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Due to the increasing prevalence of type 1 diabetesmellitus (T1DM) and its complications,

there is an urgent need to identify novel methods for predicting the occurrence and

understanding the pathogenetic mechanisms of the disease. Accumulated data have

demonstrated the potential of long noncoding RNAs (lncRNAs), as biomarkers in

establishing diagnosis and predicting prognosis of numerous diseases. Yet, little is known

about the expression patterns and regulatory roles of lncRNAs in the pathogenesis of

T1DM and whether they can be used as diagnostic biomarkers for the disease. To further

explore these questions, in the present study, we conducted a comparative analysis of

the expression patterns of lncRNAs between 20 T1DM patients and 42 health controls

by retrospectively analyzing a published microarray data set. Our results indicate that,

compared with healthy controls, diabetic patients had altered levels of lncRNAs. Then,

we used three time cross-validation strategy and support vector machine to propose

a specific 26-lncRNA signature (termed 26LncSigT1DM). This 26LncSigT1DM signature

can be used to effectively distinguish between healthy and diabetic individuals (area under

the curve = 0.825) of a validation cohort. After the 26LncSigT1DM was prospectively

validated, we used Pearson correlation to identify 915 mRNAs, whose expression levels

were positively correlated with those of the 26 lncRNAs. According to their Gene

Ontology annotations, these mRNAs participate in processes including cellular response

to stimulus, cell communication, multicellular organismal process, and cell motility. Kyoto

Encyclopedia of Genes and Genomes analysis demonstrated that the genes encoding

the 915 mRNAs may be associated with the NOD-like receptor signaling pathway,

transforming growth factor β signaling pathway, and mineral absorption, suggesting that

the deregulation of these lncRNAs may mediate inflammatory abnormalities and immune

dysfunctions, which jointly promote the pathogenesis of T1DM. Thus, our study identifies

a novel diagnostic tool andmay shedmore light on the molecular mechanisms underlying

the pathogenesis of T1DM.
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INTRODUCTION

As one of the most notorious autoimmune disorders, type 1
diabetes mellitus (T1DM) is a chronic childhood-onset disease
caused by selective destruction of pancreatic islet beta cells
(Petersmann et al., 2018). Pathogenic factors of T1DM include
epigenetic, environmental, and genetic factors (Bluestone et al.,
2010; Groop and Pociot, 2014). Additionally, it has been
demonstrated that both immune dysfunctions and islet beta cell
defects contribute to the pathogenesis of T1DM (Lennon et al.,
2009; Bluestone et al., 2010). During the onset of the disease β-
cell function in T1DMpatients may have already been completely
destroyed (Polychronakos and Li, 2011). Therefore, it is necessary
to diagnose T1DM early in its development. However, as onsets
of T2DM and other types of diabetes occurring earlier, traditional
methods for diagnosing diabetes are no longer satisfactory (Zou
et al., 2018). Therefore, there is an urgent need to understand the
causal factors and pathogenetic mechanisms of T1DM for more
effective diagnosis and treatment.

Long noncoding RNAs (lncRNAs) are a group of RNAs that
are longer than 200 nucleotides and do not encode proteins
(Ponting et al., 2009; Sun et al., 2013; Zhang et al., 2017; Su
et al., 2018; Yao et al., 2018). Recent advancement in large-scale
genomic analysis has greatly enriched our knowledge on this
type of RNA. Increasing evidence suggests that lncRNAs are
involved in a wide range of cellular biological processes (Huang
et al., 2012; Zhang et al., 2017; Guo et al., 2018), including cell
proliferation (Jin et al., 2017; Luo et al., 2017), differentiation
(Alvarez-Dominguez et al., 2015), and apoptosis (Lu et al., 2016).
Specifically, βlinc1 (formerly referred to as HI-LNC15), a lncRNA
uniquely expressed in the islet, has been reported to facilitate
the proper specification and maintain the normal function of
islet β cells (Arnes et al., 2016). Interestingly, in βlinc1-deficient
mature islet β cells, the expression of GLIS3, a causative gene for
both T1DM and T2DM, was downregulated (Moran et al., 2012).
MEG3 is another lncRNA implicated in diabetes. In mouse islet
β cells, MEG3 has been demonstrated to play important roles in
insulin synthesis and secretion (You et al., 2016).

