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Cerebral small vessel disease (SVD) causes lacunar stroke 
and is the major cause of vascular cognitive impairment 

and vascular dementia.1 The characteristic radiological features 
seen on magnetic resonance imaging (MRI) include lacunar 
infarcts, white matter hyperintensities (WMH), and cerebral 
microbleeds, which appear on different MR image types.

The normal appearing white matter (NAWM) in these 
images has been shown to be abnormal using advanced MR 
techniques, particularly diffusion tensor imaging (DTI).2,3 The 
degree of diffuse NAWM damage, assessed on DTI, has been 
shown to correlate more strongly with cognitive impairment 
than T2-WMH lesion load (WMHL).4,5 However, DTI is not 
routinely performed in clinical practice, and there is no simple 

measure that can be used to investigate NAWM damage on 
clinically acquired MRI.

One tool that could assess NAWM damage using conven-
tional MR scans is texture analysis (TA). TA describes the 
relationship between the intensities of neighboring pixels and 
is particularly suited to tissue, such as NAWM, where there is 
only subtle disruption because of disease. This postprocessing 
technique has been used in T1- and T2-weighted images and 
magnetization transfer ratio maps.6

We hypothesized that TA might be sensitive to damage in 
the NAWM in SVD. Previous studies have shown correlations 
between NAWM DTI parameters and cognition,3,7 suggest-
ing that NAWM damage is important in disease progression. 
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Background and Purpose—Magnetic resonance imaging may be useful to assess disease severity in cerebral small vessel 
disease (SVD), identify those individuals who are most likely to progress to dementia, monitor disease progression, and 
act as surrogate markers to test new therapies. Texture analysis extracts information on the relationship between signal 
intensities of neighboring voxels. A potential advantage over techniques, such as diffusion tensor imaging, is that it can 
be used on clinically obtained magnetic resonance sequences. We determined whether texture parameters (TP) were 
abnormal in SVD, correlated with cognitive impairment, predicted cognitive decline, or conversion to dementia.

Methods—In the prospective SCANS study (St George’s Cognition and Neuroimaging in Stroke), we assessed TP in 121 
individuals with symptomatic SVD at baseline, 99 of whom attended annual cognitive testing for 5 years. Conversion 
to dementia was recorded for all subjects during the 5-year period. Texture analysis was performed on fluid-attenuated 
inversion recovery and T1-weighted images. The TP obtained from the SVD cohort were cross-sectionally compared 
with 54 age-matched controls scanned on the same magnetic resonance imaging system.

Results—There were highly significant differences in several TP between SVD cases and controls. Within the SVD 
population, TP were highly correlated to other magnetic resonance imaging parameters (brain volume, white matter lesion 
volume, lacune count). TP correlated with executive function and global function at baseline and predicted conversion to 
dementia, after controlling for age, sex, premorbid intelligence quotient, and magnetic resonance parameters.

Conclusions—TP, which can be obtained from routine clinical images, are abnormal in SVD, and the degree of abnormality 
correlates with executive dysfunction and global cognition at baseline and decline during 5 years. TP may be useful 
to assess disease severity in clinically collected data. This needs testing in data clinically acquired across multiple 
sites.   (Stroke. 2018;49:1656-1661. DOI: 10.1161/STROKEAHA.117.019970.)
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Therefore, we applied gray-level co-occurrence (GLCM) 
matrix-based TA to conventional MR images of patients with 
symptomatic SVD and correlated the derived parameters with 
temporally equivalent neuropsychological test results. We also 
determined whether texture parameters (TP) were independent 
predictors of change in cognitive function in the same popula-
tion and whether they could predict conversion to dementia.

Methods
Because of subject confidentiality, the imaging data are not available 
to researchers. Summary data and analytical methods are available 
from the corresponding author on reasonable request.

