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Background. Acute myocardial infarction (AMI) is one of the most critical conditions of coronary heart disease with many
uncertainties regarding reduction of ischemia/reperfusion injury, medical treatment strategies, and other aspects. The
inflammatory immune response has a bidirectional regulatory role in AMI and plays an essential role in myocardial
remodeling after AMI. The purpose of our research was tantamount to explore possible mechanisms of AMI and to analyze
the relationship with the immune microenvironment. Methods. We firstly analyzed the expression profile of GSE61144 and
HADb to identify differentially expressed autophagy-related genes (DEARGs). Then, we performed GO, functional enrichment
analysis, and constructed PPI network by Metascape. A lncRNA-miRNA-mRNA ceRNA network was built, and hub genes
were extracted by Cytoscape. After that, we used CIBERSORT algorithm to estimate the proportion of immunocytes, followed
by correlation analysis to find relationships between hub DEARGs and immunocyte subsets. Finally, we verified those hub
genes in another dataset and cellular experiments qPCR. Results. Compared with controls, we identified 44 DEARGs and then
filtered the genes of MCODE by constructing PPI network for further analysis. A total of 45 lncRNAs, 24 miRNAs, 19
mRNAs, 162 lncRNA-miRNA pairs, and 37 mRNA-miRNA pairs were used to construct a ceRNA network, and 4 hub
DEARGs (BCL2, MAPK1, RAF1, and PRKAR1A) were extracted. We then estimated 5 classes of immunocytes that differed
between AMI and controls. According to the results of correlation analysis, these 4 hub DEARGs may play modulatory effects
in immune infiltrating cells, notably in CD8+ T cells and neutrophils. Finally, the same results were verified in GSE60993 and
qPCR experiments. Conclusion. Our findings suggest that those hub DEARGs (BCL2, MAPK1, RAF1, and PRKAR1A) and
immunocytes probably play functions in the progression of AMI, providing potential diagnostic markers and new perspectives
for treatment of AMI.

1. Introduction

Acute myocardial infarction (AMI) is clinically defined as
cardiomyocyte necrosis consistent with acute myocardial
ischemia [1, 2]. Principal current treatments for AMI
include reperfusion therapy, antithrombotic therapy, anti-
ischemic therapy, and other pharmacological treatments,
and secondary prevention [1, 2]. AMI is one of the most
unfavorable conditions in coronary heart disease (CHD),
which not only impairs health and causes disability and
death in CHD [3], but also imposes a heavy economic bur-
den on society [4]. Worldwide, ischemic heart disease is
now the most widespread reason for death, and its incidence

is increasing [2]. Despite the tremendous progress in the
detection and treatment of AMI in recent decades and the
decrease in mortality with the available means of treatment,
the mortality rate is still high. There are still many areas of
uncertainty in terms of reduction of ischaemia/reperfusion
(I/R) injury, medical treatment strategies, long-term man-
agement, need for observational data, real-world evidence,
and pragmatic real-life clinical trials [1, 2].

Autophagy is the major intracellular degradation system.
Cytoplasmic material is delivered to and degraded in lyso-
somes through autophagy. Autophagy has a vital function
in sustaining the homeostatic balance in cells and organisms
[5]. Studies have confirmed that dysregulation of cellular
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autophagy is relevant to the progression of various diseases
[6–8], for instance, neurodegenerative diseases like parkin-
sonism, malignant tumors like breast, ovarian, colorectal,
and lung cancers, cardiovascular disease like myocardial
infarction, various types of cardiomyopathy, and atheroscle-
rosis. Initially, it was shown that autophagy facilitated cell
survival [9]; however, it was also later determined to be
involved in cell death [10]. Prolonged and excessive autoph-
agy might contribute to cell death [11]. It is generally agreed
that adaptively induced autophagy or baseline autophagy
contributes to the reduction of ischemia or ischemia/reper-
fusion injury in AMI, whereas excessive autophagy is detri-
mental [12].

Immune cells are involved in or associated with the
immune response and include monocytes/macrophages,
neutrophils, lymphocytes, and dendritic cells. It has been
shown that immune cell infiltration is implicated in the
development of a great many diseases like tumors [13], cen-
tral system diseases [14], and skin diseases [15]. Various
kinds of immune cells play diverse roles during the develop-
ment of AMI [16, 17]. As the molecular mechanisms behind
cellular autophagy and the immune system are better under-
stood, the tight relationship of them is slowly being uncov-
ered [18]. And numerous studies have shown that
autophagy-mediated modulation of the immune system
may enhance or diminish the effects of immunotherapy,
with the potential for future use in the treatment of a wider
variety of tumors [19]. In addition, with the development of
sequencing technologies and genomics [20, 21] and the
development of gene-related predictive tools based on dis-
ease databases [22], they can be used to provide predictive
value for the risk prognosis of diseases with potential bene-
fits for patients. However, an integrated analysis of autoph-
agy and immunity in the pathogenesis and development of
AMI has not been reported.