Recently, researchers have shown that lncRNAs control the
differentiation and function of innate and adaptive immune
cells to coordinate different immune functions (Atianand and
Fitzgerald, 2014; Chen et al., 2017). In a previous study,

it was confirmed that lincRNA LincR-Ccr2-5
′

AS plays an
important role in regulating the expression of TH2-specific
genes and is essential for migration of TH2 cells (Hu et al.,
2013). Furthermore, LincRNACox2 and lncRNA THRIL are two
lncRNAs that are crucial for inflammatory activation because
they can regulate the TLR signaling pathways (Carpenter et al.,
2013). Taken together, all the aforementioned studies suggest
that lncRNAs can regulate both the activation of the innate
immune system and islet β cell function, the defects of which
contribute significantly to the pathogenesis of T1DM. More
importantly, accumulating evidence has shown that dysregulated
lncRNA expression is associated with the development of T1DM
(Motterle et al., 2015; Mirza et al., 2017), suggesting that lncRNAs
could be used as biomarkers to assess the risk of T1DM.

However, neither the expression patterns of lncRNAs in T1DM
patients nor their potential as T1DM biomarkers has been
thoroughly investigated.

To provide more insights into the expression patterns of
lncRNAs in T1DM patients and evaluate their potential as
T1DM biomarkers, in this study, we comparatively analyzed
lncRNA expression levels in 42 healthy individuals and 20
T1DM patients based on a published microarray data set and
identified a group of differentially expressed lncRNAs. We also
demonstrated that these lncRNAs may represent a multi–long
noncoding RNA signature (namely 26LncSigT1DM) that can
be used to effectively distinguish between healthy and diabetic
individuals and identify T1DM susceptible individuals. After
the 26LncSigT1DM signature was prospectively validated, we
identified 915 mRNAs whose expression levels are positively
correlated with those of the 26LncSigT1DM lncRNAs. Functional
analysis of these mRNAs indicates that they are involved in a
variety of biological processes, including cellular function and
communication, and that the genes encoding these mRNAs
are associated with pathways that can potentially mediate
inflammatory abnormalities and immune dysfunctions. Our
study provides a platform for developing 26LncSigT1DM into
a diagnostic tool for T1DM and for future research into the
molecular mechanisms underlying the pathogenesis of T1DM.

MATERIALS AND METHODS

Participant Information
We included two cohorts of individuals in this study. One cohort
(62 individuals, accession number GSE35713) was from Hara’s
study (Levy et al., 2012), and the data are from peripheral
blood mononuclear cells in the plasma samples of patients with
new-onset T1DM. The other (22 individuals, GSE55100) was
documented in Yang et al. (2015). Patients without survival time
or events were excluded.

Data Acquisition and lncRNA Expression
Analysis
We obtained the raw microarray data (.CEL format) deposited
in the Gene Expression Omnibus database from the individuals
mentioned above. To ensure uniformity, we used the Robust
Multichip Average algorithm to preprocess the data (Irizarry
et al., 2003). To scale probe expression intensity, the data set
was quantile-normalized and log2-transformed after background
correction, and then it was independently standardized by Z
score transformation (Cheadle et al., 2003).

Gene expression profiles of the individuals had been
previously analyzed by an Affymetrix HumanGenomeU133 Plus
2.0 array (HG-U133 Plus_2.0). We visited the Affymetrix website
(http://www.affymetrix.com) to obtain the probe sequences used
in the array.

By repurposing the Affymetrix array probes, lncRNA
expression profiles of the 62 individuals in cohort GSE35713 were
determined as described in previous studies (Du et al., 2013;
Zhou et al., 2015). Briefly, we mapped the probes to the human
genome (GRCh38) using the SeqMap tool (Jiang and Wong,
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2008) and used GENCODE Release 21 to determine lncRNA-
encoding genes. If a probe corresponds to numerous lncRNAs, it
will be directly abandoned. If an lncRNA is targeted by multiple
probes, its expression value was defined as the average value of
the expression levels determined by all the corresponding probes.
Using this method, we were able to obtain the expression profiles
of 1,326 lncRNAs.

To identify differentially expressed lncRNAs (DELs), we
compared the lncRNA expression patterns between healthy and
T1DM individuals using two-tailed t-tests. Bonferroni statistical
tests were then carried out, and lncRNAs with a Bonferroni-
corrected p-value below 0.01 (Supplementary Table 1) were
considered as DELs, whereas those with a Bonferroni-corrected
p < 0.05 but higher than 0.01 (Supplementary Table 2) were
finally abandoned. To assess the potential of the DELs as
biomarkers for T1DM, unsupervised hierarchical clustering
analysis was carried out using R package based on the Euclidean
distance and the complete linkage method.

