
RESEARCH ARTICLE

Assessing COVID-19 risk with temporal indices

and geographically weighted ordinal logistic

regression in US counties

Vivian Yi-Ju ChenID
1*, Kiwoong Park2, Feinuo SunID

3, Tse-Chuan Yang4

1 Department of Statistics, Tamkang University, Taipei, Taiwan, 2 Department of Sociology, The University

of New Mexico, Albuquerque, NM, United States of America, 3 Global Aging and Community Initiative, Mount

Saint Vincent University, Halifax, Nova Scotia, Canada, 4 Department of Preventive Medicine and Population

Health, University of Texas Medical Branch, Galveston, TX, United States of America

* viviyjchen@gms.tku.edu.tw

Abstract

Purpose

Research on the novel coronavirus diseases 2019 (COVID-19) mainly relies on cross-sec-

tional data, but this approach fails to consider the temporal dimension of the pandemic. This

study assesses three temporal dimensions of the COVID-19 infection risk in US counties,

namely probability of occurrence, duration of the pandemic, and intensity of transmission,

and investigate local patterns of the factors associated with these risks.

Methods

Analyzing daily data between January 22 and September 11, 2020, we categorize the con-

tiguous US counties into four risk groups—High-Risk, Moderate-Risk, Mild-Risk, and Low-

Risk—and then apply both conventional (i.e., non-spatial) and geographically weighted (i.e.,

spatial) ordinal logistic regression model to understand the county-level factors raising the

COVID-19 infection risk. The comparisons of various model fit diagnostics indicate that the

spatial models better capture the associations between COVID-19 risk and other factors.

Results

The key findings include (1) High- and Moderate-Risk counties are clustered in the Black

Belt, the coastal areas, and Great Lakes regions. (2) Fragile labor markets (e.g., high per-

centages of unemployed and essential workers) and high housing inequality are associated

with higher risks. (3) The Monte Carlo tests suggest that the associations between covari-

ates and COVID-19 risk are spatially non-stationary. For example, counties in the northeast-

ern region and Mississippi Valley experience a stronger impact of essential workers on

COVID-19 risk than those in other regions, whereas the association between income ratio

and COVID-19 risk is stronger in Texas and Louisiana.
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Conclusions

The COVID-19 infection risk levels differ greatly across the US and their associations with

structural inequality and sociodemographic composition are spatially non-stationary, sug-

gesting that the same stimulus may not lead to the same change in COVID-19 risk. Potential

interventions to lower COVID-19 risk should adopt a place-based perspective.

Introduction

The United States (US) has been the epicenter of the novel coronavirus disease 2019 (COVID-

19) global pandemic since late January, 2020. The US population makes up 4 percent of the

world population [1]; however, as of August 31, 2021, there are more than 38 million con-

firmed COVID-19 cases and over 635,000 deaths in the US [2], which account for approxi-

mately 18 percent of confirmed cases and 14 percent of COVID-19 deaths worldwide. While

the pandemic has been contained with vaccination, the numbers of confirmed COVID-19

cases and deaths since late 2020 in the US have increased rapidly. Many scholars have paid

attention to the health disparities in COVID-19 infections within the US, and this line of

knowledge inquiry has documented disparities along several sociodemographic dimensions.

For example, racial/ethnic minorities (e.g., non-Hispanic blacks and Hispanics) carry a dispro-

portionate burden of COVID-19 infections and deaths in contrast to non-Hispanic whites [3–

5]. High levels of residential segregation between non-Hispanic whites and other racial/ethnic

minorities further aggravate the burden among minorities [6–8]. Moreover, areas with low

socioeconomic status (e.g., low median income and educational attainment) observe higher

COVID-19 case and mortality rates [9, 10], and counties with high concentrations of older

adults recover from the pandemic more slowly compared with those with low proportions of

older adults [11].

Beyond these sociodemographic disparities in COVID-19 outcomes, there is a growing

interest in the spatial patterns of COVID-19 cases and deaths in the US. Sun and colleagues

[12] apply various spatial econometrics models to the data of contiguous US counties and find

that counties with high COVID-19 prevalence rates cluster in both coasts and the Black Belt.

Using clustering analysis, Andersen et al. [13] suggest that counties in the northeastern, south-

eastern, and southwestern region of the US tend to have higher COVID-19 case and mortality

rates than counties in other regions. To account for spatial non-stationarity in the determi-

nants of COVID-19, geographically weighted regression (GWR) modeling techniques have

been employed recently. For example, Karaye et al. [14] employ GWR to explore spatial vari-

ability in the impacts of social vulnerability on COVID-19 case counts across US counties.

Mollalo et al. [15] adopt multi-scale GWR to investigate different behavior of COVID-19 inci-

dence in response to the selected socioeconomic and environmental characteristics. Their

results report that spatial heterogeneity is strong in the northeastern US region, especially in

the New York, Connecticut, and New Jersey states [15]. These studies demonstrate that some

areas suffer from the COVID-19 pandemic more than others, and there are clear spatial clus-

ters and great spatial non-stationarity within the US.

