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The application of electrical engineering principles to biology represents the main issue

of bioelectronics, focusing on interfacing of electronics with biological systems. In

particular, it includesmany applications that take advantage of the peculiar optoelectronic

and mechanical properties of organic or inorganic semiconductors, from sensing of

biomolecules to functional substrates for cellular growth. Among these, technologies

for interacting with bioelectrical signals in living systems exploiting the electrical field of

biomedical devices have attracted considerable attention. In this review, we present an

overview of principal applications of phototransduction for the stimulation of electrogenic

and non-electrogenic cells focusing on photovoltaic-based platforms.

Keywords: bioelectronics, photovoltaics, tissue engineering, biointerfaces, electrical stimulation

INTRODUCTION

Bioelectronics devices are meant to probe and stimulate biological entities through electricity
by adopting smart biocompatible materials which are also conductive (Liao et al., 2015). In
particular, traditional inorganic conductors, semiconductors and, more recently introduced,
conjugated polymers had find major application in the development of bioelectronic platforms
(Zhang and Lieber, 2016).

Electrical fields can be generated either intrinsically or upon transduction as, for instance, in
photovoltaic materials, where light can induce the generation of relevant currents through the bulk
of a photoconductive material.The materials in which this phenomenon happens can be inorganic,
fully organic, or hybrid mixtures.

In particular, electrical fields can be exploited to locally stimulate cells and tissue inducing
responses of different nature, for instance, altering the electrophysiological activity of electrogenic
cells or modulate certain cellular processes and functionalities, i.e., polarity, proliferation,
differentiation, in non-electrogenic cells (Blau, 2013; Pennacchio et al., 2018).

For example, silicon-based devices are widely employed for electrical interfaces both at themicro
and nanometer scale with neural tissues (Thukral et al., 2018) and, furthermore, have gained major
interest in the niche of photovoltaic-based platforms for retinal implants (Di Maria et al., 2018).
However, these materials exhibit some limitations in terms of flexibility and stiffness in general,
which make the cell-device coupling still not optimal.

In the last decade, new generation of hybrid or fully organic, highly biocompatible and
functionally self-powered prostheses have been developed to treat, among various applications,
blindness proposing a cutting-edge paradigm to interface phototransductive materials with
biological cells (Khraiche et al., 2013; Maya-Vetencourt et al., 2017; Benfenati and Lanzani, 2018;
Ferlauto et al., 2018). In addition, photovoltaic platforms have been recently proposed to directly
interface non-electrogenic cells, such as fibroblasts, to trigger their proliferation and open up the
possibility to use such materials as optimal candidate for wound healing purposes (Jin et al., 2013).
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Here, we present an overview of the main applications
photovoltaic-based platforms have found in the recent years to
mimic biological component with similar basic functionalities,
i.e., retina, and in addition we aim to highlight the important
potential of those materials have for cell stimulation in general.

ELECTRICAL PHOTOTRANSDUCTION IN
DEVICES FOR BIOMEDICAL
APPLICATIONS

Electrical phototransduction is the process through which
photons are converted into electrical signals. For instance,
inorganic semiconductors are exploited for their capacity to
convert light into electrons flow by means of their P-N junction
(Richter et al., 2018). However, their rigid nature, together with
their poor biocompatibility has generated a major attention
toward their organic counterparts for biomedical applications.
Organic photovoltaic devices are able to deliver photocurrents
thanks to the generation of electrical fields when light is
absorbed in their photoactive layers, composed of a donor,
and an acceptor semiconducting material. The donor material
donates electrons transporting holes while the acceptor material
withdraws electrons and further transports them (Polino et al.,
2015).

In both inorganic and organic cases, charges are finally
transported to an electrode, which can be in contact with a
biological cell or a tissue. Starting from the carrier transport at
the electrode, an electrical field is generated between the device
and the biological matter and this bioelectronic coupling can
modulate biological processes at different matter of scale and
cellular architectures (Pennacchio et al., 2018).