Identification of lncRNAs Associated With
T1DM
To propose a diagnostic lncRNA molecular signature for T1DM,
we used a sigmoid kernel-based support vector machine (SVM)
(Tang et al., 2018; Lai et al., 2019) and assessed the predictive
ability of the model using 3-fold cross-validation, with 62
individuals in cohort GSE35713 being defined as the discovery
cohort. The details are as follows:

(i) Individuals in the discovery cohort were equally divided into
three nonoverlapping sets.

(ii) Candidate lncRNAs were sorted according to their
importance in the random forest classification algorithm.
Then, a supervised discriminative model was established,
and lncRNAs with a Bonferroni-corrected p < 0.01
(Supplementary Table 1) were selected.

(iii) Distinguishing T1DM patients from healthy controls using
the SVM-based signature based on voting rules: We added
one candidate lncRNA each time sequentially according
to the rankings of candidate lncRNAs in the list (i.e., the
lncRNA ranked first in the list was added first). After the
three nonoverlapping sets were applied, the performance of
the SVM-based signature was evaluated.

(iv) The optimal number of lncRNAs in the SVM-based
signature could be determined after the balance between
lncRNA number and discrimination accuracy was achieved.

Performance Evaluation
The difference between healthy and T1DM individuals was
plotted (with SVM) (Su et al., 2018; Yang et al., 2018;
Zhu et al., 2019), of which the performance was tested by
three nonoverlapping sets. A 2 × 2 contingency table was
used to calculate the sensitivity, specificity, and accuracy of
the area under the curve (AUC). We plotted true-positive
rates (sensitivity) against false-positive rates (1—specificity) to
generate the receiver operating characteristic (ROC) curve (Lv
et al., 2019), which was then used to determine the discrimination

efficiency. We employed Bioconductor and R package to conduct
all the aforementioned analyses.

Functional Annotations of the 26 lncRNAs
in the 26LncSigT1DM Signature
To predict biological functions of the 26 lncRNAs in the
26LncSigT1DM signature, the Pearson correlation coefficient was
adopted to determine correlations between expression levels of
mRNAs and those of the 26 lncRNAs. Then, the genes encoding
the mRNAs whose expression levels are positively correlated
with those of the 26 lncRNAs were subjected to the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) functional annotations using the DAVID (Database for
Annotation, Visualization, and Integrated Discovery, version 6.7)
(Huang da et al., 2009). Biological processes enriched in the GO
analysis with a Benjamini–Hochberg–adjusted p < 0.01 and an
enrichment score >1.5 were considered significant. Similarly,
pathways enriched in the KEGG analysis with a Benjamini–
Hochberg–adjusted p < 0.01 and an enrichment score >1.5 were
also considered significant (Figure 1).

RESULTS

Identification of DELs Between Healthy
and Diabetic Individuals
Hara’s cohort (GSE35713), the larger cohort included in our
study, contained 47 RO T1DM patients and 42 unrelated healthy
controls (Levy et al., 2012). To identify RO T1DM-related
lncRNAs, we selected 20 T1DMpatients and 42 unrelated healthy
controls and defined them as a discovery cohort (n = 62). Then,
we compared lncRNA expression levels between the 20 T1DM
patients and 42 healthy controls by performing SAM analysis.
After abandoning lncRNAs with a false discovery rate (FDR)–
adjusted p < 0.01, we totally identified 1,326 DELs (log FC >1
or log FC ≤1, FDR-adjusted p < 0.01, Supplementary Table 3).

Construction of SVM-Based and
Multi-lncRNA Signature as a Diagnostic
Tool for T1DM Using the Discovery Cohort
Sigmoid kernel-based SVM and 3-fold cross-validation strategies
were used to search for a supervised T1DM predictor from
the discovery cohort. We identified a signature of 26 lncRNAs,
which were downregulated in T1DM patients in Hara’s cohort,
had the highest discrimination accuracy (Figures 2A,B). This
signature was named 26LncSigT1DM (Table 1). At the same
time, we found that 26 lncRNAs is also an optimal number
of lncRNAs that balances lncRNA number and discrimination
accuracy. By distinguishing healthy and diabetic individuals in
Hara’s cohort with this 26LncSigT1DM signature, we generated
three ROC curves, whose AUCs are 0.9973, 0.9641, and 0.9556
(Figure 2C). Hierarchical clustering was then applied to analyze
the expression profiles of the 26 lncRNAs in the 26lncSigT1DM
signature in the healthy and diabetic individuals. We found
that the 20 T1DM patients and the 42 healthy controls can be
grouped into two significantly different clusters (the 20 T1DM
patients were grouped into Cluster 1, whereas the 42 healthy
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FIGURE 1 | The process of the method.

