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Background: Coronary artery disease (CAD) is a progressive disease of the

blood vessels supplying the heart, which leads to coronary artery stenosis

or obstruction and is life-threatening. Early diagnosis of CAD is essential for

timely intervention. Imaging tests are widely used in diagnosing CAD, and

artificial intelligence (AI) technology is used to shed light on the development

of new imaging diagnostic markers.

Objective: We aim to investigate and summarize how AI algorithms are used

in the development of diagnostic models of CAD with imaging markers.

Methods: This scoping review followed the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses extension for Scoping Reviews

(PRISMA-ScR) guideline. Eligible articles were searched in PubMed and

Embase. Based on the predefined included criteria, articles on coronary

heart disease were selected for this scoping review. Data extraction was

independently conducted by two reviewers, and a narrative synthesis

approach was used in the analysis.

Results: A total of 46 articles were included in the scoping review. The

most common types of imaging methods complemented by AI included

single-photon emission computed tomography (15/46, 32.6%) and coronary

computed tomography angiography (15/46, 32.6%). Deep learning (DL) (41/46,

89.2%) algorithms were used more often than machine learning algorithms

(5/46, 10.8%). The models yielded good model performance in terms of

accuracy, sensitivity, specificity, and AUC. However, most of the primary

studies used a relatively small sample (n < 500) in model development, and

only few studies (4/46, 8.7%) carried out external validation of the AI model.
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Conclusion: As non-invasive diagnostic methods, imaging markers integrated

with AI have exhibited considerable potential in the diagnosis of CAD. External

validation of model performance and evaluation of clinical use aid in the

confirmation of the added value of markers in practice.

Systematic review registration: [https://www.crd.york.ac.uk/prospero/

display_record.php?ID=CRD42022306638], identifier [CRD42022306638].

KEYWORDS

coronary artery disease, artificial intelligence, diagnosis, prediction model, imaging,
scoping review

Introduction

Cardiovascular disease (CVD), with a broad definition,
refers to a group of disorders of the heart and blood vessels
and is the main reason of death globally. CVD has several
subtypes, among which coronary artery disease (CAD) is the
most prevalent and remains one of the main causes of morbidity
and mortality (1). CAD, including heart attack, acute myocardial
infarction (MI), stable and unstable angina pectoris (AP), and
sudden cardiac death (2), can affect heart functioning and brain
processing (3) and further lead to cognitive impairment (4). As a
result, CAD became one of the major global economic burdens
in healthcare.

Invasive coronary angiography (ICA) is the reference
standard for the diagnosis of CAD, especially obstructive
disease; however, people who underwent ICA may suffer
from complications (5) such as bleeding, pseudoaneurysm,
and hematoma. Medical imaging, as a non-invasive technique,
has developed from lesion recognition to functional imaging
like diagnosis and evaluation of disease, especially radiological
methods (6). Previous studies showed that the diagnostic
accuracy of coronary computed tomographic angiography
(CCTA) for coronary atherosclerosis is comparable to that of
invasive techniques due to its potential to identify and describe
plaques (7), and the clinical use of MRI techniques in CAD is
now widely available in many aspects of CAD (8). The rapid
growth of medical imaging data accelerates the discovery of new
imaging markers for diagnosis, prediction, or stratification of
CAD, which is also known as radiomics. Artificial intelligence
(AI), as a technology to enable problem-solving by simulating
human intelligence (9), plays an important role in imaging
marker derivation and model development in this field.

The application of AI in medical imaging is an
interdisciplinary work and involves researchers from different
backgrounds. Thus, there are significant differences in
study design, medical imaging technique, AI algorithm, and
performance evaluation in diagnostic models of CAD. In this
scoping review, we aim to investigate and summarize how AI
algorithms are used in the development of diagnostic models of

CAD with imaging markers and to discover the knowledge gaps
to point out the direction for future research.

Methods

This scoping review followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses extension
for Scoping Reviews (PRISMA-ScR) guideline (10), and
a completed PRISMA-ScR checklist was provided in
the Supplementary Material 1. The protocol of the
systematic review and methodological quality assessment
was registered with the International Prospective Register of
Systematic Reviews (PROSPERO) with the registry number
CRD42022306638.