Subjects
Symptomatic SVD patients recruited to the SCANS study (St 
George’s Cognition and Neuroimaging in Stroke) were used in this 
study. This prospective longitudinal study recruited patients from 
a geographically contiguous region served by 3 hospitals in South 
London, United Kingdom.3 SVD was defined as a clinical lacunar 
stroke syndrome8 with an anatomically appropriate lacunar infarct on 
MRI, as well as confluent WMH (Fazekas grade ≥2) on MRI.9 The 
study was granted ethical approval by the Wandsworth research ethics 
committee (ref: 07/Q0803/82). All participants gave written informed 
consent. Participants were fluent English speakers, and MRI and cog-
nitive tests were performed at least 3 months poststroke to minimize 
acute effects of stroke on cognition. Subjects underwent MRI and 
cognitive testing at baseline, then, of interest in this study, cognitive 
testing yearly for 5 years, 121 underwent MRI and cognitive tests 
at baseline; 99 of these attended for at least 1 follow-up visit, and 
details of the number of subjects at each time point can be found in 
the online-only Data Supplement.

A control population, imaged on the same MR scanner using the 
same sequences (for the last time point of the study only, which is 
used here3), comprised randomly selected community-dwelling sub-
jects recruited to the GENIE study (St George’s Neuropsychology 
and Imaging in Elderly),10 these subjects had no history of psychiatric 
and central nervous system diseases (including stroke). There were 
data from 57 subjects available with mean±SD (age=70±9 years; 35 
men); however, because of excessive movement or failure to tolerate 
the MRI protocol, data from 54 subjects were used.

Clinical and Cognitive Performance Assessments  
(SVD Group Only)
All subjects had cerebrovascular risk factors recorded, including 
hypertension (systolic blood pressure of >140 mm Hg, diastolic blood 
pressure >90 mm Hg, or on treatment), diabetes mellitus (on drug or 
insulin treatment), hypercholesterolemia (random total cholesterol of 
>5.2 mmol/L or on treatment), body mass index, and smoking history 
(current, ex-smoker, and never).

Cognitive assessment was performed by a neuropsychologist using 
a battery of widely used tasks chosen to characterize the cognitive 
impairment seen in SVD,3,11 including digit-span, logical-memory, 
visual-reproduction, BIRT memory and information processing bat-
tery, speed of information processing, digit-symbol, grooved peg-
board, trail-making test, verbal fluency, and modified Wisconsin 
card-sorting test. The following cognitive indices were constructed: 
executive function (EF), processing speed (PS), working memory, 
and long-term memory. A Global Cognition (GC) index was pro-
duced, which summarized performance on all tasks. Premorbid intel-
ligence quotient was estimated using the restandardized National 
Adult Reading Test.12 Measures for each task were transformed into 
z scores through psychometric standardization using age-scaled nor-
mative data and averaged to calculate cognitive index scores.

Missing data from tasks which the subject was unable to complete 
because of the effect of cognitive decline, as judged by the atten-
dant neuropsychologist, were addressed by substituting the minimum 
scaled score for that task (0 or 1; corresponding to z scores of −3.33 

and −3). Other missing data were excluded from the calculation of 
cognitive index scores.

The slope of change in the cognitive data during 5 years was deter-
mined using linear mixed effects models to determine annualized 
change,11 and the cognitive parameters were modeled as a function of 
time allowing variation by fixed and random effects to determine linear 
trajectories and intercepts. The Wald test was used to determine whether 
there was a detectable change in the parameters over time for the aver-
age fixed effect slope for the group. Slopes were then estimated for each 
subject for the parameters showing significant change over time.

Conversion to Dementia
Information on conversion to dementia during the 5-year follow-up 
was available for all 99 patients studied longitudinally. Dementia 
was diagnosed using the Diagnostic and Statistical Manual of Mental 
Disorders 513 definition of major neurocognitive disorder and was 
present if individuals met one of the following:

1. A clinical diagnosis of dementia.
2.  Review of medical records and cognitive assessments by a neu-

rologist and clinical neuropsychologist, blinded to MRI and 
risk factor information, who agreed that the clinical picture met 
Diagnostic and Statistical Manual of Mental Disorders 5 criteria.

3.  An Mini-Mental State Examination score consistently <24, 
indicative of cognitive impairment and reduced capabilities 
in daily living as measured by a score ≤7 on the instrumental 
activities of daily living.14

Date of dementia onset was defined as the date of diagnosis or the 
midpoint date between the visit at which the diagnosis was estab-
lished and the previous visit.