controls were grouped into Cluster 2) based on the expression
levels of the 26 lncRNAs in the 26lncSigT1DM signature (p
= 3.579e-05, χ2-test). Therefore, we successfully distinguished
between healthy and diabetic individuals in the discovery cohort
using the 26lncSigT1DM signature. These results suggest that
the downregulation of the 26 lncRNAs in the 26lncSigT1DM
signature is able to reflect the disease progression of T1DM and
that the signature has a great potential to be used as a diagnostic
tool for T1DM.

Validation of the 26LncSigT1DM Signature
To test the stability and robustness of the 26LncSigT1DM,
we introduced another cohort of 22 individuals (including 12
T1DM patients and 10 healthy controls) from Minglan’s study
(Du et al., 2013). This validation cohort was analyzed with the
26LncSigT1DM signature using sigmoid kernel-based SVM and

3-fold cross-validation strategies. According to our results, by
distinguishing healthy and diabetic individuals in the validation
cohort with the 26LncSigT1DM signature, we generated an ROC
curve with an AUC of 0.825 (Figures 3A,B), suggesting that the
proposed 26LncSigT1DM signature is a reliable diagnostic tool
for T1DM.

Exploration of the Biological Functions of
the 26 lncRNAs in the 26LncSigT1DM
Signature
To predict biological functions of the 26 lncRNAs in the
26LncSigT1DM signature, we adopted the Pearson correlation
coefficient to determine correlations between expression levels of
mRNAs and those of the 26 lncRNAs. We found 915 mRNAs
whose expression levels were positively correlated with those
of the 26 lncRNAs. According to our GO analysis of the
genes encoding these mRNAs, 470 biological processes were
significantly enriched (Supplementary Table 4, p-values <0.05,
Figure 4A). These biological processes can be clustered into
four major functional groups, including cellular response to
stimulus, cell communication, multicellular organismal process,
and cell motility (Figure 4B). KEGG analysis of the genes
encoding the 915 mRNAs indicates that they are implicated
in several pathways including the NOD-like receptor signaling
pathway, transforming growth factor β (TGF-β) signaling
pathway, autoimmune thyroid disease, and mineral absorption
(Supplementary Table 5). Given that all the biological processes
and signaling pathways enriched in our GO and KEGG analyses
are associated with the pathogenesis of T1DM, we speculate that
the downregulation of the 26 lncRNAs may have caused the
aberrant expression of a wide range of genes, which subsequently
contributes to the pathogenesis of T1DM.

DISCUSSION

Type 1 diabetes mellitus, one of the most common childhood-
onset chronic diseases, is caused by defects in pancreatic islet β

cells. Complications of T1DM are very serious and sometimes
fatal. For example, diabetic ketoacidosis is a life-threatening
complication of T1DM caused by a shortage of insulin that
demands insulin injections and blood glucose monitor. Recent
years have witnessed a rising incidence of diabetes, which has
been correlated with both environmental conditions and genetic
factors (Fourlanos et al., 2008). To cope with this growing
problem, great efforts and progress have been made in the last
few years to explore the possible mechanisms underlying the
pathogenesis of T1DM at the miRNA, mRNA, and protein levels.
So far, several miRNA/mRNA/protein-based signatures have
been associated with the occurrence of T1DM, which facilitates
the development of new diagnostic and prognostic tools (Azhir
et al., 2018; Liao et al., 2018; Bertoccini et al., 2019; Cheng et al.,
2019; Guay et al., 2019).

