
REVIEW
published: 23 July 2015

doi: 10.3389/fchem.2015.00044

Frontiers in Chemistry | www.frontiersin.org 1 July 2015 | Volume 3 | Article 44

Edited by:

Xuechen LI,

The University of Hong Kong,

Hong Kong

Reviewed by:

George Kokotos,

University of Athens, Greece

Hongyan Sun,

City University of Hong Kong,

Hong Kong

*Correspondence:

Tao Ye,

Department of Applied Biology and

Chemical Technology, The Hong Kong

Polytechnic University, Room Y846 of

Lee Shau Kee Building, Hung Hom,

Hong Kong

tao_ye35@hotmail.com

Specialty section:

This article was submitted to

Chemical Biology,

a section of the journal

Frontiers in Chemistry

Received: 24 May 2015

Accepted: 06 July 2015

Published: 23 July 2015

Citation:

Hui C and Ye T (2015) Synthesis of

lysine methyltransferase inhibitors.

Front. Chem. 3:44.

doi: 10.3389/fchem.2015.00044

Synthesis of lysine methyltransferase
inhibitors
Chunngai Hui and Tao Ye*

Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

Lysine methyltransferase which catalyze methylation of histone and non-histone proteins,

play a crucial role in diverse biological processes and has emerged as a promising

target for the development of various human diseases, including cancer, inflammation,

and psychiatric disorders. However, inhibiting lysine methyltransferases selectively has

presented many challenges to medicinal chemists. During the past decade, lysine

methyltransferase inhibitors covering many different structural classes have been

designed and developed. In this review, we describe the development of selective,

small-molecule inhibitors of lysinemethyltransferases with an emphasis on their discovery

and chemical synthesis. We highlight the current state of lysine methyltransferase

inhibitors and discuss future directions and opportunities for lysine methyltransferase

inhibitor discovery.
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Introduction

Epigenetic aberrations often lead to cancer and other human diseases. Recent basic studies on
histone methyltransferases indicated that deregulation of histone methylation plays a critical role
in human carcinogenesis (Copeland et al., 2009; Spannhoff et al., 2009; Chi et al., 2010; Arrowsmith
et al., 2012; Helin and Dhanak, 2013). In fact, protein lysine methylation has attracted considerable
attention since the discovery of the first histone lysine methyltransferase, Suv39H1, in 2000 (Rea
et al., 2000). After the discovery of Suv39H1 with lysine methyltransferases activities, additional
proteins with methyltransferase activity were reported, such as G9a/GLP (Tachibana et al., 2002,
2005), EZH2 (Cao et al., 2002), MLLs (Milne et al., 2002), SET2 (Strahl et al., 2002), SET7/9
(Wang et al., 2001), DOT1 (Feng et al., 2002; Van Leeuwen et al., 2002), and SETD8 (Nishioka
et al., 2002). These methyltransferases are classified as either SET-domain containing or non-
SET-domain containing enzymes for methylation of lysine residue on histone (Spannhoff et al.,
2009). The function of these enzymes includes serving as catalysts for the transfer of methyl
group(s) from the co-factor S-adenosyl-L-methionine (SAM) to the lysine residues of histone
(Yao et al., 2011) (Figure 1A). Specific lysine methyltransferase catalyzed the methylation of lysine
residue in a site-dependent manner and catalyze the formation of distinct methylation state
(Wagner et al., 2014) (Figure 1B). New findings of somatic mutations and mis-expression of
genes coding for histone methyltransferase enzymes provided a strong impetus for therapeutic
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intervention via pharmacological modulation. Epigenetic
drug development, especially the discovery of small molecule
inhibitors for histone methyltransferases, has quickly gained
widespread interest (Pachaiyappan and Woster, 2014).
Substantial review effort was made on bioactivities and
biological mode of actions of the recently developed lysine
methyltransferase inhibitor (Copeland et al., 2009; He et al.,
2012; Helin and Dhanak, 2013; Itoh et al., 2013; Knapp and
Weinmann, 2013; Tian et al., 2013; Wang and Patel, 2013;
Bojang and Ramos, 2014; Dhanak and Jackson, 2014). So far, no
review work on chemical synthesis of lysine methyltransferase
inhibitors has been reported. The aim of this review is to provide
a concise summary of the research published in the recent
years, with an emphasis on the chemical syntheses of lysine
methyltransferase inhibitors. Special attention will be paid to
inhibitors with prominent biological activities targeting protein
lysine methyltransferases such as G9a/GLP, Suv391H1, DOT1L,
EZH2, and SETD8.