MRI Protocol
MRI was performed on a 1.5-T General Electric Signa HDxt MRI 
system (General Electric, Milwaukee, WI). The full MRI protocol has 
been described in detail.3

Sequences of interest to this study were as follows:
1.  Axial fluid-attenuated inversion recovery (FLAIR): repetition 

time/echo time/inversion time=9000/130/2200 ms, field of 
view=240×240 mm2, matrix=256×192, 28 contiguous 5 mm 
slices.

2.  Coronal spoiled gradient recalled echo T1-weighted: repeti-
tion time/echo time=11.5/5 ms, field of view=240×240 mm2, 
matrix=256×192, flip angle=18°, 176 contiguous 1.1 mm slices.

Preprocessing and TA
Lesions were marked on the FLAIR images by an experienced 
rater, using the semiautomated lesion marking tools in DispImage.15 
The T1-weighted images were segmented using SPM8 (Wellcome 
Department of Cognitive Neurology, UCL Institute of Neurology, 
London, United Kingdom), and the WM tissue probability map was 
lower thresholded at 90% to produce a WM segment. The T1-weighted 
images were registered to the FLAIR images using FLIRT,16 and the 
transformation applied to the WM segment. The lesion mask and WM 
segment were then applied to the FLAIR images to leave NAWM. The 
FLAIR images were registered to the T1-weighted images and the trans-
form applied to the lesion masks to produce a T1-weighted NAWM map. 
For both registrations, 6 degrees-of-freedom were used to provide rigid-
body transformation between the T1-weighted and FLAIR images.

The FLAIR and T1-weighted NAWM images were analyzed using 
the method proposed by Haralick et al,17 in which 14 TP are defined 
based on the GLCM: angular second moment, contrast, correlation, 
variance, inverse difference moment, sum average, sum variance, 
sum entropy, entropy, difference variance, difference entropy, infor-
mation measure of correlation 1, information measure of correlation 
2, and maximal correlation coefficient (MCC; for definitions, please 
see the online-only Data Supplement).

Because of the anisotropic voxel dimensions of the FLAIR images 
and to maintain methodological consistency between the image 
types, 2-dimensional TA was performed. The NAWM maps were 
normalized to a specified number of gray levels using histogram 
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equalization. Based on the number of voxels in the NAWM segments 
and the number of gray levels in the native images, and to avoid issues 
with sparsity in the GLCM, the FLAIR images were normalized to 
64 gray levels and the T1-weighted images to 128 gray levels. The 
GLCM and TP were calculated for the NAWM.

Data Analysis
For analysis, the number of lacunes (nLAC) and number of micro-
bleeds were log 10 transformed, and the T2-WMHL was expressed as 
a percentage of the total brain volume and log transformed.

Initially, TP from the NAWM were compared between the baseline 
SVD and control images using the Student unpaired t test.

Second, in the SVD cohort, the TP were correlated, using the 
Pearson correlation test, with normalized brain volume (NBV), 
WMHL, nLAC, number of microbleeds, and peak height from mean 
diffusivity NAWM (MDPH) histograms as determined previously to 
be the best MR-derived predictors of cognition.3

A regression analysis was then performed to determine whether 
TP were independently predictive of the cognitive measures. As in 
ref,3 univariate regressions were run for the TP, including age, sex, 
and premorbid intelligence quotient as confounds. For each image 
type, the variable showing the greatest standardized β (with associ-
ated P≤0.05) was chosen to progress to the multivariate model. These 
were included in a multivariate regression with the parameters listed 
above. Initially, only parameters derived from conventional MR 
images were added, and then a further model including MDPH was 
run. The regression tests were then repeated using the rates of change 
of the cognitive measures during the 5-year follow-up period.