Long noncoding RNAs are a novel group of gene expression
regulators (Gibb et al., 2011; Kung et al., 2013). Increasing
evidence has revealed that lncRNAs control the differentiation
and function of innate and adaptive immune cells to coordinate
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FIGURE 2 | Identification of the SVM and 3-fold cross-validation–based multi-lncRNA signature and its application in T1DM diagnosis. (A) Hierarchical clustering

analysis of the 62 individuals in the discovery cohort based on the expression levels of the 26 lncRNAs in the 26LncSigT1DM signature. (B) Performance of different

lncRNA numbers in distinguishing healthy and diabetic individuals of the discovery cohort. (C) Performance of the SVM and 3-fold cross-validation–based

26LncSigT1DM signature in distinguishing healthy and diabetic individuals of the discovery cohort.

several aspects of immune functions (Carpenter et al., 2013;
Hu et al., 2013; Atianand and Fitzgerald, 2014; Chen et al.,
2017). Therefore, their associations with autoimmune diseases
have become a research hotspot. To date, several studies have
demonstrated the potential of lncRNAs as novel diagnostic or
prognostic tool for various types of cancer (Du et al., 2013; Zhou
et al., 2015, 2017; Bao et al., 2019). Although several lncRNAs,
including HILNC25, lncRNA MEG3, and MALAT-1, have been
found to contribute to diabetes (Arnes et al., 2016; Lu et al., 2016;
You et al., 2016), little is known about the expression profiles of
lncRNAs in T1DM patients and whether lncRNAs can be used as
diagnostic or prognostic tool for T1DM.

In the present study, we retrospectively analyzed a published
microarray data set and determined the expression levels of
lncRNAs in 62 individuals (the discovery cohort), including
20 T1DM patients and 42 healthy controls. Using this
discovery cohort, we identified a supervised multi-lncRNA
T1DM diagnostic signature, 26LncSigT1DM, based on SVM
and 3-fold cross-validation strategies. This 26LncSigT1DM

signature consists of 26 lncRNAs, whose expression levels were
downregulated in the 20 T1DM patients as compared with the
42 healthy controls. Using the 26LncSigT1DM signature, we
accurately distinguished between healthy and diabetic individuals
in the discovery cohort. To test the stability and robustness
of the 26LncSigT1DM signature, we introduced a 22-individual
validation cohort (a cohort from Minglan’s study) and found
that the 26LncSigT1DM signature was also able to accurately
distinguish between healthy and diabetic individuals in the
validation cohort. According to the tree traversal algorithms,
the number of combined lncRNAs was found to be not
correlated with the model effects. Therefore, to avoid overfitting
or underfitting, the combination of 26 lncRNA models was
finally selected to build the classifier. These results suggest that
the proposed 26LncSigT1DM signature has a great potential to
be used as a diagnostic tool for T1DM. To the best of our
knowledge, this is the first multi-lncRNA signature capable of
diagnosing T1DM early in its development. However, there
are several limitations in this study. First, only two microarray
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TABLE 1 | Detailed information of the 26 lncRNAs in the 26LncSigT1DM signature.

Gene name Gene. Name Score Numerator Denominator Fold change Q-value

ENSG00000224020 MIR181A2HG 6.193 0.57 0.092 1.103 0

ENSG00000253165 – 2.504 0.185 0.074 1.066 0

ENSG00000259150 LINC00929 3.433 0.313 0.091 1.092 0

ENSG00000248118 LINC01019 3.363 0.305 0.091 1.104 0

ENSG00000231365 WARS2-AS1 3.151 0.19 0.06 1.06 0

LINC01296 DUXAP9 2.359 0.391 0.166 1.154 0.085

LINC00515 LINC00515 4.022 0.336 0.083 1.138 0

ENSG00000203999 LINC01270 2.826 0.25 0.088 1.088 0

ENSG00000227540 – 3.261 0.251 0.077 1.053 0

ENSG00000278156 TSC22D1-AS1 2.35 0.173 0.074 1.056 0.085

ENSG00000236519 LINC01424 2.352 0.195 0.083 1.082 0.085

ENSG00000257242 LINC01619 3.532 0.4 0.113 1.077 0

LOC100130872 – 2.785 0.253 0.091 1.049 0

ENSG00000215417 MIR17HG 4.629 0.342 0.074 1.107 0

ENSG00000186594 MIR22HG −7.497 −0.701 0.093 0.924 0

ENSG00000275549 STPG3-AS1 2.528 0.193 0.076 1.043 0

ENSG00000214401 KANSL1-AS1 2.933 0.221 0.075 1.055 0

ENSG00000237940 LINC01238 2.842 0.269 0.095 1.094 0

ENSG00000212978 – 2.538 0.205 0.081 1.055 0

ENSG00000246339 EXTL3-AS1 2.152 0.135 0.063 1.039 0.085

ENSG00000281649 EBLN3P 3.874 0.226 0.058 1.029 0

ENSG00000223478 – 6.081 0.566 0.093 1.113 0

ENSG00000258573 – 2.564 0.204 0.079 1.048 0

LOC100499489 – 3.018 0.244 0.081 1.065 0

ENSG00000254813 – 3.51 0.336 0.096 1.082 0

ENSG00000229589 ACVR2B-AS1 3.157 0.36 0.114 1.091 0

FIGURE 3 | Validation of the 26LncSigT1DM signature using an additional independent cohort. (A) Performance of different lncRNA numbers in distinguishing healthy