Suv39H1

Jenuwein and co-workers discovered that human Suv39H1
protein possesses histone H3K9 methyltransferases activities.
Analysis of the Suv39H1 protein revealed that it carried a
conservedmotif of 130 amino acids which is corresponding to the
SET domain (Jenuwein et al., 1998). Later, it was found that the
SET domain was responsible for the histone lysine methylation
function (Rea et al., 2000). Greiner and co-worker discovered that
the fungal metabolite chaetocin 1 (Hauser et al., 1970), exhibited
selectivity toward Su(var)3-9 methyltransferase (IC50 = 0.6µM)
(Greiner et al., 2005) is competitive with reactive methyl donor
S-adenosyl-methionine (SAM) to facilitate enzymatic inhibition
upon kinetic study (Figure 1). More recent work revealed that
Chaetocin 1 was a non-specific inhibitor because it can inhibit
many other unrelated enzymes (Cherblanc et al., 2013a). It also
showed inhibitory effect toward G9a methyltransferase (Iwasa
et al., 2010; Cherblanc et al., 2013b).

Structurally, Chaetocin 1 is classified as a complex
epidithiodiketopiperazine (ETP) alkaloid (Iwasa et al., 2011b).
Its total synthesis was accomplished by Sodeoka (Iwasa et al.,
2010) and Movassaghi (Kim and Movassaghi, 2010), respectively
in 2010. Sodeoka and coworkers also reported the synthesis of
ent-chaetocin A 3 and the corresponding sulfur-deficient analogs
(Iwasa et al., 2010, 2011a; Sodeoka et al., 2012; Fujishiro et al.,
2013). Biological studies revealed that chaetocin A 1 and its
ent-isomer 3 (ent-chaetocin A) inhibited G9a methyltransferase
in similar extent (IC50 = 2.4 and 1.7µM, respectively) (Iwasa
et al., 2010). However, sulfur-deficient analog of chaetocin A 2

and its ent-isomer 4 were inactive toward G9a. (IC50 > 50µM)
(Figure 2).

Sodeoka and co-workers reported the first total synthesis
of chaetocin A 1 in 2010 (Iwasa et al., 2010) (Scheme 1A).
Diketopiperazine 7 was synthesized in five steps from
Cbz protected N-methyl-D-serine 5 (Aurelio et al., 2003)
and commercially available D-tryptophan methyl ester 6.
Bromocyclization of 7 was promoted by NBS to afford 8 in 88%
yield without formation of other diastereomers (Movassaghi

et al., 2008; Kim et al., 2009). Stereoselective bromination
of 8 was carried out using 2,2′-azobis-(2,4-dimethyl-4-
methoxyvaleronitrile) (V-70) (Kita et al., 1997) as a radical
initiator to afford tri-brominated intermediate 10, which was
then treated with phosphate buffer to give rise to 11 in 47%
yield. Reductive coupling of the freshly prepared diol 11 under
Movassaghi Co(I)-catalyzed radical dimerization protocol
(Movassaghi and Schmidt, 2007) furnished 12 in 55% yield.
Construction of the disulfide bridge in 1 was accomplished
by treating of dimmer 12 with H2S and BF3-Et2O, followed
by I2 to afford chaetocin A (1) in 44% yield. Sodeoka also
disclosed the method for the preparation of sulfur-deficient
chaetocin A 2. Direct reductive coupling of 8 using Cobalt(I)
as a catalyst produced dimer 9 in 47% yield and successive
desilylation afforded sulfur-deficient chaetocin A 2 in 82%
yield. In addition, the enantiomer of chaetocin A (3) (ent-
chaetocin A) and its sulfur-deficient analog 4 were also
prepared by the use of the same procedure (Iwasa et al., 2010,
2011a).