Finally, the ability of TA to distinguish those of the SVD sub-
jects who developed dementia was determined. Initially, univariate 
Cox regression was used to determine those TP that best predicted 
conversion to dementia (corrected for age, sex, and premorbid intel-
ligence quotient), and these were then included in multivariate analy-
ses as above, with addition of binary parameters indicating whether 
new microbleeds or lacunes are seen in follow-up scans, which were 
acquired for the first 3 years of the follow-up, to assess whether they 
are independent markers of conversion. To counter the possibility of 
overfitting, the model bootstrapping with 1000 samples of the popula-
tion was applied.

Results
Subjects Excluded and Tissue Segments
Tissue segmentations were unreliable in 3 SVD subjects, and 
these were removed. Therefore, for the texture analyses, 118 
subjects were included in the analysis. In a further 3 subjects, 
artifacts prevented reliable analysis of the DTI data, so for the 
regression, including the diffusion parameters, 115 subjects 
were included. Demographic details and MRI characteristics 
are shown in Table 1.

Cognitive Change Over the Study Period
Details of the cognitive changes during the 5 years have been 
previously described,11 but in summary, PS, EF, and GC scores 
declined significantly during the 5-year follow-up period. The 
annualized changes were −0.048±0.015 (P=0.001) for EF, 
−0.052±0.014 (P<0.001) for PS, and −0.029±0.009 (P<0.001) 
for GC. It was, therefore, decided to proceed with the analysis 
using only these cognitive parameters.

Cross-Sectional Analysis
Comparison of TP in NAWM Between SVD Cases  
and Controls
There were highly significant differences between SVD cases 
and controls for many TP derived from both T1 and FLAIR 

sequences (Table 2). The pattern of differences differed for 
the image types; only the sum entropy had P<0.0001 for both 
image types. The P values are not corrected for multiple com-
parisons because of shared variance between the measures. 
For reference, an uncorrected P value of 0.004 would give a 
Bonferroni-corrected P value of 0.05.

Correlation Between TP and Other MR Measures
The TP were highly correlated to several MR measures 
(Table 3), suggesting that the abnormalities in several differ-
ent parameters underlie the changes in TP.

Regression Between TP and Cognition in the SVD Cases
As with previous work,3 only cognitive fields shown to change 
over the course of the study, and GC were included in the 
analysis.

For the univariate analysis in the EF, the T1-MCC (stan-
dardized β=0.182; P=0.009) and the FLAIR-sum average 
(0.196, 0.005) were the only significant regressors, only 
FLAIR-sum average significantly regressed with PS, and for 
GC, T1-MCC (0.188, 0.006) and FLAIR-sum average (0.24, 
0.0005) were the most significant regressors. Results of the 
multivariate regression are shown in Table 4; FLAIR-sum 
average, WMHL, nLAC, and NBV associated significantly 
with EF, with associations being strongest for the texture 
parameter, nLAC, and WMHL. There was little difference 
whether MDPH was included in the model.

Only nLAC and NBV independently correlated with PS. 
For the univariate regressions, no T1-weighted texture param-
eter was significant, and FLAIR-sum average was the most 
significant texture parameter (P=0.05), but this did not sur-
vive inclusion in the multivariate model. Again the addition of 
MDPH had little effect on the model.

The GC results were similar to those of EF, with NBV and 
nLAC being significant regressors along with the FLAIR-sum 
average, in this case, the MDPH also reached significance but 

Table 1. Group Demographics and MRI Characteristics for the SVD and Control 
Groups and the Results of the Group Comparisons

 SVD Controls P Value

Age, y (mean±SD) 70.01±9.75 70.36±9.18 0.82

Sex male, n (%) 78 (65) 35 (62) 0.25

Hypertension, n (%) 112 (93) 28 (49) <0.0001

Systolic blood pressure, mm Hg 
(mean±SD)

146.8±21.5 138.5±18.0 0.013

Diastolic blood pressure, 
mm Hg (mean±SD)

81.0±10.8 79.3±12.3 0.36

Cholesterol, mmol/L (mean±SD) 4.33±0.90 5.67±1.13 <0.0001

Diabetes mellitus, n (%) 24 (20) 0 (0) <0.0001

Smoker, n (%),current or ex 55 (46) 32 (56) 0.185

BMI, kg/m2 (mean±SD) 27.1±4.9 25.2±3.9 0.016

Lesion volume, mL 31.87±26.97 8.7±11.73 0.0001

Normalized brain volume, mL 1295.1±91.1 1337.3±87.3 0.005

Lacunes 4.26±5.48 0.65±1.51 <0.00001

BMI indicates body mass index; MRI, magnetic resonance imaging; and SVD, 
small vessel disease.
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did not change the results seen from the other parameters in 
the model.