Though the previous research has provided new insight into health disparities in COVID-

19 in the US, most, if not all, prior studies analyze the cumulative numbers of COVID-19 cases

or deaths as of a particular date. We argue that this approach overlooks the daily changes in

these outcomes and fails to consider the temporal trend of how the pandemic evolves in an

area [16]. Some scholars have included the number of days since the first case in their analysis
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[3, 12]; nonetheless, this approach still does not consider the daily variation. From the epide-

miological perspective, an infectious disease epidemic is a consequence of intensive contact

with those who have the disease and being exposed to other risk factors [17]. The commonly

used cumulative case/death rates in extant literature cannot distinguish different patterns of

transmission over the same time period because epidemic frequency and occurrence may vary

in two regions having the same incidence rate during the given period [16].

In this study, we fill the gap by explicitly measuring three temporal dimensions of the

COVID-19 pandemic in US counties from late-January to mid-September, 2020, namely prob-

ability of COVID-19 occurrence, duration of COVID-19 infection, and intensity of COVID-

19 transmission. These dimensions allow us to define the long-term risk of COVID-19 infec-

tion in US counties. We explore the spatial distributions of different levels of risk, and then

investigate the determinants of the risk level with a geographically weighted ordinal logistic

regression model (GWOLR). To the best of our knowledge, the GWOLR model has not been

utilized in COVID-19 literature and this analytic approach helps us to not only identify various

factors of COVID-19 infection risk but also examine if these impacts are stable over space. The

next two sections will discuss the data and methods used in this study, followed by the results

section. We will then discuss the findings and draw conclusions from the results.

Materials

Data sources

We assembled a dataset of 3,106 counties in the contiguous US with the following data sources:

the Coronavirus Live Map [18], County Health Ranking and Roadmaps (CHRR) [19], the

Area Health Resources Files [20] and Census Bureau GIS data [21]. It should be noted that the

CHRR data synthesize various socioeconomic and health variables from several national data-

sets, such as the American Community Survey, Census Population Estimates, Small Area

Income and Poverty Estimates, and the National Center for Health Statistics.

Measures

Our dependent variable is an ordinal variable comprising of four categories: low-risk, mild-

risk, moderate-risk, and high-risk counties. These categories are created with the following

three epidemiological measures, namely a frequency index (α) that measures the occurrence

probability, a duration index (β) that describes the persistence of transmission, and an inten-

sity index (γ) that quantifies the epidemic severity. We first obtained the daily number of con-

firmed COVID-19 cases in a county between January 22 and September 11, 2020, and these

numbers are based on the information released by the Centers for Disease Control and Pre-

vention, state- and local-level public health agencies [18]. We then followed the work by Wen

et al. [16] to transform the daily COVID-19 counts into the above three epidemiological risk

indices for each county. The details about how these indices are calculated can be found in the

S1 Appendix.

We applied the local indicator of spatial association (LISA) technique [22] to each epidemi-

ological measure to identify spatial patterns, including clustering and outliers. The LISA index

is defined as

Ii ¼
Xi �

�X
S
�
X3106

j¼1

Wij �
Xj �

�X
S

where Ii is the LISA index for county i, Xi and Xj are respectively the values of an epidemiologi-

cal measure for county i and j (j6¼i), �X is the mean value of the measure across all counties, S
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represents the standard deviation of the epidemiological measure, and Wij is the first-order

queen contiguity-based spatial weights matrix. We obtained the results of the “hotpot” status

of each county and recoded if a county falls into the so-called “hotspots” of each measure (i.e.,

a county with a high value of probability of occurrence is surrounded by counties with similar

levels of risk) or is surrounded by counties with high risks. As such, we defined low-risk coun-

ties as those that do not fall into any hotspot, and high-risk counties indicate those counties in

a hotspot for all three epidemiological measures. Similarly, mild-risk counties refer to those

falling into a hotpot for only one measure, and moderate-risk counties are those falling into a

hotspot for any two measures. We have conducted sensitivity tests with other weighting

schemes (e.g., rook contiguity) and found that the results are largely the same.

Our independent variables can be categorized into four groups: (1) demographic composi-

tion and the number of days since the first confirmed case, (2) labor market factors, (3) hous-

ing inequalities, and (4) health infrastructure, and we discussed them as follows.

Demographic composition includes the percentages of non-Hispanic blacks (hereinafter

blacks), non-Hispanic Asians (hereinafter Asians), Hispanics, and population density (divid-

ing population by county land area) which is standardized to avoid singularity. We included

the number of days between the first confirmed case and September 11, 2020.

We used five variables to assess the labor market of a county: the percentage of population

aged 65 and older, unemployment rate, logged median family income, the percentage of essen-

tial workers, and the percentage of workers who work outside the county of residence.

Housing inequalities are gauged with the percentage of housing units with severe housing

problems (e.g., lack of complete kitchen or plumbing facilities), the ratio of the 80th and 20th

percentiles of income, and the nonwhite/white segregation index (i.e., dissimilarity index).