Movassaghi and co-workers reported the second total
synthesis of chaetocin 1 in 2010 (Kim and Movassaghi, 2010)
(Scheme 1B). The synthesis began with bromocyclolization of
diketopiperazine 13 to afford 14 in 59% yield with high
diastereoselectivity (Movassaghi et al., 2008). Successive N-
methylation using MeI/LiHMDS, desilylation, and acetoxylation
afforded 15, which was then subjected to Cobalt(I)-catalyzed
reductive coupling (Movassaghi and Schmidt, 2007; Movassaghi
et al., 2008) to afford dimeric product 16 in 49% yield.
Stereoselective tetra-hydroxylation of 16 was carried out by the
action of Py2AgMnO4 to give rise to 17 in 55% yield (Kim
et al., 2009). The high chemo- and stereo-selectivity of the
above transformations enabled the advanced intermediates to
be prepared in gram scale. Exposure of tetraol 17 to TFA and
H2S allowed the formation of a bisthioaminal intermediate with
high stereoselectivity in which both the diol and dithiol were
immediately protected as the corresponding ester or thioester.
Subsequent N1-desulphonylation under irradiation with a Black-
light phosphor-coated lamp, 1,4-dimethyoxynaphthalene as
photosensitizer and ascorbic acid as terminal reductant furnished
the desired product 18 in 51% yield (Hamada et al., 1986).
Chemoselective hydrazinolysis of thioester 18 afforded disulfide
19 in 90% yield. Sequential ionization of triphenylemthyl (Tr)
group and cyclization with the loss of triphenylcarbocation
afforded the disulfide-bridge-carrying chaetocin A precursor in
82% yield. Subsequent hydrolysis of acetate using Otera’s catalyst
afforded chaetocin A 1.

G9a/GLP

G9a and GLP are the primary enzymes for mono and
dimethylation at Lys 9 of histone H3 (H3K9me1 and H3K9me2),
and exist predominantly as a G9a–GLP heteromeric complex
that appears to be a functional H3K9 methyltransferase in vivo
(Shinkai and Tachibana, 2011). G9a-GLP complex regulates
a wide range of biological activities including germ cell
development, meiosis, DNA replication, cell proliferation, and
cancer cell formation. Overexpression of protein G9a is observed
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FIGURE 1 | (A) Mechanism of DOT1L in methylation of lysine moiety of protein H3K79. (B) Specific lysine methyl transferase methylated lysine residues in histone

lysine tail.

FIGURE 2 | Example of inhibitors targeting protein Suv39H1.

in many cancers, including prostate, lung, colon cancer, and
lymphocytic leukemia (Chen et al., 2010; Shinkai and Tachibana,
2011). It was reported that overexpression of G9a led to

increasing metathesis and invasion in lung cancer (Chen et al.,
2010). Since G9a is overexpressed in many different types of
cancers, and has been shown to be responsible for various aspects
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SCHEME 1 | (A) Total synthesis of (+)-Chaetocin A and its S-deficient analog by Sodeoka et al. (B) Total synthesis of (+)-Chaetocin A by Movassaghi and co-workers.

of tumorigenesis, including cellular differentiation, proliferation,
and epithelial to mesenchymal, indicates that G9a could be a
feasible target for cancer therapy.

BIX 01294 20, the first G9a/GLP inhibitor, was discovered
by Kubicek et al. (2007) by High-Throughput Screening of
Compound Library against G9a (Kubicek et al., 2007) (Figure 3).
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FIGURE 3 | Example of inhibitors targeting protein G9a-GLP.

The crystal structure of the catalytic SET domain of GLP
in complex with BIX-01294 and S-adenosyl-L-homocysteine
revealed that, the inhibitor is bound in the substrate peptide
groove at the location where the histone H3 residues N-terminal
to the target lysine lie in the previously solved structure of
the complex with histone peptide (Chang et al., 2009). BIX-
01294 (20) exhibited cellular toxicity at high concentration,
which limited its further development. Synthesis of BIX-01294
was reported by Liu et al. (2009). In order to obtain more
potent and selective inhibitors toward G9a/GLP, modification
based on the structure of BIX01294 (20) has been carried out
by Jin and co-workers since 2009 (Liu et al., 2010, 2011, 2013;
Vedadi et al., 2011; Konze et al., 2014) (Scheme 2). Initial
investigation on G9a-BIX01294 complex and SAR studies led
to the discovery of the first selective G9a inhibitor, UNC0224
(21). The corresponding X-ray crystal structure of the G9a-21
complex, was also obtained by the same research group (Liu
et al., 2009). Further crystal-structure-based optimization process
resulted in the discovery of UNC0321 (22), which demonstrated
higher cellular potency (Morrison Ki = 63 pM) (Liu et al.,
2010). Successive development based on structural design and

chemical synthesis gave rise to a potent and selective inhibitor
UNC0638 (23), which also served as an effective chemical probe
for G9a/GLP (Liu et al., 2011; Vedadi et al., 2011). Unfortunately,
the poor pharmacokinetic properties of UNC0638 limited the
further animal studies of this lead compound. In order to
improve the in vivo pharmacokinetic properties of UNC0638,
further optimization led to the development of a more promising
lead compound UNC0642 (24) (Liu et al., 2013). This inhibitor
displayed IC50 < 2.5 nM and excellent selectivity toward G9a
protein over othermethyl transferases. In addition, it also showed
an improved in vivo pharmacokinetic properties. In 2014, a
biotinylated tag of UNC0965 (25) was developed by the same
research group for “chemiprecipitation” of G9a protein from
whole cell lysates (Konze et al., 2014).