This scoping review is part of the project, aiming to provide
an understanding of the role of medical imaging markers
integrated with AI for the diagnosis of CAD. For the purpose of
this scoping review, the term CAD includes AP, coronary artery
disease, coronary stenosis, myocardial infarction, coronary
artery atherosclerosis, and coronary artery vulnerable plaque,
which can completely or partially block the blood flow of
the major arteries of the heart, as these are the terms used
to describe the same medical condition that causes lesions in
blood vessels supplying the heart and lead to ischemic heart
disease in the International Classification of Diseases (ICD-10)
(Supplementary Material 2).

Inclusion and exclusion criteria

Publications of primary research on the development of
diagnostic models of CAD using AI techniques based on
imaging, regardless of targeted patients, data sources, or study
design, were included in the review. Exclusion criteria were
(1) publications not in English or not using human data or
not imaging tests, (2) models not developed for diagnosis,
(3) meta-research studies (e.g., reviews of prediction models),
(4) conference abstracts, (5) studies that are only focused on
automatic segmentation of images or extraction of medical
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image parameters, and (6) diagnostic models developed or
validated not associated with CAD.

Identification of eligible publications

Eligible publications for this scoping review were selected
from a systematic review and methodological quality assessment
on the image-based diagnostic models with AI in CVD
performed by the same research group. The systematic literature
search was conducted in PubMed and Embase, and the search
strategy information can be found in the public online protocol.

Studies identified by the search strategy were imported into
EndNote for checking duplicates. After removing duplicates,
titles and abstracts were screened independently by two authors
to identify eligible studies. The potentially eligible studies were
independently checked with full text by the same two researchers
for final inclusion. As the last step, models for the diagnosis of
CAD were selected for this scoping review.

Data extraction

Data were collected on general information of articles (first
author, year of publication, title, journal, and DOI), study
characteristics (date of submission, acceptance, publication,
country of author, and study), population characteristics (age-
group, clinical setting, and participant inclusion), AI technique
characteristics (purpose/use of the AI technique and AI
models/algorithms), data set characteristics (data set size, data
types, type of imaging, number of image features, reference/gold
standard, competitor, data sources, study design, internal
validation, and external validation), and diagnostic model
characteristics (clinical effectiveness). We then performed a
double data extraction for all included articles on the basis of
detailed explanations for each item (Supplementary Material
3). If multiple models were established in an article, only one
model was selected based on the following criteria in order:
(1) the one with the largest total sample size, (2) the one with
the largest number of events, and (3) the one with the highest
predictive performance. A total of two reviewers (two of WW,
HG, JD, JS, YD, MZ, DZ, and XW) independently extracted data
from each article using a data extraction form designed for this
review. Disagreements were resolved through discussion, and if
necessary, the final judgment was made by a third reviewer (JW).

Data synthesis

On account of the heterogeneity in selected studies, a
narrative synthesis of the extracted data was performed.
Numbers and percentages were used to describe categorical
data, and the distribution of continuous data was assessed and

described using median and IQR. We also summarized the
characteristics of the included articles in this scoping review by
descriptive statistics and data visualization. In the process of
analysis, all the statistical analyses were performed by R version
3.6.1 and RStudio version 1.2.5001, and graphic charts and tables
were used to present the results.

Results

Selection of publications

After removing duplicates, screening titles and abstracts,
and checking the full text, a total of 110 eligible articles were
identified for the systematic review and methodological quality
assessment on the image-based diagnostic models with AI in
CVD, of which 46 were about the diagnosis of CAD and thus
were selected for this scoping review. A complete list of the
included studies and their characteristics is available in the
Supplementary Material 4.

Characteristics of the included studies
Coronary artery disease is a progressive disease and also a

general term for a class of diseases. Of the 46 studies included,
54.4% were specifically for CAD (11–35) as the research
disease, and the other specific diseases were named coronary
artery atherosclerosis (10.8%) (36–40), coronary artery stenosis
(15.3%) (41–47), coronary artery calcium (4.3%) (48, 49), MI
(10.8) (50–54), myocardial ischemia (2.1%) (55), and regional
wall motion abnormalities (2.1%) (56) (Figure 1).