The segregation index ranges from 0 to 100 and higher values indicate higher levels of residen-

tial segregation between nonwhite and white residents [23].

Health infrastructure includes the percentage of adult population without health insurance

and the Health Professional Shortage Area (HPSA). The HPSA coding scheme is included in

the Area Health Resources Files and has three levels: counties that are not at any shortage, part

of the county is at shortage, and the whole county is at shortage. A conventional approach is to

create two dummy variables in the analysis; however, we treated this ordered variable with the

ridit method [24]. This technique assigns numerical scores to each category based on the dis-

tribution of this ordered variable and helps users to account for the ordinality in various disci-

plines [25].

Methodology

Analytic strategy

Using Federal Information Processing Series (FIPS) codes, we merge the data to the county-

level shapefile from US Census Bureau [26] using ArcGIS [27]. We first visualize the spatial

distribution of different levels of COVID-19 risk. We then conduct descriptive statistics analy-

sis for all counties and by levels of risk and then implemented pair-wise comparison test to bet-

ter understand the differences across groups. As our dependent variable is an ordinary

variable, we implement the conventional (i.e., non-spatial) ordinal logistic analysis to assess

the overall associations between COVID-19 risk and the covariates. Furthermore, to investi-

gate the potential spatially non-stationary associations and given the ordinal nature of the out-

come variable, we apply the geographically weighted ordinal logistic regression (GWOLR)

technique to our data and use the Monte Carlo test to formally examine whether the associa-

tions of interest vary across US counties. Regarding model specification, we implement four

nested regression models as follows. Model 1 includes the demographic composition and days
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since the first confirmed case and Model 2 further considers labor market factors. We add

housing inequality variables to Model 3 and health infrastructure covariates to Model 4,

respectively. Both non-spatial modeling and GWOLR will be applied to these model specifica-

tions and we will compare the results with various model fit diagnostics (e.g., concordance

index and correction rate). All the analyses are implemented in R [28].

Geographically weighted ordinal logistic regression

Let Yi be the categorical dependent variable with four ordered risk levels (1 = low-risk,

2 = mild-risk, 3 = moderate-risk, 4 = high-risk) at county i, and xi be the selected row-vector of

the county-level characteristics. A conventional/non-spatial global ordinal logistic regression

model (OLR) describes the relationship between Yi and xi via logit equations:

logit PðYi � jÞ½ � ¼ log
PðYi � jÞ

1 � PðYi � jÞ
¼ aj � xiβ ð1Þ

where P Yi � jð Þ ¼
expðaj � xiβÞ

1þexpðaj � xiβÞ
is the cumulative probability for outcome category j (j = 1,2,3),

and aj represents separate intercept parameter for each logit; β is the vector of regression coef-

ficients that are constant across logits. A positive coefficient implies the increasing probability

of being in higher COVID-19 risk categories. The probability of being in category j can be

computed by taking differences between the cumulative probabilities,

PðYi ¼ jÞ ¼ PðYi � jÞ � PðYi � j � 1Þ for j ¼ 2; 3

and P(Yi = 1) = P(Yi�1). In fitting model (1) to data, all parameters can be estimated with

maximum likelihood methods simultaneously.

The OLR in (1) builds the model specification without a spatial perspective and is unable to

explore the potential spatially varying relationships between the dependent and independent

variables. As such, GWOLR developed by Dong et al. [29] is a spatial local modeling technique

that extends OLR to the GWR modeling framework and allows regression coefficients to vary

across space. As such, the model can be expressed as:

logit PðYi � jÞ½ � ¼ log
PðYi � jÞ

1 � PðYi � jÞ
¼ aj ui; við Þ � xiβ ui; við Þ

where (ui, vi) represents the geographical coordinates of county i.
The regression coefficients in GWOLR can be estimated by a geographically weighted local

likelihood approach and carried out with the maximum likelihood method. The principle is to

place a kernel around a county, and then compute the local estimates using all the observations

within the kernel window. Several choices exist for the kernel function; see Fotheringham et al.

[30] for more discussions. In this study we use the commonly used adaptive bisquare kernel

function given below:

wij ¼
1 �

dij

h

� �2
" #

0 otherwise

if dij < h

8
><

>:

where wij is the weight value of county j for the coefficient estimation in county i and dij is the

distance between county i and county j. As can be seen, counties closer to the county i are

assigned larger weights than those farther away. The parameter h is the kernel bandwidth regu-

lating the kernel size, and finding an optimal one is crucial to GWOLR estimations. Following

Dong et al. [29], we estimate the optimal bandwidth by minimizing the cross validation (CV)
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criteria

CV ¼
Xn

i¼1

ð1 � jP̂ðYi ¼ jÞjkÞ2

for k being a binary indicator variable with k = 1 when Yi = j and k = 0 otherwise.

The model calibrations and estimations for GWOLR are carried out with the R library

developed by Dong et al. [29], which are available in the Supporting Information of Dong

et al’s work.