The effects of this interface on cells can be investigated
by observing capacitive, chemical and thermal mechanisms
involving the cell membrane (Di Maria et al., 2018). In particular,
platforms based on electrical photo-transduction have aroused
the interest of many research groups with the purposes of
recording and stimulating single cells, cell networks or tissues
(Sim et al., 2014; Chenais et al., 2017; Jeong et al., 2017).

For example, in the work of Ghezzi et al. (2011), first attempts
have successfully shown that stimulation of primary neurons
via light absorption in a P3HT-based biointerface is possible.
In particular, the bioelectronic interface consisted in a very
thin film (≈150 nm) of a P3HT:PCBM blend deposited on an
ITO-coated glass substrate. One step further was accomplished
by the same group using a platform for neuronal stimulation
which consisted of an active layer only in the n-type conjugated
polymer P3HT (Ghezzi et al., 2013). This is just an example
of how photo-transduction can take place in 2D materials
and how this phenomenon can be exploited for generating
electrical fields to trigger certain processes at the membrane of
cells. However, it is interesting to note that even bioelectronic
platforms are moving fast toward more biomimetic approaches
inspired by those of tissue engineering (Pennacchio et al.,
2018).

In this context, first attempts to create 3D photovoltaic
platforms for skin regeneration have been carried and the local

photo-transduction mechanism of 3D meshes is still under
discussion (Jin et al., 2014). Here, we explore the use of light
photo-trasduction effect on single cells particularly focusing on
tuning cellular behavior and act as cell-instructive platforms for
various applications such as platforms for immunorecognition,
or as activation/inhibition of the activity of electrogenic and
non-electrogenic cells.

ELECTROGENIC CELLS

Platforms based on transduction of photons in to current/voltage
generation have found major applications in the modulation of
the electrical activity in electrogenic cells. In fact, these cells,
such as cardiomyocytes or neuronal cells, are capable of changing
their membrane potential upon stimuli generating fast-changing
events (action potentials). Thus, using certain electrical fields can
be a suitable approach to trigger action potential inhibition or
activation (Love et al., 2018).

Moreover, photovoltaic platforms has found a niche in the
design of implantable devices for restoring lost functionalities in
the retina (Benfenati and Lanzani, 2018; Di Maria et al., 2018).

Numata and co-workers reported the first example of
photoinhibition of ion transport in PC-12 cells by using charge-
separation molecules ferrocene (Fc)–porphyrin (P)–C60 linked
triads. This compound was delivered close to the plasma
membrane using drug carriers and, after light stimulation a
depolarization of the membrane potential and an inhibition of
potassium channels was observed. This result suggests thatmore
sophisticated molecules can lead to the control of firingneuronal
cells (Numata et al., 2012).

Abdullaeva and co-workers, with the intent to create organic-
based artificial photoreceptors, developed a photoactive layer
consisting of an anilino-squaraine donor blended with a fullerene
acceptor as support for N2A cells (neuronal model cell line)
growth. They supposed that during the pulse stimulation
there is an accumulation of negative charge carriers at the
photoconductor–electrolyte interface (Figure 1A), which results
into cell depolarization. When the light is turned off instead,
a rapid hyperpolarization of the cell membrane was detected
(Abdullaeva et al., 2016). Similarly, induced photocapacitance
can be exploited for modulation of the membrane potential in
cells.

In fact, Martino and co-workers observed a similar effect
on human embryonic kidney (HEK-293) cells growth on a
conjugated polymer poly(3-hexylthiophene) (P3HT). The local
heating of the material produced an increase in the ion
transport through membrane channels, causing a decrease
of the membrane resistance (Martino et al., 2015). Recently,
Glowacki and co-workers have proposed an approach for neural
photostimulation employing an electrolytic photocapacitor
(Figure 1B) built with a trilayer ofmetal and p–n semiconducting
organic nanocrystals (Rand et al., 2018).

Moving toward the coupling of photovoltaic platforms with
tissues, retina implants have found major interest in the last years
(Benfenati and Lanzani, 2018). Photovoltaic devices which are
foldable and flexible have been developed for wide-field epiretinal
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FIGURE 1 | (A) Schematic of experimental setup for transient photocurrent generation through a fullerene film. Reprinted with permission from Abdullaeva et al.