Longitudinal Analysis
Do TP Predict Cognitive Decline?
For the univariate regressions of the TP with the rate of change 
of the cognitive fields during 5 years, T1-MCC (standardized 
β=0.22; P=0.024) and FLAIR-entropy (0.312, 0.002) were sig-
nificant regressors of EF, and the same parameters appeared for 
regression with GC (T1-MCC [0.205, 0.043]; FLAIR-entropy 

[−0.28, 0.005]); no TP had a significant regression with PS. 
When the other MR parameters are included, none of the TP 
remains significant, the closest to significance is for the change 
in EF without the MDPH, where FLAIR-entropy, a standard-
ized β of −0.208 and a P value of 0.058. In addition, nLAC and 
National Adult Reading Test are significant for the GC change, 
whereas nLAC is significant for EF change.

For all regression models, the variance inflation factor was 
calculated and found to be <3 in all cases, suggesting no sig-
nificant impact of multicollinearity.

Table 2. The Texture Parameters for the SVD and Control Groups for T1-Weighted and FLAIR Images and the P Value From the Independent Samples t Test Comparison

Texture Parameter (mean±SD)

T1 FLAIR

SVD Control P Value SVD Control P Value

Angular second moment 0.000115±0.000026 0.000121±0.000025 0.18 0.00148±0.00014 0.00162±0.00018 6×10−8

Contrast 1485±424 1164±269 9×10−7 42.5±7.3 40.1±6.1 0.044

Correlation 0.35±0.14 0.475±0.108 5×10−8 0.937±0.011 0.941±0.009 0.049

Variance 1131±91 1105±71 0.066 338.5±1.5 338.1±1.8 0.121

Inverse difference moment 0.0439±0.0062 0.0492±0.0075 3×10−6 0.265±0.017 0.273±0.016 0.002

Sum average 147.5±9.0 147.6±8.0 0.913 65.21±0.29 65.36±0.20 0.0006

Sum variance 3040±302 3257±288 2×10−5 1312±10 1312±9 0.662

Sum entropy 5.366±0.043 5.394±0.030 3×10−5 4.838±0.005 4.833±0.010 9×10−5

Entropy 9.286±0.133 9.259±0.126 0.178 6.95±0.12 6.84±0.14 8×10−7

Difference variance 565±124 461±90 1×10−7 22.10±3.67 21.11±3.20 0.091

Difference entropy 4.353±0.122 4.24±0.122 8×10−8 2.59±0.083 2.56±0.074 0.033

Information measure of correlation 1 −0.0500±0.0197 −0.0557±0.0202 0.151 −0.283±0.020 −0.295±0.018 0.0004

Information measure of correlation 2 0.608±0.077 0.630±0.072 0.075 0.948±0.009 0.951±0.008 0.007

Maximal correlation coefficient 0.718±0.125 0.711±0.102 0.748 0.947±0.010 0.952±0.010 0.002

The P values shown are not corrected for multiple comparisons, and for reference, the corrected P value is 0.004. FLAIR indicates fluid-attenuated inversion recovery; 
and SVD, small vessel disease.

Table 3. The Correlations of the Texture Parameters and MRI Measures

 

White Matter 
Lesion Load 

(% Log) P Value

Normalized 
Brain 

Volume P Value

Mean 
Diffusivity 

Peak Height P Value
Lacune No. 