In our research, we identified autophagy-related hub
genes by searching for DEARGs in AMI and constructed
PPI network and lncRNA-miRNA-mRNA ceRNA network.
Then, we compared the immune cell composition between
AMI and normal subjects by CIBERSORT algorithm analy-
sis and co-expressed hub genes with differential immune
cells. Finally, we performed a multidimensional validation
at the level of another dataset and qPCR experiments of
the 4 identified hub DEARGs to speculate on the underlying
mechanisms of AMI development.

2. Materials and Methods

2.1. Data Selection and Analysis of Differential Gene
Expression. The gene expression profiles analyzed in our
research were taken from the Gene Expression Omnibus
(GEO) database [23] (https://www.ncbi.nlm.nih.gov/geo/).
The GEO database is an international public repository for
storing microarray, second-generation sequencing, and
other high-throughput sequencing data [23]. The mRNA
expression profiles used for the analysis in our work were
obtained from 7 AMIs (STEMI) and 10 control samples in
dataset GSE61144 [24], and the miRNA expression data
were obtained from 20 AMI and 64 control samples in data-

set GSE31568 [25]. Differentially expressed mRNAs
(DEmRNAs) or differentially expressed miRNAs (DEmiR-
NAs) from AMI and normal specimens were identified via
GEO2R online tool [23] (https://www.ncbi.nlm.nih.gov/
geo/geo2r/) with jlog 2 FCj > 0:5 and adj. P values <0.05.
GEO2R is a web application based on R analysis that facili-
tates the identification and visualization of differential gene
expression [23].

2.2. Identification of Differentially Expressed Autophagy-
Related Genes (DEARGs). The human autophagy database
(HADb) is the first human autophagy-dedicated database,
developed in the tumor immunotherapy and microenviron-
ment (TIME) group at the Luxembourg Institute of Health.
There are over 200 humankind genes/proteins associated
with autophagy manually collected from the biomedical lit-
erature and other online resources listed [26]. We extracted
all autophagy-related genes (ARGs) in HADb and then
obtained 44 DEARGs after taking the intersection with
DEmRNAs in GSE61144 by a Venn diagram.

2.3. GO/Metascape Enrichment Analysis and PPI Network
Construction. Metascape [27] (https://metascape.org/gp/
index.html) integrates over 40 independent data sources
and is updated monthly. The pathway enrichment analysis
by Metascape uses GO, KEGG, Reactome, and MSigDB. It
calculates pairwise similarities between any two enriched
terms based on Kappa-test score [28], automatically clusters
the enriched terms into nonredundant groups, and then per-
forms hierarchical clustering of similarity (0.3 similarity
threshold) matrices. Metascape selects the most significant
(lowest P value) term in each cluster and represents that
cluster in the form of a bar chart and heat map. Metascape
utilizes BioGrid’s [29] protein-protein interactions as the
primary data source, complemented by InWeb_IM [30]
and OmniPath [31], and applies the MCODE algorithm
[32] to automatically extract protein complexes embedded
in the large networks and combines the three most signifi-
cantly enriched ontology terms to annotate putative biolog-
ical roles for each MCODE complex. We used Metascape
to analyze DEARGs to reveal their gene annotation and
functional enrichment and then constructed the PPI
networks.

2.4. Construction of miRNA-lncRNA-mRNA ceRNA
Regulation Network. Starbase [33] (https://starbase.sysu.edu
.cn/), miRDB [34] (http://mirdb.org/), and DIANA-
TarBase v.8 [35] (http://www.microrna.gr/tarbase) are used
for predicting miRNAs. Starbase (https://starbase.sysu.edu
.cn/), miRcode [36] (http://www.mircode.org/), and lncbase
v.2 [37] (http://carolina.imis.athena-innovation.gr/diana_
tools/web/index.php?r=lncbasev2/index-predicted) are used
for predicting lncRNAs. StarBase v2.0 provides the most
comprehensive network of miRNA-mRNA and miRNA-
lncRNA interaction network supported by CLIP-Seq exper-
iments to date [33]. MiRDB can be used for miRNA target
prediction and functional annotation by employing an
improved algorithm [34]. DIANA-TarBase v8 provides
experimentally supported information on the regulation of
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miRNA-mRNA [35]. MiRcode identifies putative target sites
based on seed complementarity and evolutionary conserva-
tion, and it allows putative microRNA–target sites in
lncRNAs of interest or predicted targets of specific micro-
RNAs [36]. LncBase provided a database of experimentally
supported and in silico predicted miRNA Recognition Ele-
ments (MREs) on lncRNAs [37]. As a result, based on the
acquired lncRNAs, miRNAs, mRNAs, and their interactions,
the miRNA-lncRNA-mRNA ceRNA regulation network was
constructed by Cytoscape [38].