Model evaluations

To validate the use of GWOLR, we calculate four metrics to compare between the four local

models and for comparisons with the global OLR. These criteria include the pseudo R2 derived

using multiple correlation as suggested in Agresti and Tarantola [31], the deviance, the overall

proportion of correct classification (i.e., correction rate), and the concordance index based on

the area under the Receiver Operating Characteristic (ROC) curve as defined by Hand and Till

[32]. The smaller the deviance and the higher the other three statistics, the better the model

predicts the ordinal outcome using model fit [25, 31].

Test of spatial non-stationarity

Investigation on whether a particular regression coefficient varies across space is essential for

this study and it takes a formal statistical test to attain this purpose [29]. Therefore, a Monte

Carlo randomization test approach is used to examine whether the local coefficients vary sig-

nificantly across space, which is known as spatial non-stationarity. Even though this technique

is computationally demanding, it does not need to derive the sampling distribution of the vari-

ance of the local parameter estimates, an advantage over other parametric techniques. The

concept is to test the null hypothesis that the local coefficients drawn from the GWOLR mod-

els do not vary greatly enough (i.e., statistically constant) using the permuted data with loca-

tions arbitrarily reallocated in space. If the variance of the local parameter estimates of the

original model fall in the 5% tails of those obtained from the simulated models, we have evi-

dence to reject the null hypothesis and to conclude that non-stationarity exists in the local

regression estimates.

Results

Descriptive analysis results

Fig 1 demonstrates the spatial distribution of different levels of COVID-19 risk classified based

on LISA hotspot analysis (see S1 Appendix for LISA maps). To be specific, approximately 8

percent of the contiguous counties (n = 262) are categorized into the high-risk group and

these counties are clustered in the following areas: southern California and Arizona (the

US-Mexico border), the Black Belt, New York City, and southern Florida. Almost 15 percent

of counties (n = 437) are found to have a moderate risk and they are concentrated in the north-

eastern region (especially New York, Connecticut, and New Jersey) and the Great Lakes

region. About 10 percent of counties show a mild-risk of COVID-19 infection (n = 325) and

they are in the States of Washington and Arizona and southern Georgia and South Carolina.

Slightly more than two-thirds of counties (n = 2,082) are in the low-risk group. These patterns

echo the extant literature suggesting that the COVID-19 risk is not evenly distributed in the

US [12, 15].
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County characteristics stratified by COVID-19 risk level and the results of pairwise t-tests

are presented in Table 1. We summarize a few important observations. First, the percentages

of blacks and Asians are found to be higher in mild/moderate/high COVID-19 risk counties,

compared to low-risk counties. For example, while only 4.4% of residents are blacks in low-

risk counties, more than one-fourth of residents are blacks (26.3%) in high-risk counties. It is

also likely that Asians are found to live in moderate/high-risk counties, rather than low/mild-

risk counties. Proportion of Hispanics in county is not statistically different across the level of

COVID-19 risk. Population density as well as the days since the first confirmed case is likely to

be higher in moderate/high-risk counties, compared to that of low/mild-risk counties.

Second, the percentages of the unemployed and people working outside the county of resi-

dence are higher in high COVID-19 risk counties than those of counties where COVID-19

risk is low, mild, or moderate. The proportion of senior residents who are older than 65 is

higher in low-risk counties, compared to that of higher risk counties. In moderate-risk coun-

ties, median income is shown to be highest, and the proportion of essential workers is found to

be lowest.

Third, regarding housing inequality, moderate/high COVID-19 risk counties are more

likely to have severe housing problems (17.2% in high-risk counties) and nonwhite-white

Fig 1. Levels of COVID-19 risks in US counties. Source: The figure is drawn using ArcGIS software. The shapefile used to create the map is from the US

Census Bureau and therefore reproducible by law.

https://doi.org/10.1371/journal.pone.0265673.g001
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segregation issues (35.9% in moderate-risk counties). Income inequality, measured by income

ratio (80th to 20th), is the highest in high COVID-19 risk counties.

Fourth, high COVID-19 risk counties appear to have poor health infrastructure. Highest

proportion of uninsured residents (13.4%) are found to reside in high-risk counties, and about

one-third of high-risk counties (33.6%) are entirely a Health Professional Shortage Area

(HPSA), and only about 6% of high-risk counties have no shortage problems.

Global OLR results

In Table 2, we conducted ordinal logistic regression analyses to examine what characteristics

of county are associated with the level of COVID-19 risk. In Model 1, the relationships

between demographic characteristics and the level of COVID-19 risk in county are presented.

One percent point increase in black residents in a county is associated with a 6% increase in

the odds of moving up to the next COVID-19 risk level (i.e., low to mild, mild to moderate,

moderate to high; OR = exp (0.059) = 1.06). Similarly, an increase in the Hispanic population

is marginally correlated with higher COVID-19 risk in county (OR = exp (0.010) = 1.01). The

proportion of Asians, however, does not predict the level of COVID-19 risk in county. One

unit increase in population density (logged) is related to 48% (OR = exp (0.389) = 1.48)

increase in the odds of changing to the higher COVID-19 risk level in county. The number of

Table 1. Descriptive statistics of all variables by COVID-19 risk.