(2016). (B) Layout of the photocapacitor, molecular structures of the pigment semiconductors and energy band illustration of a metal–p–n device. Reprinted with

permission from Rand et al. (2018). (C) 3D photovoltaic wide-field retinal prosthetics realized on a PDMS support (POLYRETINA) Reprinted with permission from

Ferlauto et al. (2018). (D) Pillar-based subretinal implant. Reprinted with permission from Flores et al. (2018).

prosthesis. These devices are capable of stimulating wireless
retinal ganglion cells. The material stack included poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as
anode and Poly(3-hexylthiophene) (P3HT) blend based as photo-
active layer (Figure 1C) (Maya-Vetencourt et al., 2017; Ferlauto
et al., 2018).

Retinal and subretinal inorganic prostheses were developed
to restore sight in patients blinded by retinal degeneration by
stimulating the inner retinal neurons using 3D pillar electrodes
(Figure 1D) which enhance the cell-chip coupling and the
integration the implant in the target tissue (Mathieson et al.,
2012; Flores et al., 2018). In a recent work done by Ho et al.

(2018a) a photodiode array made of boron-doped silicon-on-
insulator (SOI) wafers was used to perform in vivo and in
vitro measurements, in which the retina is placed between the
recording array (ganglion cell side) and the photodiode array
(photoreceptor side). In a recent work, transparent extracellular
microelectrode arrays (MEA) were used to characterize the
spatial and temporal response properties of retinal ganglion
cells (RGCs) to photovoltaic stimulation in the healthy and
degenerate rat retina (Ho et al., 2018b). It was demonstrated
that using silicon photodiodes to build photovoltaic pixels
arrays and it is possible to convert signals into patterns of
current to stimulate the inner retinal neurons for wireless

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 November 2018 | Volume 6 | Article 167

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Polino et al. Photogenerated Electrical Fields for Biomedical Applications

neural stimulation in translucent tissues (Boinagrov et al.,
2016).

NON-ELECTROGENIC CELLS

Beside electrogenic cells and tissues, photoelectrical devices can
be used also for promoting cellular proliferation, for instance, in
tissue regeneration applications.

One successful approach in tissue engineering is the use of
photovoltaic platforms as novel treatments for angiogenesis. In
this approach, a solar cell generates an electrical field promoting
the formation of capillaries and arterioles at the ischemic
region, attenuating muscle necrosis and fibrosis and promoting
the secretion of angiogenic growth factors and the migration
of mesenchymal stem cells (MSCs), myoblasts, endothelial
progenitor cells, and endothelial cells in in vitro experiments
(Figure 2A) (Jeong et al., 2017).

Many efforts are carried out on different types of cells
like adipose-derived stem cells (ASC) and endothelial cells,
evaluating the influence of pulsed LED light of three different
wavelengths using continuous LLLT stimulation (Rohringer
et al., 2017). In Couto et al., it was shown that a treatment of

skin lesions with coherent and incoherent light sources (laser
and LED, respectively) enables the wound healing process in
elderly rats, with good results in terms of collagen deposition,
fibroblasts proliferation and inflammatory cellular response
(Couto et al., 2017). In fact, other studies have been developed
on fibroblasts treatment using laser or led therapy to inhibit
keloid fibroblasts after irradiation (Couto et al., 2017; Lee
et al., 2017). In the end, different studies demonstrated the
importance of therapy with coherent light in the visible
spectrum to optimize the process of tissue repair, and some
studies suggests that comparable effectiveness could be reached
with the lower costs non-coherent light in the same spectral
region.

Another interesting approach involved the fabrication of
nanoweb substrates made of poly(3-hexylthiophene) (P3HT)
to enhance the neurogenesis of human fetal neural stem
cells (hfNSCs) and control their behavior via optoelectrical
stimulation (Figure 2B) (Yang et al., 2017). Low-level
laser therapy (LLLT) based on low-level laser or light-
emitting diodes (LEDs) was used for tissue regeneration in
mouse neural stem cell on 3D printed scaffolds (Zhu et al.,
2017).