2.5. CIBERSORT Estimation. For the purpose of evaluating
the proportion of 22 immunocyte kinds from AMI and nor-
mal samples, we applied the CIBERSORT algorithm [39]. It
was considered worthwhile for further analysis only for
those specimens with a CIBERSORT output value of P <
0:05. For the purpose of determining potentially important
immune infiltration cell subsets between the AMI and nor-
mal group, Wilcoxon rank-sum test was applied for subse-
quent analysis.

2.6. Correlation Analysis of the Autophagy-Related Genes
and Immunocytes. In order to uncover the possible associa-
tions between ARGs and immune cells, Pearson correlation
analysis was used to calculate the CIBERSORT algorithm
output values. We analyzed the correlations between 4 hub
DEARGs and 5 kinds of immune cell subpopulations from
all samples.

2.7. Multidimensional Validation. Finally, to verify the reli-
ability of the dataset analysis results, we performed multidi-
mensional validation. We verified the gene expression in
another GEO dataset and in human cardiomyocyte qPCR
experiments. The mRNA expression profiles were taken
from 7 AMI (STEMI) and 7 control specimens in dataset
GSE60993 [24]. Differences with a P value <0.05 were
deemed statistically significant. To further validate the previ-
ous results of our findings, we performed cellular experi-
ments, cell culture, hypoxia model construction, and qRT-
PCR as described following.

2.8. Cell Culture and Treatment. The human myocardial
AC16 cell line was purchased from American Type Culture
Collection (ATCC, Manassas, VA, USA) and cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco,
Grand Island, NY, USA) supplemented with 10% fetal
bovine serum (FBS; Gibco, Grand Island, NY, USA),
100U/ml penicillin and 100μg/ml streptomycin at 37°C in
a humid atmosphere with 5%CO2. Cells were exposed to
hypoxia conditions (94% N2, 1% O2, and 5% CO2) for 4 h,
and cells incubated under normally conditions were used
as control.

2.9. Quantitative Real-Time PCR (qRT-PCR). The manufac-
turer’s guide provided instructions for obtaining total RNA
from AC16 cells by using TRIzol reagent (Invitrogen;
Thermo Fisher Scientific, Inc., MA, USA), and we quantified
RNA by measuring absorbance at 260 nm using NanoDrop
ONE (Thermo Fisher Scientific, Inc., MA, USA). The Evo
M-MLV RT Kit (Accurate Biology, Hunan, China) was

applied to reverse transcribe RNA into complementary
DNA. The qPCR was performed on Roche LightCycler 480
II (Roche Diagnostics, Mannheim, Germany) using cDNA
as template. Reaction mixtures (10μl) were prepared using
SYBR® Green Premix Pro Taq HS qPCR Kit II (Accurate
Biology, Hunan, China), and PCR was accomplished by fol-
lowing the manufacturer’s instructions. The internal stan-
dard was glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). The following primers were used: BCL2-F: 5′-
AGATTGATGGGATCGTTGCCT-3′; BCL2-R: 5′-CAGT
CTACTTCCTCTGTGATGTTGT-3′; MAPK1-F: 5′-CGAA
GCACCATTCAAGTTCGAC-3′; MAPK1-R: 5′-CTGAGC
ACGTCCAGTCCTCT-3′; PRKAR1A-F: 5′-GGGCCTTCT
GATTATTTTGGTCAC-3′; PRKAR1A-R: 5′-CCCACA
GGTTAGGGTCTCCT-3′; RAF1-F: 5′-GATGCCGTGTT
TGATGGCTC-3′; RAF1-R: 5′-CCATTTCGCACATTGA
CCACT-3′; GAPDH-F: 5′-GGAGCGAGATCCCTCCAAA
AT-3′; GAPDH-R: 5′-GGCTGTTGTCATACTTCTCAT
GG-3′. Calculation of fold change in gene expression was
using the relative quantification (2− ΔΔCt) method.

2.10. Statistical Analysis. The values from cellular experi-
ments are presented with mean± standard deviation (SD)
from three independently repeated experiments. Statistical
analysis was calculated by IBM SPSS Statistics version 25.0
(SPSS Inc., Chicago, IL, USA) and GraphPad Prism version
8.0 (GraphPad Software, Inc., La Jolla, CA, USA). Differ-
ences between ischemia and control group were evaluated
using Student’s t-test. A one-sided P value <0.05 was
deemed statistically significant.

3. Results

3.1. Workflow Diagram. Figure 1 shows the process of anal-
ysis for our work. The first step of our work was to identify
44 DEARGs from GSE61144 and HADb. Then, we did func-
tional enrichment analysis, construction of PPI network, and
key module analysis by Metascape. Next, DEmiRNAs were
identified from GSE31568, and miRNAs and lncRNAs were
predicted by multiple databases. LncRNA-miRNA-mRNA
ceRNA regulation network was built, while hub genes were
extracted. Subsequently, the immune cell composition and
differences between AMI and normal groups were analyzed
by CIBERSORT algorithm, and hub genes and immune cells
were analyzed by Pearson correlation analysis. Finally, we
verified the findings in this work through multidimensional
aspects of another dataset and cellular experiments qPCR.