In 2010, Chang et al. reported a potent and less toxic G9a
inhibitor, E72 (26) (Chang et al., 2010) (Figure 2). However,
its cellular potency is lower than that of BIX-01294 (20).
Moreover, Yuan et al. and Sweis et al. independently reported
BRD9539 (27) (Yuan et al., 2012) and A366 (28) (Sweis et al.,
2014) as potent and selective G9a inhibitors in 2012 and 2014,
respectively. In 2014, Srimongkolpithak et al. disclosed structures
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SCHEME 2 | Development of G9a-GLP inhibitors by Jin and co-workers.

and the corresponding synthesis of potent G9a inhibitors
Sirmongkolithak cmp 41 (29) and Sirmongkolithak cmp 41 (30)
(Srimongkolpithak et al., 2014).

Synthesis of BIX-01294 (20) was reported by Liu et al. (2009)
(Scheme 3A). Commercially available quinazoline derivative 31
was exposed to amine 32 in the presence of Hünig’s base in
DMF afforded the corresponding condensation intermediate,
which was then subsequently reacted with amine 33 under acidic
condition in microwave to furnish BIX01294 20 as the desired
product.

Syntheses of UNC0224 21 (Liu et al., 2009) and UNC0321
22 (Liu et al., 2010) were reported by Liu et al. (2009, 2010),
respectively. (Scheme 3B) Successive benzylation, nitration, and
reduction of commercially available 34 afforded aniline 35 in
good yield. Treatment of aniline 35 with methyl chloroformate
followed by hydrolysis of the nitrile group and simultaneous
ring closure produced quinazolinedione 36 in 70% yield over
two steps. Dichloroquinazoline 37, obtained by the treatment
of 36 with POCl3, was subjected to two sequential chlorine
displacement reactions with two different amines to afford 38 in
82% yield over two steps. With the key intermediate 38 in hand,
the synthesis of UNC0224 21 and UNC0321 22was completed by
reductive debenzylation followed by elongation of the resultant
phenol under Mitsunobu condition.

Synthesis of UNC0638 (23) was reported by Vedadi et al.
(2011) (Scheme 3C). Intermediate 35, which has been employed
in the synthesis of UNC0224 (21) (Liu et al., 2009), can be
selected as the starting material for the construction of UNC0638
(23). Acylation of 35 with cyclohexanoyl chloride 39 followed

by an oxidative cyclization afforded 40 in 48% yield over two
steps. Chloroquinazoline 41, obtained by the treatment of 40with
POCl3, was then condensed with amine 42 to give rise to 43.
Successive debenzylation followed by elongation of the resultant
phenol under Mitsunobu condition produced UNC638 (23) in
65% yield.

Synthesis of UNC0642 (24) was reported by Liu et al. (2013)
(Scheme 4A). Commercially available benzoate 45 was subjected
to nucleophilic substitution with 1-chloro-3-iodopropane 46

followed by nitration gave rise to 47 in 75% yield over two steps.
Substitution of chlorine of 47 with pyrrolidine and reduction
of nitrate with Fe dust afforded 48. Dichloro-quinazoline 49

was prepared from this intermediate in 50% yield via a three-
step sequence including urea formation, cyclization followed
by chlorination. The consecutive displacement of two chlorine
atoms with two different amines produced UNC0642 (24) in 75%
yield.

Synthesis of UNC0965 25 was reported by Konze et al.
(2014) (Scheme 4B). Cyclization of the known intermediate 48

afforded 52 and subsequent chlorination furnished 53 in 47%
yield over two steps. Treatment of this intermediate with amine
54 afforded 55, which was then subjected to a Copper-catalyzed
click reaction with commercially available biotin-PEG3-azide to
afford UNC0965 (25) in 92% yield.