Overall Low risk Mild risk Moderate risk High risk

Variables Mean or % S.D. Mean or % S.D. Mean or % S.D. Mean or % S.D. Mean or % S.D. t-test results†

% Blacks 9.1 14.4 4.4 8.6 17.4 19.3 14.9 15.6 26.3 19.7 a, b, c, e, f

% Asians 1.5 2.5 1.0 1.2 1.7 2.6 3.2 4.8 2.0 3.0 a, b, c, d, f

% Hispanics 9.7 13.9 9.6 14.6 10.8 15.4 9.1 8.9 10.4 13.4

Population density (logged) 3.8 1.8 3.3 1.6 4.2 1.5 5.5 1.5 4.8 1.6 a, b, c, d, e, f

Time to first case (days) 88.3 24.5 82.5 27.0 95.6 12.8 102.4 10.3 101.6 8.4 a, b, c, d, e

% Older than 65 19.3 4.7 20.1 4.6 18.1 3.9 17.3 4.1 17.7 4.7 a, b, c, d

% Unemployed 4.1 1.4 4.0 1.4 4.4 1.6 4.1 1.0 4.5 1.6 a, c, d, f

Median income (standardized) 0.0 1.0 -0.1 0.8 -0.1 1.1 0.7 1.4 -0.1 1.2 b, d, f

% Essential workers 68.1 6.7 68.5 5.9 69.0 6.8 65.1 8.7 69.1 7.1 b, d, f

% Work outside the county of residence 30.8 17.8 28.5 17.3 33.3 17.6 35.9 17.0 37.1 19.4 a b, c, d, e

% Severe housing problems 14.4 4.4 13.5 4.0 15.6 4.4 16.1 4.1 17.2 4.8 a, b, c, e, f

Nonwhite-white segregation index 30.8 12.4 29.4 12.2 31.6 12.3 35.9 12.1 33.0 12.4 a, b, c, d, f

Income ratio (80th to 20th) 4.5 0.8 4.4 0.7 4.7 0.9 4.5 0.8 5.0 0.9 a, b, c, d, e, f

% Uninsured 11.4 5.1 11.5 5.2 12.0 5.2 9.7 4.5 13.4 4.0 b, c, d, e, f

HPSA

No shortage 10.6 10.5 10.3 13.5 6.1 c, f

Part of the county is at shortage 62.9 62.3 61.2 69.1 60.3 b, d, f

The whole county is at shortage 26.5 27.2 28.3 17.4 33.6 b, c, d, f

N 3,106 (100.0%) 2,082 (67.0%) 325 (10.5%) 437 (14.1%) 262 (8.4%)

† Two sample t-test results (at least 0.05 significance level

a: low risk vs. mild risk

b: low risk vs. moderate risk

c: low risk vs. high risk

d: mild risk vs. moderate risk

e: mild risk vs. high risk

f: moderate risk vs. high risk)

https://doi.org/10.1371/journal.pone.0265673.t001
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days since the first confirmed case is positively associated with COVID-19 risk level, with an

about 4% (OR = exp (0.043) = 1.04) increase in the odds of higher risk for every one-day

increase.

Model 2 includes labor market factors of county, in addition to the variables used in Model

1. A one-percentage-point increase in the essential workers is associated with 8% increase in

the odds of changing to the higher COVID-19 risk level. In terms of standardized median

income, a one-unit increase in this variable elevates the odds of having a higher COVID-19

risk level by 75% (OR = exp (0.559) = 1.75) in a county. Both the percentage of unemployment

and the proportion of people older than 65 are not statistically related to the level of COVID-

19 risk in county.

Model 3 additionally estimates the effects of factors indicating housing inequalities. One

unit increase in nonwhite-white segregation index is associated with increased odds of chang-

ing to the higher COVID-19 risk level by 2%, whereas severe housing problem is not signifi-

cant to the level of COVID-19 risk level in county. The positive relationships between

variables measuring housing inequalities and COVID-19 risk level in county do not change

when additional variables are accounted for in Model 4.

We further add county variables measuring health infrastructure in Model 4. One percent-

age point increase in the uninsured is associated with a 6% (OR = exp (0.057) = 1.06) increase

in the odds of moving up to the next COVID-19 risk level in a county. Also, for one-category

increase in HPSA, the odds of having higher COVID-19 risk level increases by 73% (OR = exp

(0.546) = 1.73).

Table 2. Ordinal logistic regression for COVID-19 risk (N = 3,106).