3.2. Identification of DEARGs in AMI Patients. In our work,
7 AMI and 10 normal samples from the dataset GSE61144
were analyzed, and 1645 DEmRNAs were identified, of
which there were 904 upregulated and 741 downregulated
(|logFC ∣ >0:5 and adj. P value <0.05; Figure 2(a)). In paral-
lel, 232 ARGs were obtained from HADb. Then, the 1645
DEmRNAs identified in GSE61144 were intersected with
232 ARGs. The outcome demonstrated that 44 DEARGs
were used for the subsequent analysis (Figure 2(b)) and the
gene expression was shown in the heat map (Figure 2(c)).
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3.3. Functional Enrichment Analysis, PPI Network
Construction, and Module Selection. To further screen genes
associated with AMI onset and development, we made GO
and enrichment analysis to access the biological functions
of these 44 genes; at the same time, a PPI network was built
to locate hub genes. The results of the functional enrichment
analysis and PPI network by Metascape are shown in
Figure 3. Figure 3(a) shows that these DEARGs were majorly
enriched in autophagy, apoptotic signaling pathway,
response to starvation, apoptosis, and regulation of autoph-
agy. To better understand the correlation between DEARGs
and AMI, we analyzed the PPI network and MCODE com-
ponents. Figure 3(b) shows the network of enriched terms.
Based on the results of MCODE component analysis
(Figures 3(c)–3(e)), the biological functions of MCODE
were found to be mainly related to PID ceramide pathway,
corticotropin-releasing hormone signaling pathway, and
autophagy, and we extracted the genes of MCODE from
the PPI network for subsequent analysis.

3.4. Construction of miRNA-lncRNA-mRNA ceRNA
Regulation Network. For the purpose of exploring the gene
functions and regulatory mechanisms of DEARGs at a deeper
level to understand the molecular mechanisms of AMI in a
more in-depth and comprehensive manner, we constructed
the ceRNA regulation network. We analyzed 20 AMI and 64
control samples from the dataset GSE31568, and 318 differen-
tially expressed miRNAs (DEmiRNAs) were identified. As

shown in Figure 4(a), there are 143 upregulated DEmiRNAs
and 145 downregulated DEmiRNAs. 44 DEARGs were used
to predict target miRNAs by Starbase, miRDB, and DIANA-
TarBase v.8. We identified 285 mRNA-miRNA relationship
pairs based on mRNA-miRNA interrelationships that were
predicted simultaneously in all three databases. The 145 pre-
dicted miRNAs were compared with the 318 identified
DEmiRNAs, and 47 miRNAs were extracted. We selected
miRNA-mRNA relationship pairs with opposite expression
to obtain 29 miRNAs. We then used Starbase, miRcode, and
lncbase to predict the target lncRNAs using 29 miRNAs.
And we identified 162 pairs of lncRNA-mRNA relationship
pairs. After removing the miRNAs with no predicted results
and the corresponding mRNAs, there were 45 lncRNAs, 24
miRNAs, 19 mRNAs, 162 lncRNA-miRNA pairs, and 37
mRNA-miRNA pairs.

We constructed ceRNA networks based on mRNA and
miRNA expression profiles from AMI patients, and miRNAs
and lncRNAs predicted by several databases, according to
lncRNA-miRNA and miRNA-mRNA interactions
(Figure 4(b)). These 19 mRNAs in the ceRNA network were
intersected with 6 genes in MCODE of the PPI network,
obtaining 4 autophagy-related hub genes, BCL2, MAPK1,
RAF1, and PRKAR1A for subsequent analysis. Only these
4 genes were selected because they showed the greatest sig-
nificance in the analysis results of DEARGs screening, PPI
network construction, and ceRNA construction rather than
other unregulated/downregulated DEARGs.

mRNAmiRNA

Validation Co-expression analysis of
the DEARGs and AMI related immune cells

5 Immune cell types
associated with AMI

4 autophagy-related
hub genes

Dataset validation Cellular experimental validation

44 autophagy-related
DEmRNAs

Human autophagy database
(232 autophagy-related genes)