The preparation of E72 (26) was disclosed by Chang et al.
(2010) (Scheme 4C). This synthesis is straight-forward, however,
no yield for each step of the synthesis was reported. The
starting material 56, prepared according to the previously
described procedure (Thurston et al., 1990), was reduced by
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SCHEME 3 | (A) Synthesis of BIX-01294 by Liu et al. (B) Synthesis of UNC0224 and UNC0321 by Liu et al. (C) Synthesis of UNC0638 by Vedadi et al.

the action of SnCl2 (Hu et al., 2001) and then converted
into dichloroquinazoline 57 via a two step sequence including
treatment of the acid with sodium isocyanate followed by
chlorination by the use of POCl3(Andrus et al., 2002; Smits et al.,
2008). Displacement of the more reactive chlorine atom with 4-
amino-1-benzylpiperidine afforded 58, which was subjected to
catalytic hydrogenolysis to furnish 59. Treatment of 59 with

5-bromopentanenitrile in the presence of K2CO3 in refluxing
acetone to produce 60. Displacement of chlorine atom with N,
N, -dimethylaminopropylamine at high temperature followed
by the reduction of nitriles to primary amines using lithium
aluminum hydride to furnish E72 (26) as the desired product.

Synthesis of A366 (27) was reported by Sweis et al.
(2014) (Scheme 5A). Treatment of 62 with 1,3-dibromopropane
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SCHEME 4 | (A) Synthesis of UNC0642 by Liu et al. (B) Synthesis of UNC0965 by Konze et al. (C) Synthesis of E72 by Chang et al.

under basic condition afforded the corresponding cyclobutane-
containing derivative 63, which was then subjected to nitration
to give rise to 64. Successive debenzylation and nucleophilic
substitution with 1-(3-bromopropyl)pyrrolidine produced 65.
Intramolecular cyclization was accomplished under reductive
conditions to furnish A366 (27) in 28% yield.

Synthesis of BRD9539 (28) was disclosed by Yuan et al.
(2012). The detailed synthesis is shown in Scheme 5B,

however, no yield was reported for the synthesis. Nucleophilic
aromatic substitution of fluorobenzoate derivative 66 with
phenylpropylamine 67 followed by a reduction of nitro
group with SnCl2 afforded 68. Treatment of 68 with benzoyl
isocyanate 69 afforded the corresponding benzoyl urea,
which was then undergoing a EDCI-mediated cyclization to
give rise to BRD4770 (70). Saponification of 70 produced
BRD9539 (27).
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SCHEME 5 | (A) Synthesis of A366 by Sweis et al. (B) Synthesis of BRD9539 by Yuen et al. (C) Synthesis of HKMTI-1-248 by Srimongkolpithak et al.

Quinoline derivative HKMTI-1-248 was reported by
Srimongkolpithak et al. (2014). The synthesis commenced from
the nitration of commercially available substrate 71 afforded 72.
A sequential reduction of 72 to the corresponding amine 73,
followed by condensation of the resulting amine with triethyl
orthoacetate at high temperature to afford N-arylimidic ester
74. Treatment of 74 with 1-methylhomopiperazine 75 in the
presence of p-toluenesulfonic acid produced 76, which was then
subjected to a ZnCl2-promoted ring closure process to afford
77 (Moore and Kornreich, 1963). Condensation of aniline 77

with ketone 78 followed by a reductive amination to furnish
HKMTI-1-248 (Scheme 5C).

EZH2

EZH2 is one of the first histone lysine methyltransferases found
to be related to human cancers (Varambally et al., 2002; Kleer
et al., 2003). EZH2 over expression has been linked to breast,
prostate, and bladder cancers. EZH2/EZH1 is one of the core
components within the PRC2 complex while EZH2 is the
enzymatic subunit responsible for histone H3K27 methylation
(Czermin et al., 2002; Kuzmichev et al., 2002; Muller et al.,
2002; Margueron and Reinberg, 2011). It has been reported

that ablation of EZH2 in tumor cells using RNA interference
technology suggested that the enzyme is a promising drug target
for cancer treatment (Varambally et al., 2002).