Model 1 Model 2 Model 3 Model 4

Odds Ratio 95% CI Odds Ratio 95% CI Odds Ratio 95% CI Odds Ratio 95% CI

Demographics & Time

% Blacks 1.06��� (1.05–1.07) 1.07��� (1.06–1.08) 1.07��� (1.06–1.07) 1.06��� (1.05–1.07)

% Asians 0.99 (0.96–1.02) 0.97 (0.94–1.00) 0.96� (0.92–1.00) 0.96� (0.92–0.99)

% Hispanics 1.01�� (1.00–1.02) 1.01�� (1.00–1.02) 1.01�� (1.00–1.02) 1.00 (0.99–1.01)

Population density (logged) 1.48��� (1.37–1.59) 1.50��� (1.38–1.62) 1.40��� (1.29–1.53) 1.47��� (1.34–1.60)

Time to first case 1.04��� (1.03–1.05) 1.05��� (1.04–1.06) 1.05��� (1.04–1.06) 1.05��� (1.04–1.06)

Labor Market Factors

% Older than 65 1.01 (0.99–1.03) 1.01 (0.99–1.04) 1.01 (0.99–1.03)

% Unemployed 1.07 (0.99–1.16) 1.01 (0.93–1.09) 1.07 (0.98–1.17)

Median income (standardized) 1.75��� (1.52–2.01) 1.99��� (1.70–2.32) 2.19��� (1.87–2.56)

% Essential workers 1.07��� (1.05–1.09) 1.08��� (1.06–1.10) 1.08��� (1.05–1.10)

% Work outside the county of residence 1.02��� (1.01–1.02) 1.02��� (1.01–1.03) 1.02��� (1.01–1.02)

Housing Inequalities

% Severe housing problems 1.01 (0.99–1.04) 1.01 (0.98–1.04)

Nonwhite-white segregation index 1.02��� (1.01–1.03) 1.02��� (1.02–1.03)

Income ratio (80th to 20th) 1.30��� (1.12–1.51) 1.26�� (1.09–1.47)

Health Infrastructure

% Uninsured 1.06��� (1.03–1.09)

HPSA (ridit scores) 1.73�� (1.14–2.61)

Cut 1 7.07��� (6.23–7.91) 13.22��� (11.32–15.12) 15.44��� (13.26–17.62) 16.28��� (14.08–18.48)

Cut 2 7.86��� (7.04–8.68) 14.05��� (12.13–15.97) 16.29��� (14.09–18.49) 17.13��� (14.92–19.34)

Cut 3 9.38��� (8.52–10.24) 15.63��� (13.69–17.57) 17.89��� (15.68–20.10) 18.75��� (16.52–20.98)

https://doi.org/10.1371/journal.pone.0265673.t002
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It should be noted that, when controlling for the health infrastructure factors, while percent

of blacks remains a significant predictor of higher COVID-19 risk in county, percent of His-

panics is no longer statistically significant, suggesting that counties with high concentrations

of Hispanics may also have poor health infrastructure. By contrast, the percentage of Asians

becomes a significant factor that reduces the COVID-19 risk level after housing inequality var-

iables are considered (i.e., Models 3 and 4). This finding suggests that segregation and income

inequality may suppress the relationship between the percentage of Asians and COVID-19

risk.

With the conventional ordinal logistic regression, we found that county’s demographic (i.e.,

% blacks and population density), the number of days since the first confirmed case, labor

market factors (i.e., median income, % essential workers, and % work outside the county of

residence), housing inequalities (i.e., % nonwhite-white segregation index, and income ratio),

and health infrastructure (i.e., % uninsured and HPSA) are consistently associated with the

odds of having higher COVID-19 risk in a county.

GWOLR results

Following the suggested practice of GWR [30], we present the five number summary of the

GWOLR results in Table 3 and visualize the local estimates into maps. The results in Table 3

are based on the specification of Model 4 (Table 2) and an adaptive bisquare kernel weighting

scheme with the optimal bandwidth of 847 nearest neighbors (see Table 4). The last column in

Table 3 shows the Monte Carlo test results for spatial non-stationarity. It should be noted that

we also estimate the model by using a fixed gaussian kernel approach with a distance band-

width of 4.20 miles; the results of model comparison (details not shown) do not favor the use

Table 3. GWOLR estimates and Monte Carlo non-stationarity test results.