GSE61144

Estimate the fraction of
22 immune cell types

PPI network

GO/metascape
functional enrichment analysis

IncRNA-miRNA-mRNA ceRNA network

Predict IncRNAs
based on 29 miRNAs

Identify miRNA-mRNA
negative regulation pairs

Predict miRNAs
based on 44 ATGs318 DEmiRNAs

1645 DEmRNAs

IncRNA
|logFC|>0.5 and adj.P < 0.05

Cibersort

Intersection

Intersection

GSE31568

|logFC|>0.5 and adj.P < 0.05

Figure 1: The flowchart of the analysis process.
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Figure 2: Identification of differentially expressed autophagy-related genes in AMI patients. (a) Volcano plot of differentially expressed
genes between the two groups of samples in GSE61144. The red points represent upregulated genes screened on the basis of logFC > 0:5
with an adj. P value <0.05. The green points represent downregulated genes screened on the basis of logFC < −0:5 with an adj. P value <
0.05. The black dots represent genes with no significant difference. FC is the fold change. (b) Venn diagram of the intersection of
DEmRNAs and ARGs in HADb. The dark area in the middle represents DEARGs that were identified by analysis of DEmRNAs (left,
purple) and ARGs in the Human Autophagy Database (HADb) (right, orange). (c) Heat map of DEARGs. Red indicates that gene
expression is relatively upregulated, green indicates gene expression is relatively downregulated, and black indicates no significant change
in gene expression.
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3.5. Analysis of Immune Cell Infiltration. In an attempt to
uncover the association between the immune microenviron-
ment and the development of AMI, we applied the CIBER-
SORT algorithm to evaluate the proportion of immunocytes

from all samples in GSE61144. Figure 5(a) shows a histogram
of their relative composition for the 22 immune cell classes.
CD8+ T cells, CD4+ T cells naive, NK cell resting, monocytes,
and neutrophils were the major enriched immune cell subsets.
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–Log10 (P)

GO:0071417: cellular response to organonitrogen compound
WP4658: small cell lung cancer
GO:0051817: modulation of process of other organism involved in symbiotic interaction
WP1984: integrated breast cancer pathway
GO:0009266: response to temperature stimulus
WP2509: nanoparticle triggered autophagic cell death
GO:0060249: anatomical structure homeostasis
GO:0031647: regulation of protein stability
M254: PID MYC repress pathway
GO:0080135: regulation of cellular response to stress
GO:0097193: intrinsic apoptotic signaling pathway
ko05145: toxoplasmosis
GO:0010942: positive regulation of cell death
ko04141: protein processing in endoplasmic reticulum
hsa05162: measles
GO:0010506: regulation of autophagy
hsa04210: apoptosis 
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Figure 3: The enrichment analysis of 44 DEARGs in AMI (Metascape). (a) Bar graph of top 20 enriched terms across DEARGs, colored by
P values. (b) Network of enriched terms, colored by cluster ID. (c, d, and e) Protein-protein interaction network and MCODE components
identified in DEARGs.
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The results of principal component analysis (PCA) showed sig-
nificant group differences in immunocytes between AMI and
controls (Figure 5(b)). Then, we compared the immunocyte
composition of AMI and controls. The proportion of CD8+ T
cells (P < 0:001), Tregs (P < 0:01), and mast cells resting
(P < 0:05) were markedly less in AMI than normal group,
whereas neutrophils (P < 0:001) and macrophages M0
(P < 0:001) were markedly greater than normal group
(Figure 5(c)).

The correlation of 17 kinds of immunocytes was counted
(since 5 kinds of immune cells were not estimated in all sam-
ples, they were not included in the correlation analysis)
(Figure 5(d)). The heat map shows that the different subpop-
ulations of immune cells show varying degrees of correlation.
CD8+ T cells were markedly correlated with T cells gamma
delta (r = 0:76, P < 0:01), NK cells resting (r = 0:61, P < 0:01
), and mast cells resting (r = 0:54, P < 0:05) positively, yet
markedly correlated with macrophages M0 (r= -0.58, P <
0:05) and neutrophils (r = −0:70, P < 0:01) negatively. Neu-
trophils were markedly correlated with CD4+ T cells memory
activated (r = 0:67, P < 0:01) positively, but markedly corre-
lated with CD8+ T cells (r = −0:70, P < 0:01), T cells regulatory
(Tregs) (r = −0:70, P < 0:01), NK cells resting (r = −0:79, P
< 0:01), and monocytes (r = −0:65, P < 0:01) negatively.

3.6. Co-Expression Analysis for DEARGs and AMI-
Associated Immunocytes. The correlation between the 4
DEARGs and the 5 kinds of immune cells was analyzed further
based on the findings of the previous analysis (Figure 6(a)). As
shown in Figure 6(b), BCL2 is correlated with CD8+ T cells

(r = 0:60, P < 0:05) positively, but correlated with neutrophils
(r = −0:5, P < 0:05) negatively. MAPK1 was correlated with
neutrophils (r = 0:75, P < 0:001) positively, but correlated with
CD8+ T cells (r = −0:82, P < 0:001) negatively. PRKAR1A was
correlated with neutrophils (r = 0:82, P < 0:001) positively, but
correlated with CD8+ T cells (r = −0:76, P < 0:001) negatively.
RAF1 was correlated with neutrophils (r = 0:88, P < 0:001)
positively, but correlated with CD8+ T cells (r = −0:86, P <
0:001) negatively.