Three selective and potent EZH2 inhibitors namely
EPZ005687 (79) (Knutson et al., 2012), GSK126 (80) (Mccabe
et al., 2012), and Novartis EI1 (81) (Qi et al., 2012) were reported
in 2012 (Figure 4). These inhibitors exhibited high selectivity
over other histone methyltransferase. Verma et al. disclosed
a high potent EZH2 inhibitor GSK343 (84) (Verma et al.,
2012), while Konze et al. reported a selective EZH2 inhibitor
UNC1999 (85) which possesses structural characteristics
similar to those of EPZ005687 (79) and GSK 126 (80) with a
pyridine-amide scaffold (Konze et al., 2013). UNC1999 (85)

has better physicochemical properties and oral bioavailability
when compared with previously reported inhibitors. Further
optimization led to the development of the latest version of EZH2
inhibitor EPZ-6438 (82), which exhibited excellent potency,
selectivity, and pharmacokinetic properties over EPZ005687 (79)
(Knutson et al., 2013, 2014), and which has recently progressed
into Phase-I trial for treatment of lymphoma.

All these EZH2 inhibitors (Figure 4) are SAM-competitive.
So far, no synthesis for Novartis EI1 (83) has been reported.
The synthesis of EPZ-6438 (82) was described in a patent
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FIGURE 4 | Example of inhibitors targeting protein EZH.

(WO2012142504). Synthesis of EPZ005687 (79) was reported by
Knutson et al. (2012) (Scheme 6A). meta-Selective bromination
of benzoic acid derivative 87 with 1,3-dibromo-5,5-dimethyl-
2,4-imidzaolidinedione (DBDMH) 88 afforded 89 in 98% yield
(Eguchi et al., 1994). Methylation of benzoic acid group of 89
using sodium carbonate and iodomethane afforded ester 90,
which was then converted into aniline 91 by reduction of the
nitro group. Acetylation of aniline 91 followed by nitrozation
with tert-butyl nitrite under phase-transfer condition afforded
indazole derivative 92, which was subjected to deacetylation to
afford 93 in 72% yield. Alkylation of 93 with bromocyclopentane
was facilitated by cesium carbonate to give rise to 94 in 29% yield.
Saponification of 94 afforded the free carboxylic acid, which was
condensed with amine 95 by the action of PyBop to produce
96 in 56% yield. Suzuki coupling between aryl bromide 96 and
boronate 97 furnished EPZ005687 (79) in 68% yield.

GSK126 (80) was prepared by Mccabe et al. (2012)
(Scheme 6B), according to an approach which is similar to
the one reported by Knutson (Knutson et al., 2012). Following
Leimgruber-Batcho indole synthesis, methyl 5-bromo-2-methyl-
3-nitrobenzoate 89 was readily converted into methyl 6-
bromo-1H-indole-4-carboxylate 98 in 59% yield. (Batcho and
Leimgruber, 1985) Alkylation of indole nitrogen of 98 with 2-
bromobutane followed by formylation of 99 at C-3 position
delivered 100 in 40% yield over two steps. Deoxygenative
reduction of aldehyde 100 was mediated by N-tosylhydrazine
with sodium cyanoborohydride as the reductant to afford the
corresponding reduction product, which was then saponified

to the corresponding acid 101. Condensation of acid 101

with amine 95 was mediated by EDC-HOAt to furnish the
corresponding amide which was then subjected to chiral
resolution to afford the desired (S)-isomer (102). Suzuki cross-
coupling of aryl bromide A 102 and boronate 103 completed the
synthesis of GSK126 (80).

Synthesis of GSK926 (81) and GSK 343 (84) was reported
by Verma et al. (2012) (Scheme 7A). Alkylation of 93 with 2-
bromoisopropane afforded 104 in 43% yield. Saponification of
104 followed by coupling of the resultant acid 105 with amine
95 furnished amide 106, which was then subjected to Suzuki
coupling with boronic ester 107 to give rise to GSK926 (81) in
56% yield. GSK343 (84) was prepared following the sequences
described for the synthesis of GSK926 (81). (Scheme 7A)
Thus, condensation of acid 105 and amine 108 produced the
corresponding amide 109, which underwent a highly efficient
Suzuki coupling reaction with 110 to complete the synthesis.

Synthesis of UNC1999 (85) was reported by Konze et al.
(2013) (Scheme 7B). The synthetic strategy for UNC1999 (85)

is similar to that employed for the preparation of GSK926
(81) and GSK343 (84) (Verma et al., 2012). With the key
intermediate 109 in hand, Suzuki coupling of 109 with boronate
110 followed by deprotection of Boc group afforded 111 in 74%
yield. Reductive amination of the second amine with acetone by
sodium cyanoborohydride then furnished UNC1999 (85) in 85%
yield.