(log) P Value
Microbleed 

No. (log) P Value

T1

    Contrast   −0.2* 0.032       

    Inverse difference moment   0.2* 0.037       

    Sum average         −0.25* 0.009

    Maximal correlation 
coefficient

−0.24* 0.012 0.31* 0.001 −0.35* 0.0002 −0.27* 0.004 −0.37* 0.00005

FLAIR

    Angular second moment −0.34* 0.0003 0.29* 0.002 0.26* 0.005   −0.23* 0.016

    Sum average −0.6* 1.5×10−12   0.34* 0.0003 −0.19* 0.043   

    Sum entropy 0.38* 0.00003 −0.36* 0.00009 −0.27* 0.003 0.2* 0.036   

    Entropy 0.36* 0.0001 −0.35* 0.0001 −0.3* 0.001 0.19* 0.04 0.23* 0.013

    Difference variance −0.21* 0.028         

Only significant correlations are shown. FLAIR indicates fluid-attenuated inversion recovery; and MRI, magnetic resonance imaging.
*Pearson correlation coefficient.
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Conversion to Dementia
Twenty of the 99 (20%) patients developed dementia during 
follow-up. Prediction of dementia was assessed by the Cox 
regression. On univariate regression, only 1 T1 image texture 
parameter was a significant predictor of conversion to demen-
tia, the T1-MCC (P=0.042; hazard ratio [HR], 0.025). Several 
parameters from the FLAIR images predicted conversion to 
dementia, the best being FLAIR-sum average (P=0.002; HR, 
0.106). In the multivariate bootstrapped model, the FLAIR-
sum average retained significance (P=0.012; HR, 0.014) along 
with NBV (P=0.001; HR, 0.97), and when MDPH was also 
added, the same 2 parameters were significant in predicting 
dementia (FLAIR-sum average, P=0.006, HR, 0.008; NBV, 
P=0.001, HR, 0.971).

Discussion
In this study, we demonstrated that TA, using standard MR 
sequences, detects abnormalities in NAWM structure in SVD 
compared with age-matched controls. Furthermore, TP cor-
related with EF and GC at baseline and predicted conversion 
to dementia, after controlling for age, sex, premorbid intelli-
gence quotient, and other MR parameters. Of particular inter-
est in this study are entropy, MCC, and sum average. Entropy 
describes the randomness of the gray-level pattern, the more 
random the pattern of gray levels in the image the greater the 
entropy. The sum average measures the sum of the diagonals 
in the GLCM, the more variation in the number of signal pairs 
the greater the value. Last, the MCC is the second principal 
component of the correlation matrix of rows of the GLCM, 
and it identifies variance not accounted for by the correlation 
parameter.

Our results are consistent with studies using different MR 
sequences, particularly DTI,3,5,18 which have demonstrated 
that the NAWM in patients with SVD is not normal, and its 

structural integrity correlates with cognitive impairment. 
What ultrastructural changes each of the individual TP are 
measuring is not clear, and it is likely that individual TP relate 
more closely to different underlying aspects of the pathology. 
However, within the SVD cohort, we found strong correla-
tions between TP and brain volume, nLAC, WMHL, and atro-
phy, suggesting that the texture abnormalities are related to 
several different pathologies. These results support those seen 
in a recent article, where a relationship between TP with SVD 
score was seen.19

We found specific TP-predicted EF and GC at baseline and 
prospectively with longitudinal decline in both fields although 
this did not survive in the multivariate model. In contrast, TP 
did not correlate with PS or predict change in this parameter. 
This difference in relationships between executive dysfunc-
tion and PS is consistent with previous analysis of this data 
set in which diffuse WM changes were more closely related 
to EF11 while lacunar infarcts possibly acting through disrup-
tion of distributed brain networks were more closely related to 
impairment in PS.20

Although TP did correlate with cognition at baseline and 
predict decline in cognition, such correlations were only mod-
erate and less strong than those with DTI parameters,11 where 
MDPH was a significant predictor of cognitive decline in the 
multivariate model. Furthermore, TP did predict conversion 
to dementia; however, the relationship was only of a similar 
order to the diffusion parameters which also showed a clear 
relationship with conversion to dementia (P=0.009; HR, 
0.002).11 Also, the small number of subjects who converted to 
dementia means that the Cox regression may still be optimis-
tic despite the use of bootstrapping. Thus, these results should 
be treated accordingly.