These findings indicate that DEARGs, which include
BCL2, MAPK1, RAF1, and PRKAR1A, may have particular
modulatory functions in immune infiltrating cells, specifi-
cally in CD8+ T cells and neutrophils.

3.7. Multidimensional Verification. Finally, we performed
multidimensional validation in the dataset and cellular experi-
ments qPCR, respectively. Validation is performed in 7 AMI
(STEMI) and 7 control samples in the dataset GSE60993, and
the results are shown in Figure 7(a). MAPK1 (P < 0:001),
RAF1 (P < 0:001), and PRKAR1A (P < 0:05) were elevated in
AMI, and conversely, BCL2 (P < 0:01) was decreased, which
is congruous with our previous findings. We also performed
cellular level experiments besides validation in the bioinformat-
ics dataset. We cultured AC16 human cardiomyocytes in hyp-
oxia for 4 hours and then ran qRT-PCR experiments to verify.
The results are shown in Figure 7(b). MAPK1 (P < 0:05),
PRKAR1A (P < 0:01), and RAF1 (P > 0:05) were elevated,
and BCL2 (P < 0:05) was decreased in hypoxia cells compared
with controls.
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Figure 4: Volcano plot of miRNAs and ceRNA network. (a) Volcano plot of differentially expressed data between the two groups of samples
in GSE31568. The red points represent upregulated miRNAs screened on the basis of logFC > 0:5 with an adj. P value <0.05. The green
points represent downregulated miRNAs screened on the basis of logFC < −0:5 with an adj. P value <0.05. The black dots represent
genes with no significant difference. FC is the fold change. (b) View of miRNA-lncRNA-mRNA ceRNA regulation network, and the
ellipse, rectangle, and diamond represented mRNA, miRNA, and lncRNA, respectively.
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Figure 5: Analysis of immune cell infiltration in AMI and controls of GSE61144. (a) Bar plot showing the relative fraction of 22 immune cell
clusters in all samples. (b) Principal component analysis (PCA) was performed on all samples. Principal components 1 and 2 accounted for
93.8% of the total components. Orange represents the normal group and green represents the STEMI group. (c) The box plot comparing the
immune cell composition of the STEMI and normal groups. Orange represents the normal group and green represents the STEMI group. ∗

represents P < 0:05, ∗∗ represents P < 0:01, ∗∗∗ represents P < 0:001. (d) Pearson correlation analysis of different immune cell subsets.
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Figure 6: Co-expression analysis for DEARGs and AMI-associated immunocytes. (a) Pearson correlation analysis of 4 DEARGs (BCL2,
MAPK1, RAF1, and PRKAR1A) and 5 immune cells (CD8+ T cells, Tregs, mast cells resting, macrophages M0, and neutrophils). (b)
Scatter plot of the relationship between hub DEARGs (BCL2, MAPK1, RAF1, and PRKAR1A) and immune cells (CD8+ T cells and
neutrophils), respectively. R and P values are labeled on the images.
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4. Discussion

Previous studies have searched and analyzed autophagy-
related genes characterized in AMI patients. Bo’s group
identified functional variants of autophagy-related genes,
for instance, ATG5 [40], ATG7 [41], ATG16L1 [42], and
LC3B [43] in AMI patients. It has been identified that 7
DEARGs (WDFY3, TP53INP2, GABARAPL1, CDKN1A,
DDIT3, NAMPT, and FOS) in AMI based on a feature selec-
tion algorithm, known as support vector machine-recursive
feature elimination (SVM-RFE), which can be used to diag-
nose AMI as a potential biological marker [44]. On the other
hand, it has been demonstrated in numerous studies that
immune cells play an essential function in the development
of AMI and postinfarction cardiac repair and remodeling
[45, 46]. Previous work has found that there are N1 and
N2 types of neutrophils in the myocardial infarction area.
At an early stage post-MI period, proinflammatory type
(N1) neutrophils showed a powerful proinflammatory and
proinjury impact. The ratio of anti-inflammatory type (N2)
was found to be increased over time and participated in
the injury repair response after MI, exerting anti-
inflammatory and anti-injury effects [47, 48]. Xia et al.
found that Tregs were highly enriched in the myocardium
of MI mice, and demonstrated that Sparc (secreted acidic
cysteine-rich glycoprotein), which is highly expressed by
cardiac Tregs, could protect the heart by increasing collagen
content and enhancing maturation in the infarct scars to
protect the heart [49]. For this research, we determined 4
autophagy-related genes (BCL2, MAPK1, RAF1, and
PRKAR1A) associated with the occurrence of AMI. Besides,
we found differences in 5 immune cell fractions (CD8+ T
cells, Tregs, mast cells resting, macrophages M0, and neutro-
phils) by comparing the proportion of immunocytes
between AMI and normal groups.