Synthesis of Garapaty-Rao cmp3 (86) (Garapaty-Rao et al.,
2013) was accomplished by Nasveschuk et al. and disclosed in
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SCHEME 6 | (A) Synthesis of EPZ005687 by Kuntson et al. (B) Synthesis of GSK126 by McCabe et al.

2014 (Nasveschuk et al., 2014) (Scheme 8). Treatment of phenol
112 with fluoroarene 113 underwent a SNAr reaction to afford
biaryl ether 114 in 81% yield (Zhu, 1997). Condensation of
acid 114 with amine 115 was facilitated by the action of EDCI
to furnish amide 116. Stille coupling of freshly prepared 116

with tributyltin derivative 117 under standard condition afforded
cmp3 (86) in 60% yield.

DOT1L

DOT1 and DOT1L (DOT1-Like protein) are the only
known enzymes which targeted H3K79 on the nucleosome
core (Feng et al., 2002; Lacoste et al., 2002; Ng et al., 2002; Van
Leeuwen et al., 2002), and it methylates on the lysine residue
(Frederiks et al., 2008). DOT1L was later found to be important
for telomeric silencing. DOT1L-mediated H3K79 methylation
was found to be related to transcriptional activation, which
involves regulation of a wide range of biological processes,
including transcriptional regulation, DNA repair, cell cycle
regulation and myocardial genesis (Nguyen and Zhang, 2011).
Unlike other histone methyltransfer, Dot1 does not contain a

SET domain, and it specifically methylates nucleosomal histone
H3 (Min et al., 2003). Moreover, DOT1L also interacts with
interact with MLL (mixed lineage leukemia) fusion proteins
(Ayton and Cleary, 2001; Okada et al., 2005; Nguyen and Zhang,
2011), which would result in the misregulation of hox gene
expression, and lead to lukemogensis. Significant advances in the
development of DOT1 inhibitors for acute leukemias bearing
MLL rearrangements have led to the first reported histone
methyltransferase inhibitor to enter human clinical trials (Daigle
et al., 2013).

A small molecule SAM-mimic compound called EPZ004777
(118) was identified as a potent DOT1L inhibitor by Daigle et al.
(2011) (Figure 5). It selectively inhibited H3K27 methylation
with high potency (IC50 = 0.4 nM) and suppress lukemogenesis
by selectively killing leukemic cells that bear MLL translocation
genes (Daigle et al., 2011). Later, the same research group
reported the DOT1L inhibitor EPZ003696 (119) is 43 times
less potent than EPZ004777 (118) on DOT1L inhibition
(Basavapathruni et al., 2012). Meanwhile, Yu et al. reported
the brominated analog of EPZ004777, SGC946 (120), exhibited
more significant potency in cell than that of EPZ004777 (118)
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SCHEME 7 | (A) Synthesis of GSK926 and GSK343 by Verma et al. (B) Synthesis of UNC1999 by Konze et al.

SCHEME 8 | Synthesis of Garapaty-Rao cmp3 by Nasveschuk et al.

(Yu et al., 2012). In 2013, Daigle et al. identified the optimized
SAM-mimic, EPZ5676 (124), is a potent DOT1L inhibitor that
causes tumor regressions in a rat xenograft model of MLL-
rearranged leukemia. This inhibitor was more than 37 000-fold
selective for DOT1L over 16 other proteinmethyltransferases and

has entered a Phase I clinical trial (Daigle et al., 2013). Studies
on pharmokinetics and metabolism of EPZ5676 (124) were
also reported (Basavapathruni et al., 2014). EPZ5676 (124) was
developed by Epizyme and the detailed synthesis was reported
in a patent (Olhava et al., 2012). Besides, Yao et al. and Yu et al.
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FIGURE 5 | Example of inhibitors targeting protein DOL1L.

revealed two highly potent and selective DOT1L inhibitors, Yao
cmp4 (122) (Yao et al., 2011, 2012) and BrSAH (123) (Yu et al.,
2013b), in 2011 and 2013, respectively. Yao cmp4 (122) inhibits
DOT1L as a SAM analog at the SAM binding site. Discovery
of BrSAH (123) by Yu et al. demonstrated that the addition of
a single halogen at the critical position of cofactor SAH (by-
product of SAM DOT1L-catalyzed histone methylation) could
result in a 8-fold increase in potency against DOT1L. All these
DOT1L inhibitors (Figure 5) shown are SAM-competitive.

