate (window of last three accelerations)

If |an−1| > |an−2| && |an|
Return (S = 1)

Elseif |an−1| < |an−2| && |an|
Return (S = −1)

Else
Return (S = 0)

Algorithm 2. Peak update (thu, Sk−1, Sk)

If Sn−1 == Sn

If Sn =1 && (ta peakk
− ta peakk−1

< thu) && apeakk > apeakk−1
Return(update-peak)
Elseif Sn = −1 && (tavalleyk

− tavalleyk−1
< thu) && avalleyk < avalleyk−1

Return(update-valley)
Else

Return(no-update)

Algorithm 3. Adaptive filter frequency selector (LPD)

If previous state is static
Return (Fi = 1)

Else
Return (minimum (Fi = ceil(F/(LPD*2)), 6))
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Algorithm 4. Dominant axis extraction(ω(n), m(n))

Compute σωx(n), σωy(n), σωz(n), σmx(n), σmy(n), σmz(n)
For each axis

If signal is periodic For all axes of gyro and mag
draxisω = σaxisω/|2× fω axis − fa|
draxism = σaxism/|2× fmaxis − fa|
Else
dr = 0

Return (max (drω), max (drm))

Algorithm 5. Peak matching (ta peak, tω peak, tm peak)

If tω peak − tm peak < tth peak
Return(matching)

Elseif ta peak − tω peak < tth peak || ta peak − tm peak < tth peak
Return(matching)

Else
Return(non-matching)

Algorithm 6. Step validation (Ask)

d =
s

Ask for detected step displacement
If d > ths

Return(valid)
Else

Return(invalid)

Algorithm 7. Step detection framework

Initiate adaptive filter frequencies and coefficients
Repeat for each sample:
——- peak extraction and update section ——-
If in motion

Filter measurements
S← Detect candidate
If S = 1

If Sk−1 = −1 && time_since_valley > ta/r
Valid peak detected

Elseif Sk−1 = S
∆t = tSK − tSK−1
apeakk = peak update (thu, Sk−1, Sk)
If ∆t ∼= step duration && significant motion detected

Account for valley miss
Endif

Endif
Elseif S = −1

If Sk−1 = 1 && time_since_peak > ta/r
Valid valley detected

Elseif Sk−1 = S
∆t = tSK − tSK−1
avalleyk = peak update (thu, Sk−1, Sk)
If ∆t ∼= step duration && significant motion detected

Account for peak miss
Endif
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Endif
Endif

——- peak validation from gyroscope and magnetometer ——-
dominant axis extraction(ω(n), m(n))

If dr > 0
Sω , Sm ← Detect candidate(ω(n), m(n))

If Sω = 1 || Sω = −1
peak matching(ta peak, tω peak, tm peak)
validate matching peaks

Endif
Endif

——- step validation ——-
step validation (Ask)
adaptive filter frequency selector (LPD)

4. Testing

To test the proposed algorithm, datasets were collected by two smartphones, namely the HTC
m9 and the iPhone 6. The test scenarios explained in the following subsection were carried out on
both devices by multiple users. The algorithm was implemented on the android device, which utilizes
a Qualcomm Snapdragon 810 [48] with a clock speed up to 2.0 GHz. SensorLog app [49] was used
on the iPhone device to log data that were processed in a sequential manner to emulate the real-time
scenario. The android version operated in the background without causing degraded user experience.
It is to be noted that, from the presented pseudocodes, the algorithm does not apply any extensive
computations that would require high resources.

4.1. Experimental Setup

A group of ten users contributed to the data collection for the algorithm testing. The group is
composed of five males and five females within the ages of 21–34. Each of the test subjects carried out
a walking test of 100 steps for six different phone use-cases and four walking modes summing up a
total of 24 tests per user. Table 2 shows the tests carried out by the test subjects.

Table 2. Collected dataset description.

Datasets

Device Pose
Step Mode

Walking Regular Pace Slow Walking Running Combined

Compassing 10 (200 steps) 10 (200 steps) 10 (200 steps) 10 (200 steps)
Dangling 10 (200 steps) 10 (200 steps) 10 (200 steps) 10 (200 steps)
Texting 10 (200 steps) 10 (200 steps) 10 (200 steps) 10 (200 steps)
Phoning 10 (200 steps) 10 (200 steps) 10 (200 steps) 10 (200 steps)
Pocket 10 (200 steps) 10 (200 steps) 10 (200 steps) 10 (200 steps)

Free-motion 10 (200 steps) 10 (200 steps) 10 (200 steps) 10 (200 steps)

In addition to the data presented in the previous table, six tests were carried out, where, in
each test, the user walked 383–594 steps while changing the phone orientation, use-case, varying
the walking speed, switching between walking and running, and scaling stairs. In those three tests,
step counts provided by two wrist fitness bands were sampled to be compared with the proposed
implementation. The wristbands used were the Fitbit Flex2 and the Xiaomi Mi Band 2. The bands were
mounted on the right wrist while the smartphone was held in the right hand, hence all of the devices
are experiencing nearly the same signals, except for the case when the phone was placed in the pocket.
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4.2. Results

Table 3 shows the average detection success of the proposed algorithm for each combination of
step mode and device pose carried out by the test subjects. The walking pace for the regular walking
ranged between 1.5 and 2.3 steps, the slow walking between 0.7 and 1.3, and the running between 2.5
and 4 steps. As seen, the lowest performance recorder for step modes was in the slow walking case;
this occurs because the motion noise becomes more dominant in slow step modes, like hand shaking
and imbalance in motion. As the speed of motion increases, the motion noise ratio to the motion signal
itself becomes less and is filtered out easily. The effect of the motion noise was highest when in texting
mode, which was caused by the patters generated from the tapping on the screen being dominant and
causing many fake peaks. The best reported performances where in the case of regular walking with
compassing, pocket and phoning, which was due to the relative static pose of the phone, which made
the motion signal dominant in comparison to the device motion.