Min. Q1 Median Q3 Max Monte Carlo Test p-value

Demographics & Time

% Blacks -0.1974 0.0451 0.0680 0.0975 0.1841 0.00

% Asians -0.2720 -0.0687 -0.0227 0.0294 0.3420 0.00

% Hispanics -0.1145 0.0116 0.0375 0.0793 0.1288 0.00

Population density (logged) -0.5528 -0.0150 0.3364 0.6106 1.7743 0.00

Time to first case -0.0146 0.0160 0.0312 0.0659 0.0922 0.00

Labor Market Factors

% Older than 65 -0.1284 -0.0759 -0.0086 0.0413 0.1280 0.00

% Unemployed -0.8482 -0.3846 -0.1517 0.0493 0.5053 0.00

Median income (standardized) -0.2730 0.7214 0.9132 1.1062 2.0823 0.00

% Essential workers -0.0762 0.0194 0.0538 0.0880 0.1646 0.00

% Work outside the county of residence -0.0143 0.0060 0.0110 0.0181 0.0525 0.02

Housing Inequalities

% Severe housing problems -0.1288 -0.0481 -0.0138 0.0389 0.1507 0.02

Nonwhite-white segregation index -0.0181 -0.0031 0.0207 0.0370 0.0841 0.00

Income ratio (80th to 20th) -1.6040 -0.2816 0.0766 0.3928 0.8701 0.00

Health Infrastructure

% Uninsured -0.1778 -0.0338 0.0376 0.1196 0.3150 0.00

HPSA (ridit scores) -0.8253 -0.0954 0.5753 1.2363 2.6535 0.01

Cut 1 -1.0240 8.2380 11.4480 15.2780 25.9360 0.00

Cut 2 0.8043 9.4207 13.0645 16.2937 26.7128 0.00

Cut 3 2.9750 11.5070 15.7340 19.4160 32.5380 0.00

https://doi.org/10.1371/journal.pone.0265673.t003
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of fixed kernel over adaptive kernel. We draw the key findings from the GWOLR results as fol-

lows. First, all covariates included in the analysis show a spatially non-stationary association

with the COVID-19 risk levels based on the Monte Carlo results. That is, the same change in a

certain covariate is likely to provoke different changes in the COVID-19 risk. Take racial/eth-

nic percentages for example, a one-unit change in the percentage of blacks is estimated to have

as high as 20 percent increase (OR = exp(0.1841) = 1.20) in the odds of having a higher

COVID-19 risk level, but this association is estimated to be negative (i.e., reducing the risk) in

some counties (see the minimum number, -0.1974). The same patterns can be found in the

percentages of Asians and Hispanics.

Second, the five number summary does not consider the local significance test results. To

better demonstrate the local patterns, we follow the mapping technique proposed by Matthews

and Yang [33] to visualize the percentage of essential workers, percentage of workers working

outside the county of residence, and income ratio (maps of other covariates are available upon

request). As shown in Fig 2, the positive associations between the percentage of essential work-

ers and the COVID-19 risk levels are statistically significant in the northeastern region and

counties along the Mississippi Valley. Counties in these areas mainly drive the positive and sig-

nificant global association found in Model 4 (coefficient = 0.074, p< .001) and other counties

do not have a significant association.

Similarly, Fig 3 indicates that the positive association between the percentage of workers

working outside the county of residence and the COVID-19 risk level is only significant

among counties in the states next to Lake of Michigan, southern and eastern Texas, and west-

ern Louisiana. All these counties show a positive association, which echoes the global finding

in Table 2. Furthermore, Fig 4 shows a complex pattern of income ratio. Specifically, many

counties in Michigan, Indiana, and Ohio have a negative relationship between income ratio

and the COVID-19 risk levels. That is, higher income ratios are associated with lower risk in

these blue areas. By contrast, counties in southern and western Texas, Louisiana, Arkansas,

and Mississippi report a positive association between income ratio and the COVID-19 risk

level (red areas). Fig 4 clearly shows the spatial non-stationarity in local coefficient estimates,

which cannot be obtained from the conventional/global ordinal logistic regression models.

We compare the global models with the GWOLR models using various diagnostic statistics

and the results are summarized in Table 4. As suggested by these statistics, GWOLR outper-

forms the global model and this conclusion holds regardless of model specifications. For exam-

ple, residual deviance is smaller for GWOLR models than for the global ones, and the

correction rate is consistently higher among the GWOLR models than their global counter-

parts. Importantly, the model fit diagnostics persistently improve from Model 1 to Model 4,

indicating that the covariates included in our analysis are at least statistically meaningful. As

such, we have evidence to conclude that the GWOLR approach better fit the data than the

global models and the spatially non-stationary associations provide important implications for

existent literature.

Table 4. Model comparisons between OLR and GWOLR.

Model 1 Model 2 Model 3 Model 4

global local global local global local global local

Bandwidth -- 687 -- 825 -- 815 -- 847

Residual deviance 4859.012 3821.575 4699.837 3600.400 4653.724 3502.485 4623.923 3470.945

Pseudo R2 0.3893 0.5508 0.4300 0.5953 0.4433 0.6145 0.4492 0.6236

Correction rate 0.6983 0.7592 0.7038 0.7708 0.7067 0.7746 0.7073 0.7788

Concordance index 0.6257 0.7131 0.6496 0.7416 0.6570 0.7512 0.6726 0.7617

https://doi.org/10.1371/journal.pone.0265673.t004

PLOS ONE Local patterns of COVID-19 risk factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0265673 April 6, 2022 11 / 16

https://doi.org/10.1371/journal.pone.0265673.t004
https://doi.org/10.1371/journal.pone.0265673


Discussion and conclusion

This study adopts three different temporal indices proposed by Wen et al. [16] to describe the

epidemiological characteristics of COVID-19 infection risk in the early stage of the pandemic

in US counties. This application allows us to identify areas with four different levels of risk

drawn from the local spatial autocorrelation. We investigate the factors associated with infec-

tion risks with both global and local ordinal logistic modeling techniques. To our knowledge,

this study is the first application of the GWOLR modeling in the rapidly growing COVID-19

literature and our findings demonstrate great spatial variability in the associations between

COVID-19 risk level and covariates. As most existing studies rely on cumulative case/death

counts or rates, we offer a new perspective to take into account different temporal dimensions

of the pandemic process over a certain period of time.