FIGURE 2 | (A) Schematic representation of a of solar cell device for in vivo experiment. Reprinted with permission from Jeong et al. (2017). (B) Fabrication flow and

application of photoelectrical poly(3-hexylthiophene) (P3HT) nanoweb substrates for neuronal differentiation Reprinted with permission from Yang et al. (2017). (C)

Schematic illustration of photocurrent stimulation for regenerative medicine. Reprinted with permission from Jin et al. (2011). (D) Signal pathway involved in light

stimulation inducing cell proliferation. Reprinted with permission from Jin et al. (2013).
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An interesting novelty regards the possibility to treat diseases
delivering cellsto an injured or diseased organ/tissue. Usually this
is accomplished by collecting cells through a digestion process
with enzymes which can lead to Undesired enzymatic residuces.
In orer to overcome this, cells have been cultured onsilicon
based photovoltaic surfaces have been released through light
stimulation as presented in the work of Bhuyan et al. (2016).

In a recent work done by Diring et al. (2017), photoactive
zirconium-based metal organic framework (MOF) particles
embedded in a polymer matrix were employed as growth
substrate for HeLa cells. The substrate was able to release CO
upon light irradiation, and its subsequent cellular uptake was
monitored using a fluorescent probe.

In this context, one example, which also attempted to
recapitulate 3D tissue-like environment with particular focus
on regenerative medicine, was presented by Jin and co-workers.
They reported on the photocurrent stimulation effect on cells
with particular focus on understanding the combined effect of
direct light interaction together with the responseto the induced
electromagnetic field. In fact, porphyrins are activated by photons
interactions while calcium ions translocate through the voltage-
gated channels at the membrane due to the electromagnetic
field. Overall, this results in an increase of cytosolic Ca2+ which
might trigger protein pathways responsible for cell proliferation
(Jin et al., 2011) (Figure 2C). Furthermore, they showed how to
combine 3D structures with photoactive materials in order to
achieve skin regeneration. In particular, they used human dermal
fibroblasts (HDFs) and prepared a photosensitive nanofibrous
scaffolds by electrospinning using Poly(3-hexylthiophene)
(P3HT) and Polycaprolactone (PCL) as base materials to
fabricate the nanofibers. Here, they further discussed how the
cytosolic Ca2+ increase would led to the activation of the
low molecular weight protein calmodulin, which causes the
activation of several key intracellular processes leading to cell
division (Tomlinson et al., 1984) in combination with direct
light activation of protein kinase C. As a result, these two effects
led to an increase in cell proliferation (Jin et al., 2013, 2014)
(Figure 2D). Furthermore, Jin and co-workers designed a new
photosensitive semiconductive polymer, PDBTT (poly (N,N-bis

(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-
c]pyrrole- 1,4-dione-alt-thieno[3,2-b]thiophene), with
maximum absorbance at 600 nm. This polymer with nanofibers
of PCL incorporated, was electrospun and tested to study the
proliferative effect of PCL/PDBTT nanofibers on HDFs under
red LED illumination (Jin et al., 2017). Another interesting
study showed how a scaffold made of electrospun fiber of
P3HT in combination with a typical polymer used for tissue
engineering, poly(L-lactic acid)-co-poly-(e-caprolactone) could
be successfully used as photosensitive platforms for enhancing
fibroblast proliferation and thus as good precursor of a wound
dressing solution (Jin et al., 2014).

CONCLUSION

In this review, we reported the last advances in electrical
phototransduction applied to biomedical applications. In

particular, we focused the attention on the possible effects of
photoelectrical stimulation driven on cells and tissues. The
aim was to report the behavior of the biological system at the
biotic-abiotic interface considering various approaches for
enhancement/inhibition of electrogenic and non-electrogenic
cells functionalities. In particular, we highlighted how the
use of photovoltaic platforms had found major application in
designing retinal prosthetics. Moreover, organic photovoltaic
materials are used for building new bio-compliant platforms
and, in perspective, represent the foremost class of material
for cell-chip coupling. We foresee an increasing application
of these materials also for tissue engineering purposes as
preliminarily proposed for wound healing. Furthermore, the
few examples of photovoltaic-based scaffolds paved the way to
advanced platforms which need to be developed toward more
biomimetic 3D environments.
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