Approximately, half of the included studies were conducted
in years 2020 (12/46, 26.0%) (14, 15, 17, 19, 20, 25, 26, 30,
36, 37, 45, 56) and 2021 (12/46, 26.0%) (13, 16, 21, 24, 29, 33,
39, 40, 43, 46, 50, 53) (Figure 2). The corresponding authors
of the included studies were from 13 countries, including the
United States (14/46, 30.3%) (12, 16, 21, 22, 29, 31, 34, 36, 39,
41, 42, 48, 49, 53), China (11/46, 23.9%) (15, 19, 20, 35, 37, 38,
40, 45, 46, 52, 54), Japan (8/46, 17.3%) (17, 23, 25, 27, 28, 32, 55,
56), Greece (2/46, 4.3%) (13, 14), and Netherlands (2/46, 4.3%)
(44, 47), whereas Italy (26), Canada (11), India (30), Korea (24),
New Zealand (50), Russia (43), Sweden (51), Turkey (18), and
the United Kingdom (33) each had only one study (1, 2.1%). In
most of the articles, corresponding authors and study cohorts
were from unified countries. Only one study involved cross-
country collaborations, with the authors of the article being from
India, while the study cohort was from China. Supplementary
Table 1 shows the all characteristics of the studies included in
our review.

Of all the included articles, 44 articles mentioned the date
of submission and date of acceptance, and the time from
submission to acceptance varied from 19 days to 466 days, with
the median of 105 days and the interquartile range of [66.25,
162.75]. Except for six articles being published in journals not
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FIGURE 1

CAD types in the included publications.

FIGURE 2

Number of publications by year and country.
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having an impact factor (IF) yet, the IF of the other 40 articles
ranged from 0.785 to 22.673, with the median of 3.6645 and
the interquartile range of [2.52775, 7.887]. As can be seen
in Figure 3, the time needed for a decision of acceptance
was positively correlated with the journal IF (Spearman rank
correlation = 0.24). Supplementary Table 2 shows the time from
submission to acceptance and the IF of all included articles.

The colors represent the sample size of the model training
data set, and the AUC of each model is presented as the
radius of the bubble.

Data sources and study designs in the
included studies

For data sources, private data (data collected by centers)
(35/46, 76.0%) (11–21, 23, 24, 27, 33–50, 53, 54, 56) were the
most commonly used data sources for the development of AI
models. Except for one article for which the data source is
unclear (28), public data (10/46, 21.7%) were the other sources
of data for AI models (22, 25, 26, 29–32, 51, 52, 55). Most studies
were single-center studies, accounting for 76.0% (35/46), and
19.5% (9/46) were multi-center studies (16, 20, 29, 33, 41, 42,
51, 53, 55). There were three major types of study designs: cohort
study (30/46, 65.2%) (11–28, 36–38, 40–43, 46–50), case–control
(8/46, 17.3%) (34, 35, 39, 44, 52–54, 56), and nested case–control
(1/46, 2.1%) (33), whereas for the other 15.3% of the studies
(7/46) (29–32, 45, 51, 55), the type of study design could not be
determined based on the information in the article.

Of the 41 (89.2%) studies that reported sample size on
patient level, eight (17.3%) studies used data sets of less than
100 samples (11, 12, 19, 34, 35, 37, 43, 46), 20 (43.5%) studies
used data sets with 100–500 samples (14–16, 18, 23, 26, 31, 32,
36, 39, 40, 44, 47, 48, 51–56), five (10.8%) studies used data sets
with 500–1,000 samples (13, 24, 25, 30, 33), and eight (17.3%)
studies used data sets with more than 1,000 samples (20–22,
27–29, 41, 42). The other five (10.8%) studies directly selected
relevant medical imaging scans or videos as training samples
with a sample size between 63 and 4,664 (17, 38, 45, 49, 50)
(Figure 3).

Population characteristics in the
included studies

Across the populations studied, most studies had no age
restrictions on the study population (39/46, 86%), while other
studied populations included people older than 18 years (4/46,
8.6%) (19, 35, 39, 45), people older than 40 years (1/46, 2.1%)
(15), or older adults (above the age of 65 years) (2/46, 4.3%)
(32, 55). In the included articles, most of the study population
was patients who were hospitalized (34/46, 74.1%), and some
studies included the general population (3/46, 6.5%) (24, 26, 27)

or outpatients (3/46, 6.5) (25, 31, 39), while one study dealt with
coronial postmortem examination (1/46, 2.1%) (50), and the
population of the rest of the studies was unclear (5/46, 10.8%)
(22, 38, 45, 49, 52).

Outcome and reference standards in
the included studies

The main outcome of the diagnostic models was classified
into three formats: binary (e.g., the status of CAD, yes or no)
(34/46, 74.1%), ordinal (e.g., severity grading of CAD) (8/46,
17.3%) (16, 19, 29–33, 55), and multinomial (e.g., multiple
diseases or classification of CAD) (4/46, 8.6%) (18, 46, 50, 51).