Compared with the extant literature [8, 12, 13, 15], our findings based on the global models

confirm that minority concentrations, especially blacks, and absolute socioeconomic condi-

tions are important factors that may heighten COVID-19 infection risk over time. However,

several findings indicate that the determinants of risk level may differ from those of COVID-

19 incidence rates. For example, the association between percent of Hispanics and COVID-19

risk level can be explained by health infrastructure measures, which has not been commonly

Fig 2. Map of the GWOLR parameter estimates in % essential workers. Source: The figure is drawn using ArcGIS software. The shapefile used to create

the map is from the US Census Bureau and therefore reproducible by law.

https://doi.org/10.1371/journal.pone.0265673.g002
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reported in the literature (see [3]). In addition, the role of percentage of uninsured population

in a county has been found to be ambiguous [3, 6], but our results show a consistent and posi-

tive relationship with the COVID-19 risk. This finding seems to echo the claim that health

insurance coverage can directly contribute to the health and economic disparities that already

exist in the country [15, 34]. Importantly, we identify that many counties in the Great Lakes

region fall into the high- or moderate-Risk categories, which is not often reported in previous

research.

Our GWOLR findings advance our understanding of the COVID-19 risk in US counties in

at least two ways. On the one hand, our Monte Carlo tests suggest that spatial non-stationarity

commonly exists in the relationships between COVID-19 risk level and other covariates. The

significant global relationships are likely to be driven by some counties and these relationships

tend to differ across space in terms of magnitude and/or direction (i.e., positive or negative).

In other words, the previous findings of the global relationship may not hold for all US coun-

ties and the same change in a covariate may result in different responses in COVID-19 risk.

On the other hand, our ordinal dependent variable is based on three temporal dimensions of

the pandemic, which provides a more comprehensive picture of how the pandemic has

unfolded in an area than a single measurement, such as COVID-19 incidence or death rate

[14, 15]. This approach has not been commonly adopted in the literature and we use the

Fig 3. Map of the GWOLR parameter estimates in % working outside the county of residence. Source: The figure is drawn using ArcGIS software. The

shapefile used to create the map is from the US Census Bureau and therefore reproducible by law.

https://doi.org/10.1371/journal.pone.0265673.g003
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appropriate analytic methods to untangle the relationships between COVID-19 risk level and

its covariates.

Our GWOLR findings suggest that a place-based perspective may be more effective in

developing potential interventions to lower COVID-19 risk at the county level. For example,

providing personal protective equipment to essential workers may be more effective in coun-

ties in the northeastern region or southern and eastern Texas as the percentage of essential

workers is positively associated with COVID-19 risk level. Similarly, reducing income inequal-

ity, the pre-existing structural barriers to health, may be more important for counties in Texas,

Arkansas, and Louisiana than for those in other states. The typical one-size-fits-all policy may

not be effective, in light of the great spatial non-stationarity unveiled in our analysis.

This study is subject to several limitations. First, our daily data focus on the early stage of

the pandemic in the US and the geographical patterns identified in this study may change

when the study period is extended. Second, using a different unit of analysis (e.g., census

tracts) may alter our conclusions and findings [35]. The daily COVID-19 data at a finer spatial

resolution are available for major cities (e.g., New York City), which cannot be used for a

nationwide investigation. Third, the availability of COVID-19 tests over the study period is

not available, which may affect the daily number of COVID-19 cases and our results. However,

it should be noted that our COVID-19 daily data are highly consistent with those from other

Fig 4. Map of the GWOLR parameter estimates in income ratio. Source: The figure is drawn using ArcGIS software. The shapefile used to create the map

is from the US Census Bureau and therefore reproducible by law.

https://doi.org/10.1371/journal.pone.0265673.g004

PLOS ONE Local patterns of COVID-19 risk factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0265673 April 6, 2022 14 / 16

https://doi.org/10.1371/journal.pone.0265673.g004
https://doi.org/10.1371/journal.pone.0265673


sources, such as Johns Hopkins University (correlations > 0.99) and the temporal trends

(available upon request) are almost identical, suggesting that the quality of COVID-19 data is

high and reliable. Finally, this study is ecological and the findings cannot be generalized to

other levels (e.g., individuals).

To sum up, this study identifies four different COVID-19 risk levels with three temporal

dimensions of the pandemic. This approach offers richer information about how the COVID-

19 pandemic evolves over time and allows us to identify the key factors associated with differ-

ent levels of risk. This perspective is a novel use of spatial risk identification and can be applied

to other rapidly spread infectious diseases. While the pandemic has been contained with vacci-

nation, the numbers of new confirmed cases and deaths have grown recently. It becomes criti-

cal to focus on local needs for interventions and our study serves as an example of how to

identify key factors from a local perspective.
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