BCL2 can inhibit apoptosis in a variety of cell systems.
Naseroleslami et al. found reduced BCL2 mRNA expression
in an AMI rat model [50], which is consistent with our analy-
sis. Ni et al. co-expressed BCL2 and vascular endothelial

growth factor (VEGF) in mesenchymal stem cells (MSC),
which could protect MSC by suppressing apoptosis, inhibiting
autophagy and enhancing paracrine effects in an ischemic
environment, and offering a new possibility for stem cell trans-
plantation for the management of ischemic cardiac disease
[51]. Kitabayashi et al. transplanted myoblast sheets overex-
pressing BCL2 into AMI rat model and effectively prolonged
the survival time of myoblast sheets, reduced fibrosis in the
myocardium, increased vascular density in the zones of infarc-
tion and margins, and improved cardiac function [52]. It has
been observed in previous studies that neutrophils firstly infil-
trate the infarcted area within a few hours after the onset of
AMI, becoming abundant within 24h, peaking on day 3, start-
ing to fall back on day 5, and decreasing to lower levels until
day 7, but still above baseline levels [45–48, 53]. Our research
found that neutrophils were significantly elevated in patients
within 4h after the onset of AMI in agreement with the previ-
ous studies. However, BCL2 can inhibit neutrophil apoptosis
[54]. It seems contradictory, but no relevant studies are avail-
able in AMI, and further exploration is needed. In summary, it
appears that a new perspective may be offered for the treat-
ment of AMI by intervening in BCL2.

MAPK1 encodes for one of the members of the MAP
kinase family. MAP kinases, which are also named extracel-
lular signal-regulated kinases (ERK), are participating in var-
ious cellular activities, for instance, proliferation,
differentiation, transcriptional regulation, and development.
Zhou et al. observed that MAPK1 was elevated in the MI/RI
mice model and isoflurane could improve hemodynamics
and myocardial injury by upregulating miR-378 to inhibit
MAPK1 [55]. This was compatible with our results. Ruan
et al. found that knockdown of lncRNA DANCR could
attenuate cardiomyocyte injury through miR-19a-3p/
MAPK1 axis [56]. Yu et al. found CD8+ T cells decreased
on day one in AMI patients by bioinformatic analysis [57]
in line with our results. D’Souza et al. found that Erk2
(MAPK1) can affect CD8+ T cells via cell activation, prolifer-
ation, and survival aspects and is crucial for the survival of
activated CD8+ T cells in vivo [58].
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Figure 7: Validation by dataset and qPCR. (a) In the dataset GSE60993, we analyzed 7 STEMI and 7 normal samples and showed that
MAPK1, RAF1, and PRKAR1A were elevated in STEMI, and conversely, BCL2 was decreased. (b) The relative expression levels of the 4
DEARGs were detected by qPCR in AC16 cells. The data are expressed as the mean± standard error of measurement from at least three
experiments. ∗ represents P < 0:05, ∗∗ represents P < 0:01, ∗∗∗ represents P < 0:001.
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RAF1 is involved in activating the MAPK cascade reac-
tions. Jiang et al. detected upregulated RAF1 and MAPK1
in extracellular vesicles (EV) in the plasma of AMI patients
at 4-6 hours after onset, which is consistent with our find-
ings [59]. Zhang et al. found that RAF1 was consistently
upregulated from day 7 to day 28 after MI in neonatal pigs
[60]. Cai et al. showed that activation of RAF1 through
downregulation of miR-146b-3p contributes to the activa-
tion of the RAF/P38MAPK/COX-2 signaling pathway,
which in close relation with the progression of diabetic brain
infarction [61]. MAPK signaling is crucial for T cell develop-
ment [62], activation [63], proliferation, and survival [58].
Several selective inhibitors of ERK signaling, such as
FR180204, BVD523, CC90003, GDC-0994, MK-8353, and
BVD523 (ulixertinib), have been reported to have significant
antitumor efficacy, but more exploration is needed because
MAPK inhibition may lead to T cell depletion and/or unre-
sponsiveness in some cases due to the important role of
MAPK in T cell function [64]. Given the efficacy achieved
in tumor therapy and the preliminary work in AMI, inter-
vening in genes such as MAPK1 and RAF1 and modulating
the MAPK cascade response may lead to new therapeutic
options for AMI.