Reference standards for determining the outcomes were
only mentioned in 36 of the 46 studies. Experts (11/46, 23.9%)
(11, 16, 20, 21, 36, 38, 39, 45, 48, 49, 52), such as cardiologists or
radiologists, and coronary angiography (13/46, 28.3%) (12–15,
17–19, 33, 41–43, 46, 53) were the two main reference standards.
Coronary angiograms and experienced physicians (6/46, 13.0%)
(28, 29, 31, 32, 51, 55), fractional flow reserve (FFR) (4/46, 8.6%)
(34, 35, 44, 47), and clinical characteristics, electrocardiogram,
and laboratory test index (2/46, 4.3%) (40, 54) were used as the
reference standards for CAD in other studies.

Types of medical imaging and artificial
intelligence algorithms in the included
studies

The included studies demonstrate 10 types of medical
imaging that have been used to diagnose CAD with AI
techniques. The most common medical imaging used was
computed tomography (CT), comprising 73.9% (34/46) of
the studies, which included single-photon emission computed
tomography (SPECT) (15/46, 32.6%) (12–14, 17, 18, 21, 27–
29, 31, 32, 41, 42, 51, 55), coronary computed tomography
angiography (CCTA) (15/46, 32.6%) (15, 16, 19, 23, 26, 30, 34–
36, 39, 40, 44, 46–48), optical coherence tomography (OCT)
(3/46, 6.5%) (11, 37, 38), and non-contrast CT (1/46, 2.1%)
(49). Other more commonly used medical imaging techniques
were ultrasonography (5/46, 10.8%) (22, 24, 33, 53, 56), MR
(2/46,4.3%) (52, 54), and X-ray (2/46, 4.3%) (43, 45). In contrast,
the least commonly used images were coronary angioscopy
(1/46, 2.1%) (25), histological slides (1/46, 2.1%) (50), and facial
photo (1/46, 2.1%) (20). In the process of model development,
the majority of the studies focused only on using various
characteristics of medical imaging of participants, although few
articles clearly defined the image features. Other combinations
of data in some included studies, such as demographic data
(5/46, 10.8%) (18, 20, 21, 29, 30), clinical data (2/46, 4.3%) (13,
27), and laboratory data (1/46, 2.1%) (31), were also used to
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FIGURE 3

Relationship between the time needed for acceptance for publication and the journal impact factor.

FIGURE 4

Imaging types and AI methods.
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evaluate their effect on the performance of the AI technology
to predict the diagnosis of CAD.

Many different AI algorithms were applied to explore the
diagnostic value of information from images. AI algorithms
were classified into deep learning (DL) (41/46, 89.2%) (12, 14–
29, 31, 32, 34–42, 44–56) and machine learning (ML) (5/46,
10.8%) (11, 13, 30, 33, 43), as shown in Figure 4.

Model performance measures used in
the included studies

Different indicators were used in the validation process of
different models, and we only summarized the commonly used
validation indicators: accuracy, sensitivity, specificity, and the
area under the curve (AUC).

The accuracy of the diagnostic models was reported in 26
studies, and the accuracy level ranged from 57 to 100%. The
accuracy level was < 70% in three studies (18, 26, 28), 70–90% in
12 studies (13, 14, 19, 20, 32, 35, 38, 40, 45, 47, 48, 53), and > 90%
in 11 studies (11, 15, 16, 22, 24, 36, 39, 46, 49, 50, 52).

Sensitivity was reported in 32 studies and ranged from 47
to 97.14%. The sensitivity level was < 70% in five studies (26,
32, 36, 42, 53), 70–90% in 19 studies (13, 14, 18–21, 29, 31, 33,
34, 39–41, 43–47, 54), and > 90% in eight studies (11, 12, 15,
16, 35, 48, 52, 55). Moreover, specificity was reported in only
30 studies and ranged from 48.4 to 99.8%. The specificity level
was < 70% in nine studies (15, 18, 20, 29, 31, 40–42, 44), 70–90%
in 11 studies (12–14, 19, 21, 26, 32, 33, 35, 47, 48), and > 90% in
10 studies (11, 16, 34, 36, 39, 46, 52–55).

The area under the curve was only reported in 29 studies,
ranging from 0.74 to 0.98 (Figure 3). In seven studies, the AUC
was below 0.80 (13, 15, 18, 20, 44, 47, 53); in nine studies, it was
between 0.8 and 0.9 (19, 21, 23, 29, 32, 33, 38, 41, 42); and in 13
studies, it was above 0.9 (24, 25, 27, 33–36, 39, 49, 51, 54–56).
However, among all the included articles, only four carried out
external validation of the AI model, accounting for a proportion
of 8.6% (20, 29, 33, 39).