and diabetic individuals of the validation cohort. (B) Performance of the SVM and 3-fold cross-validation–based 26LncSigT1DM signature in distinguishing healthy and

diabetic individuals of the validation cohort.

datasets are available online, limiting the sample size analyzed
in this study. Second, since the signature of T1DM was derived
from newly-onset patients without the data after onset, the
26LncSigT1DM cannot be applied to the prognosis analysis.

Last but not least, due to limited available data of T2DM
patients, this signature is not capable of distinguishing T1DM
from T2DM. Future studies related to these questions are
worth conducting.
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FIGURE 4 | Function annotations of the 26LncSigT1DM lncRNAs. (A) Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations of the genes

encoding the mRNAs whose expression levels are positively correlated with those of the 26 lncRNAs in the 26LncSigT1DM signature. The results indicate that the

26LncSigT1DM lncRNAs may affect immune processes. (B) The lncRNAs involved in regulating human biological processes.

Prior studies have confirmed that lncRNAs are important gene
expression regulators because they modulate the expression of a
wide range of functional genes involved in multiple biological
processes (Guo et al., 2013; Liu et al., 2015). To predict
biological functions of the 26 lncRNAs in the 26LncSigT1DM
signature, we used the Pearson correlation coefficient to identify
correlations between expression levels of mRNAs and those
of the 26 lncRNAs. We found 915 mRNAs whose expression
levels were positively correlated with those of the 26 lncRNAs.
According to our GO and KEGG analyses, the genes encoding
these mRNAs are involved in multiple T1DM-related biological
processes and signaling pathways. These results are consistent
with previous findings. In a previous study, it was reported
that thioredoxin-interacting protein (TXNIP), an activator of
NOD, LRR, and PYD domains-containing protein 3 (NLRP3)
inflammasome, is associated with nonalcoholic fatty liver disease
and T1DM (Wang et al., 2013). In addition, it was demonstrated
that mitochondrial DNA-mediated NLRP3 activation can induce
IL-1β secretion in the pancreas of STZ-induced T1DM mice
(Carlos et al., 2017). The TGF-β signaling pathway inside T
cells, which coordinates immune responses, has already been
proved to play a critical role in the pathogenesis of T1DM
(Green et al., 2003). Type 1 diabetes mellitus patients have
already been thought to have increased risk to suffer from
autoimmune thyroid disease compared with healthy individuals.
Our KEGG analysis implies that autoimmune thyroid disease
and mineral absorption may be closely related to T1DM.

Among these 26 lncRNAs, LINC01619 alteration has been proved
to influence the diabetic nephropathy by inducing oxidative
stress and podocyte damage via regulating miR-27a (Bai et al.,
2018). However, except for LINC01619, the mecanisms of other
lncRNAs affecting T1DM still remain unclear, which need
to be clarified. The results of the GO and KEGG analyses
of the 26LncSigT1DM signature in this study pave the way
for further studies to investigate the relationship between
these lncRNAs and T1DM as well as its complications. The
underlying mechanisms remain to be further studied. Thus, the
results of our study may provide suggestive information for
future research.

In summary, we conducted a comparative analysis of the
lncRNA expression profiles between T1DM patients and healthy
controls. And a dysregulated lncRNA-mRNA coexpression
network was built to enrich our knowledge of T1DM-related
lncRNAs. More importantly, we proposed and validated a
26LncSigT1DM signature that has a great potential to be used
as a diagnostic tool for T1DM using sigmoid kernel-based SVM
and 3-fold cross-validation strategies. This study is the first to
use a multi-lncRNA signature to diagnose T1DM. Therefore, the
26LncSigT1DM signature proposed by our study may represent
a good complement to the existing clinical diagnostic indicators
for T1DM. Lastly, this study also improves our understanding
of the mechanisms underlying the pathogenesis of T1DM and
may provide other options for the prevention and treatment
of T1DM.
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