PRKAR1A is a protein-encoding gene that encodes pro-
tein kinase A (PKA) regulatory subunit 1α (R1α). PKA is a
critical modulator of cardiac contractility and heart rate
[65], and its dynamic regulation is essential for cardiac
homeostasis. It was demonstrated that abnormal activation
or deactivation of PKA is strongly associated with the pro-
gression of cardiovascular diseases, for instance, myocardial
ischemia, hypertrophy, and heart failure [65]. R1α is
expressed at a high level in the heart and regulates PKA
activity by chelating PKA catalytic subunits [66]. Zhang
et al. found that when cardiac contractility is reduced,
decreased PKA activity/activation leads to a reduction in
cardiac reserve and exercise capability [67]. Liu et al. identi-
fied PRKAR1A as a highly scored necrosis suppressor gene
by a genome-wide RNAi screen [68]. This team then subse-
quently found that unrestricted PKA activation induced by
R1α deficiency exacerbates oxidative stress, myocardial cell
necrosis, and myocardial I/R injury [69]. PRKAR1A has
been less studied in AMI. Our results showed different
results from Liu’s, probably related to cell type and modeling
methods. However, our and Liu’s views are in agreement
with previous work that abnormal activation or inactivation
of PKA contributes to myocardial ischemic injury. Taken
together, PKA may be a hopeful pharmacological target for
improving clinical outcomes and protecting the heart after
MI.

The current treatment of AMI mainly consists of drug
therapy and reperfusion therapy [1, 2]. Despite the great
advances in the treatment of myocardial infarction in recent
decades, the efficacy and safety of new therapies for myocar-
dial repair or prevention of adverse remodeling (e.g., cell
therapy or gene therapy) have not been achieved [2]. There
is an urgent need for new therapeutic approaches to improve
the treatment. Fortunately, it has been found that some
drugs can target DEARGs or autophagic mechanisms to
treat the disease. For example, in other subject areas,

Alhoshani et al. found that venetoclax (BCL2 inhibitor)
could suppress the cell growth and proliferation of triple-
negative breast carcinoma by inducing autophagy-
associated cell apoptosis and cycle arrest, as well as death
[70]. Zhang et al. designed LYN-1604, an agonist of the
autophagy gene ULK1, which can induce ATG5-dependent
autophagic death in triple-negative breast carcinoma cells
by activating the ULK complex [71]. Jiang et al. found that
the SGLT2 inhibitor empagliflozin (EMPA) could exert car-
dioprotective effects by downregulating autophagic flux
in vivo and in vitro models of MI [72]. There have been sev-
eral studies on the regulation of autophagy-related genes in
immune cells. Lagasse et al. found that BCL2 inhibited neu-
trophil apoptosis in BCL2-overexpressing transgenic mice
[54]. D’Souza et al. found that Erk2 (MAPK1) can affect
CD8+ T cells in multiple ways, including cell activation, pro-
liferation, and survival, and is required for the survival of
activated CD8+ T cells in vivo [58]. Besides the autophagy-
related genes and immune cells involved in our study,
ATG5 has been found to regulate host innate and adaptive
immune responses by regulating dendritic cell activation
[73]. Since autophagy can affect the proliferation, differenti-
ation, survival, and apoptosis of immune cells and is also
regulated by various cytokines, studying the mechanisms of
communication and regulation between autophagy and
immune cells in AMI will not only help to further investigate
the disease mechanism of AMI, but also may be a new direc-
tion and therapeutic target for the treatment of AMI.

Autophagy is a fundamental cellular metabolic process,
an autonomous degradation modality that is involved in
the formation and progression of AMI with a two-sided
character [12], while possibly interacting with various
immune cells that together complete the complex process
of AMI development. In conclusion, we hypothesize that
DEARGs may have an impact in the progression of AMI
through influencing immune cells to modulate the inflam-
matory response. Previous reports have shown that cellular
autophagy or immunocytes are strongly associated with the
progression of AMI. However, there has been no systematic
study to elucidate the association of autophagy genes with
immune cells in AMI patients. So far as we know, here is
the first research systematic integrated study of autophagy-
related genes and immune infiltrating cells in AMI patients.

Our study has some limitations that should be acknowl-
edged as inevitable. The study was retrospective and could
not access important clinical information, as well as the sam-
ple size was small; therefore, a greater sample size of a pro-
spective study should be conducted to validate our
conclusions. The present study inferred the potential mech-
anisms of 4 genes and 2 immune cells for the development of
AMI by bioinformatics analysis, and further molecular
mechanisms are needed to explore the potential associations
and functions of cellular autophagy and immune infiltration
in AMI patients.

5. Conclusions

We explored and analyzed DEARGs and the distribution of
immune cells in AMI by bioinformatics and qPCR
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experiments and constructed a miRNA-lncRNA-mRNA
ceRNA network. Ultimately, we identified 4 autophagy-
related hub genes, BCL2, MAPK1, RAF1, and PRKAR1A,
that may play particular modulatory effects in immune infil-
trating cells, notably in CD8+ T cells and neutrophils. This
work not only contributes to new findings on the mecha-
nisms of autophagy and immune regulation in AMI, but also
may provide potential diagnostic markers and new perspec-
tives for the treatment of AMI.
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