Competitor and clinical effectiveness
of developed models in the included
studies

After the AI models were developed, 11 articles compared
the performance of the model with clinicians, including experts
(10/46, 21.7%) (12–18, 33, 53, 56) and less experienced clinicians
(1/46, 2.1%) (49). Some models in the included studies (13/46,
28.3%) were compared with previously existing or published
models (20–23, 27, 28, 37, 38, 43, 45, 47, 52, 54). Other methods
used for comparison with models in the included studies include
total perfusion deficit (2/46, 4.3%) (41, 42), CCTA (1/46, 2.1%)
(19), and conventional 120 kVp images (1/46, 2.1%) (46), and

the rest of the studies (18/46, 39.1%) (11, 24–26, 29–32, 34–36,
39, 40, 44, 48, 50, 51, 55) have no information about competitors
of the AI models.

However, few developed models of CAD have been used in
clinical practice or prospective studies to prove their clinical
applicability. Only one article (1/46, 2.1%) (51) mentioned
that some physicians of the invited hospitals used the model
system and generally found it easy to use and of value in their
clinical practice.

Discussion

Principal findings and the implications
for practice and research

In this review, we explored the use of imaging disease
markers in the diagnosis of CAD with AI. This review has
highlighted a few salient points and some research gaps which
have the potential to guide future research and enhance the value
of new imaging disease markers for medical decisions.

First, in a total of 46 included studies, it is obvious that
the number of studies increased in the past 20 years, especially
in the recent 2 years (12 in 2020 and 12 in 2021), which is
not surprising given that the use of AI technology in medical
care, especially the diagnosis of common diseases, became
a hot topic. Some developed countries have a long history
of carrying out research on AI-based diagnostic prediction
models of CAD, such as Japan (1992) and the United States
(2004). In recent years (2018–2021), China is the fastest
growing country in the establishment of AI models, and the
final proportion of articles included is 26.0%, second to the
United States (30.3%).

Second, there is significant heterogeneity in the study design.
The study design of more than half of the articles was a cohort
study as the primary studies we included are predominantly
retrospective in nature. The common data sources are mostly
private data and single-center studies, mainly from different
clinical settings in different hospitals in different countries,
which cannot be shared by the general public. The performance
of models based on these data cannot be effectively verified, so it
cannot be widely applied to other sources of data. It is important
to emphasize that the generalizability of data and reproducibility
of methods (57) are crucial to making new imaging disease
markers interpretable and translatable to clinical care for an AI
diagnostic model.

Third, most included studies used experts, such as
cardiologists or radiologists, and coronary angiography as the
reference standards. CAD, the most common clinical heart
disease, is a progressive pathological process with varying
degrees of severity and clinical symptoms for different patients.
Although coronary angiography was often used as the gold
standard for CAD in clinical settings, it may be invalid,
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especially in patients who have intermediate severity of stenosis
(58–60). In the process of establishing CAD diagnostic models
using imaging as disease markers, we should carefully select the
appropriate reference standard so that the model can obtain
more accurate diagnostic performance in prospective research
or clinical practice.

Fourth, the most often used outcome is binary (disease
versus no disease) in studies using imaging markers integrated
with AI techniques, without classifying diseases or grading their
level of severity. This explains the rapid and single application
of imaging disease markers developed with AI in the reviewed
studies. Future research should explore the fusion methods of
image features and AI technology to attain higher prediction
accuracy in terms of the coronary lesions that occur in the
patient and the severity of CAD.

Fifth, we identified the features of AI techniques as observed
in the literature. For AI models, DL techniques were used much
more than ML techniques. DL can learn from unstructured
data, and the information obtained in the learning process is
of great help to the interpretation of image data. Therefore, it
is understandable that most researchers used DL techniques as
they achieved far more results in image recognition than using
other related technologies.

Sixth, in this scoping review, a variety of imaging types can
be used together with AI in the diagnosis of CAD. Ordinarily,
experts in different hospitals make their own judgments about
CAD based on the types of medical imaging they specialize in.
Thus, it may be related to the strengths of different imaging
tests in different hospitals or the professional habits of each
doctor. Based on our findings, CCTA and SPECT were the
most used non-invasive imaging modality for AI applications.
One explanation for this is that radiomics features extracted
by CCTA and SPECT showed good diagnostic accuracy for
the identification of coronary lesions, coronary plaques, and
coronary stenosis.