Table 3. Average accuracy of the proposed algorithm.

Detection Accuracy

Device Pose
Step Mode

Walking Regular Pace Slow Walking Running Combined

Compassing 100% 99.85% 99.9% 99.9%
Dangling 99.85% 99.65% 99.85% 99.8%
Texting 99.9% 99.00% 99.9% 99.65%
Phoning 99.95% 99.85% 99.95% 99.9%
Pocket 100% 99.85% 99.95% 99.95%

Free-motion 99.8% 99.4% 99.75% 99.6%

Overall, the performance of the algorithm can be judged based on the final criterion of use-case,
which is free-motion. In this test, the test subjects were asked to use the phone in a combination of
different poses while walking non-stop. The most important test case is the combination of mixed step
mode with free moving device. The reported accuracy is 99.6%, which means that, out of a total of
2000 steps taken by all the test subjects, only 8 steps were missed.

The remaining six tests were not pre-planned. For each test, the user walked around for three
to four minutes switching between device pose and step modes. Table 4 shows the performance
evaluation of the proposed algorithm in comparison to the FitBit Flex2 and Xiaomi MIBand2. Two of
the environments where the tests were carried out are shown in Figures 15 and 16. As shown, the places
where the tests took place varied between indoor and outdoor environments to test the stability of
the algorithm.

Table 4. Performance evaluation in comparison to Flex2 and MiBand2.

Test
Performance

Proposed Flex2 MiBand2

Test 1 (383 steps) 381–99.47% 378–98.69% 376–97.66%
Test 2 (411 steps) 409–99.51% 405–98.54% 407–99.02%
Test 3 (433 steps) 430–99.31% 426–98.38% 425–98.15%
Test 4 (485 steps) 482–99.38% 475–97.93% 473–97.52%
Test 5 (530 steps) 527–99.43% 522–98.49% 520–98.11%
Test 6 (594 steps) 592–99.66% 582–97.97% 579–97.47%

Overall (2836) 2821–99.47% 2788–98.31% 2780–98.02%
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were carried out.

For elaboration, the signals from Test 1 are shown in Figures 17 and 18. The filtering successfully
adapted to the speed of motion, where at some point the user was running at a pace of 5 Hz. If the
signal was filtered with a constant cut-off frequency, it would have been either under-filtered and
suffer from undesired motion noise, or over-filtered where the magnitudes of the acceleration during
the running period would have been drastically reduced and would have caused the system to fail in
the detection.

The extraction of the dominant axis of motion for both the magnetometer and the gyroscope after
filtering was also successful, where, in the case of the magnetometer, there were two dominant axes
of motion and the algorithm switched between them based on the variance of the signal. It can be
deduced from the figure that the user switched between dangling the phone at times and holding it
nearly steady at others. The change of the orientation of the device and the step mode taken by the
user did not affect the performance of the extraction nor the peak detection and hence leading to good
step detection with high accuracy.

Results shown in Table 4 indicate a higher performance by the proposed algorithm in comparison
to the two fitness bands used. A minimum accuracy of 99.38% and a maximum of 99.66% are reported
with an average of 99.47%. In all tests, the proposed algorithm using the smartphone outperformed
the accuracy of both bands.
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The reported results in Tables 3 and 4 are compensated for false positives. In some cases, in the
tests, false steps were counted that should have been filtered. For each false positive detected through
manual analysis of the datasets, a step was subtracted from the resulting count for that test to get the
actual accuracy of detection. The case with the most reported false positives was the typing while in
slow walking speed step mode with 13 false positives. The number of false positives detected was
19 steps out of 111 misdetections through the 50,836 total steps taken in the experiment. This yields
a 17.12% of the miscounts being false steps, where 11.71% of the miscounts occurring in the specific
combination of use-case texting and slow walking step mode.
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5. Conclusions

A novel step detection algorithm using smartphones was proposed for detecting steps while
being invariant to the device pose, use-case, and step mode of the user. An adaptive low-pass filter
that continuously tunes the cut-off frequency was proposed, where the filter successfully selects the
appropriate cut-off frequency reducing the motion noise in the signal while preserving crucial walking
information. Fusion of information from the angular rates and magnetic intensity with the acceleration
norm was proposed for peak detection verification in cases of high angular rates with periodicity.
All the thresholds used for detection are adaptively computed during operation to cope with step
mode variations and are independent from user specific information and behavior. The proposed
algorithm shows high versatility with a maximum accuracy of 100% in some cases of fixed device pose
and a minimum of 99.1% in the case of slow walking while texting due to screen tapping induced
noise. The reported average accuracy is 99.6% for combined step modes with low dynamic phone pose
change over time, and a 99.47% for high dynamic changes. The proposed algorithm outperformed the
accuracy of two fitness bands available in the market while not requiring any extra hardware to be
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used, as in the case of a wrist mounted fitness band. This algorithm provides a convenient means of
self-assessing activity levels while only requiring the installation of an app on a user’s smartphone,
and can also impact the accuracy of a PDR by accurately detecting steps taken.
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