These results suggest that TA may be less sensitive to changes 
in NAWM ultrastructure than DTI, in particular, those predicting 

Table 4. The Results of the Multivariate Regressions

Executive Function Processing Speed Global Cognition

No Mean 
Diffusivity 

Peak 
Height P Value

With Mean 
Diffusivity 

Peak 
Height P Value

No Mean 
Diffusivity 

Peak 
Height P Value

With Mean 
Diffusivity 

Peak 
Height P Value

No Mean 
Diffusivity 

Peak 
Height P Value

With Mean 
Diffusivity 

Peak 
Height P Value

Normalized brain 
volume

0.153*† 0.036† 0.1* 0.174 0.275*† 0.001† 0.23*† 0.012† 0.234*† 0.001† 0.181*† 0.014†

White matter 
lesion load

0.254*† 0.007† 0.308*† 0.002† −0.091* 0.407 −0.04* 0.725 0.112* 0.206 0.172* 0.059

Lacune no. −0.228*† 0.003† −0.204*† 0.007† −0.214*† 0.016† −0.195*† 0.040† −0.19*† 0.009† −0.016*† 0.027†

Microbleed no. −0.081* 0.308 −0.059* 0.469 −0.004* 0.968 0.011* 0.903 −0.061* 0.42 −0.043* 0.578

Mean diffusivity 
peak height

  0.178* 0.051   0.147* 0.167   0.191*† 0.028†

FLAIR-sum 
average

0.26*† 0.001† 0.245*† 0.002† 0.032* 0.732 0.018* 0.852 0.226*† 0.003† 0.206*† 0.006†

T1–maximal 
correlation 
coefficient

0.08* 0.241 0.055* 0.425     0.913* 0.418 0.023* 0.72

Results are shown both with and without the inclusion of MDPH. FLAIR indicates fluid-attenuated inversion recovery; and MDPH, peak height from mean diffusivity.
*Standardized β coefficient.
†Significant regressors.
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cognitive decline. However, TA has an advantage, particularly 
for large clinically acquired data sets, in that it can be performed 
on standard MRI sequences acquired during routine clinical 
scanning. TA produces a large number of highly correlated 
parameters. In this study, we selected those which were most 
strongly associated on univariate analysis to take through to mul-
tivariate analysis. Further replication studies are required to con-
firm that the parameters which we prioritized are most strongly 
associated with cognitive function in SVD in other populations. 
The third criterion for diagnosing dementia is not as clinically 
definite as the former 2, and this may lead to a misdiagnosis of 
some subjects; however, in the absence of a definite diagnosis, it 
was considered that those subjects showing this significant level 
of impairment should be considered as having dementia.

A major strength of this study is its longitudinal design 
with data on progression of cognitive decline during a 5-year 
period. A further strength is the inclusion not only of TP but 
also other MR parameters so that the independent contribution 
of TP to disease prediction could be determined. The SCANS 
cohort included patients with relatively homogenous SVD in 
that all had presented with lacunar stroke and all had conflu-
ent WMH. This is both a strength and a weakness of the study. 
However, further studies in cohorts of patients with differ-
ent severity of SVD are required to determine whether these 
changes can be seen across the spectrum of SVD severity.

SVD presents a major health problem, and there are few 
proven treatments to prevent its progression. Recurrent stroke 
rates are relatively low, and it has been shown that neuro-
psychological testing is relatively insensitive to change both 
because of the slow rate of change and because of practice 
effects reducing the sensitivity to change.21 This has led to 
increasing interest in the use of MRI techniques to both moni-
tor disease progression and test new therapeutic approaches in 
smaller phase 2 studies before large phase 3 trials with clinical 
end points.22 MRI markers, particularly DTI, have been shown 
to be potential surrogate markers being both sensitive to 
change over short time periods and able to predict future cog-
nitive decline and dementia.3,11 However, despite an increase 
in availability, DTI is not acquired in all clinical MRI settings 
and takes additional time and image processing and can pres-
ent challenges in multicenter studies. As TA can be performed 
on conventional MRI data, it has potential advantages in these 
situations. Our results suggest that TP may be useful markers 
of disease in SVD, but further studies are required to replicate 
these results and determine how TA performs in cohorts with 
multicenter imaging.
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