Seventh, less than one-fifth of the articles used data other
than image features in the process of model development, such
as clinical data and demographic data, which can contribute
to the early prediction of CAD. Furthermore, we should also
evaluate the potential of laboratory data and genetic data, as a
combination of data with image features, in the early diagnostic
prediction of CAD. The earlier the diagnostic prediction
time, the more effective a medical or surgical treatment that
the physicians can give the patients with CAD, which can
significantly reduce the risk of death.

Eighth, the sample size was less than 1,000 in most
of the included articles, regardless of whether the research
subjects were patients or relevant medical imaging scans or
videos. Sample size plays a more important role than model
performance in determining the impact of the study, quantified
by the journal IF (Figure 3). In future studies, AI models should
be trained and validated on a larger data set and have a larger
healthy control sample, preferably from public sources.

Ninth, several articles claimed that their AI models had
a higher performance than existing models or methods (20–
22, 27, 28, 38, 45–47, 49, 52, 54). Furthermore, some articles
compared with experts (experienced radiologists) and readers
(board-certified radiologists) indicated that image-based AI
improved the non-invasive diagnosis of CAD (12–16, 23, 33,
53, 56). Although most of the included diagnostic models
were verified internally, different model performance measures
were used in the validation process of different models. As
we calculated, nearly 90% of the AI diagnostic prediction
models using imaging as a marker for diagnosing CAD in
our included articles were not externally validated. So, we
suggest that clinicians and researchers should conduct external
validation or prospective studies to explore the use of imaging
markers integrated with AI in clinical settings and compare the
performance of different imaging models used to diagnose CAD
by using relatively uniform indicators.

Last and interestingly, a positive correlation was observed
between the time needed for acceptance for publication and the
journal IF: the higher the IF of the journal, the longer the review
and decision time required. The IF is calculated from how many
times articles in the same journal have been cited and usually
is seen as an indicator of influence. One possible explanation
might be that low-impact journals were less strict than high-
impact journals; thus, the decision of acceptance was given fast.
Researchers who aim to publish their models in high-impact
journals need to take the risk of not being published timely.

Strengths and limitations

The present review was conducted to address the use of
all types of imaging disease markers developed with AI in the
diagnosis of CAD, with no restrictions on targeted patients, data
sources, or study design. Simultaneously, we also explored the
features of AI techniques and data sources that were used to
develop these models.

Recent reviews focused on the detection of CAD using
AI techniques (61) or on machine learning quantitation of
CVD (including CAD) (62). The previous review assessed the
clinical effectiveness of the use of medical imaging, such as
computed tomography angiography (CTA), instead of ICA (63).
This review explored and summarized the application of new
imaging disease markers developed with AI in the diagnosis of
CAD, which gives a deeper insight into the fusion of imaging
and AI in medicine.

We have included any primary research publication (in
English) related to image-based diagnostic models with AI
of CAD for reducing the selection bias. Furthermore, study
selection and data extraction involved two reviewers working
independently, and disagreements in the process were resolved
through discussion, and if necessary, the final judgment was
given by a third senior reviewer.
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This review included only PubMed and Embase databases,
which led to the loss of some gray literature and other potentially
relevant studies in other databases. The exclusion of non-
English studies may lead to an oversight of relevant articles in
other languages. In some of the included articles, we could not
extract all the information from the description and reporting
of the diagnostic model according to the contents in the data
extraction form. Adherence to the Transparent Reporting of
a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) Statement (64, 65) and the Standards for
Reporting of Diagnostic Accuracy Studies (STARD) Statement
(66, 67) should be recommended for authors. In this scoping
review, we only summarized the types of imaging disease
markers developed with AI, but not compared models using
different types of imaging or the performance of different
models using the same type of imaging. As it is part of our
overall systematic review project, the assessment of the possible
methodological quality and risk of bias in the included literature
will be reserved for later research studies.

Conclusion

The current scoping review included 46 studies that focused
on the use of imaging markers integrated with AI as diagnostic
methods for CAD in all clinical settings. We explored and
summarized the types of images and the classification of AI
in these models. We have also provided information about the
data source and study design commonly used in the diagnostic
models and strongly recommend external validation of the
models and prospective clinical studies in the future. With the
advance in medical imaging data, AI has exhibited considerable
potential in clinical decision support and analysis in multiple
medical fields. The integrated development of imaging and AI
can assist clinicians to make more accurate medical decisions for
different diseases, including CAD, which can improve clinical
efficiency while avoiding the wastage of medical resources and
reducing the economic burden on patients.
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