Synthesis of EPZ004777 (118) was reported by
Basavapathruni et al. (2012) (Scheme 9). Treatment of 7-chloro
tubercidin (125) with 1-(2,4-dimethyoxyphenyl) methanamine
at 110◦C afforded 126 in 90% yield. The cis-diol of 126 was
protected as its acetonide 127 and the remaining primary alcohol
was then converted into its corresponding azide 128 under
Mitsunobu condition. The azide moiety of 128 was reduced
to amine 129 by the action of PMe3, followed by a reductive
amination to give rise to secondary amine 130. N-alkylation of
amine 130 with N-(3-Bromopropyl)phthalimide furnished 131

in 72% yield. Cleavage of the N-phthaloyl group of 131, followed
by coupling of the resultant primary amine with 1-tert-butyl-4-
isocyanotobenzene to afford the desired urea derivative 132 in
73% yield over two steps. Finally, deprotection of both acetonide
and DMP protecting groups using TFA produced EPZ004777
(118) in 46% yield.

Yu and co-workers reported the synthesis of EPZ004777
(118) using a different route in which both the primary amine
and pyrimidin-4-amine were installed via the corresponding
azide substitution and subsequent reduction (Yu et al., 2012,
2013a). In addition, a brominated analog of EPZ004777 (118),
named SGC946 (120), was also synthesized by the same research
group (Yu et al., 2012, 2013a) (Scheme 10A). Thus, treatment of
bis-protected D-ribose (133) with 134 in the form of sodium salt

afforded 136 in 70% yield. Similar reaction with 135 afforded 137
in 44% yield. 137 could also be obtained by bromination of 136
in essentially quantitative yield. Amine 144 could be constructed
from the key intermediate 136 by sequential transformations
including cleavage of the TBS protecting group, conversion of
the resultant primary alcohol into the corresponding iodide,
azide displacement followed by catalytic hydrogenation of
the resultant azide derivative. Amine 144 was subjected to
two sequential reductive amination processes to afford urea
derivative 147 in 80% yield over two steps. Both acetone and
oxazinanol 146 were employed as reactants during the respective
reductive amination process (Scheme 10A). Acid hydrolysis of
the acetonide protecting group furnished EPZ004777 (118) in
92% yield.

Amine 145 was converted into SGC0946 (120) using the same
sequence of reactions and Staudinger reduction was employed for
the conversion of azide 143 to the corresponding amine 145.

Synthesis of EPZ003696 (119) was reported by
Basavapathruni et al. (2012) (Scheme 10B). The synthesis
began with the known amine 149, which was prepared as
previously described (Mccloskey et al., 2009). Treatment of
amine 149 with 1-tert-butyl-4-isocyanotobenzene afforded the
corresponding urea derivative 150 in 32% yield. TFA-mediated
removal of acetonide afforded EPZ003696 119 in 97% yield.

Synthesis of Yao cmp4 (122) is illustrated in Scheme 11A (Yao
et al., 2011). The cis-diol of adenosine 151 was protected as the
corresponding acetonide. Direct N-alkylation of a phthalimide
with the primary alcohol under Mitsunobu conditions afforded
the corresponding N-phthaloyl protected amine, which was
cleaved with hydrazine to give rise to amine 152. This amine
(152) was alkylated with ethyl bromoacetate followed by
reduction of the ethyl ester with LiAlH4 to afford 153 in 75%
yield over five steps. Reductive amination of 153 with aldehyde
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SCHEME 9 | Synthesis of EPZ004777 by Basavapathruni et al.

154 furnished 155 in 55% yield. Conversion of the hydroxy
group to the corresponding iodide was mediated by the action
of PPh3, iodine and imidazole. Global deprotection of the
resultant iodide furnished Yao Cmp4 (122) in 75% yield over two
steps.

Synthesis of BrSAH (123) was reported by Yu et al. (2013b)
(Scheme 11B). Treatment of 5-bromo-4-chloro-7H-pyrrolo[2,3-
d]pyrimidine 160 with N,O-Bis(trimethylsilyl)-acetamide (BSA)
in acetonitrile furnished silylated intermediate 157, which was
subjected to glycosylation with 158 to afford 159 in 63% yield
(Seela and Ming, 2007). Simultaneous displacement of chlorine
atom with ammonia and hydrolysis of benzoyl groups furnished
160 in 40% yield. The primary hydroxy group of 160 was
converted into the corresponding chloride with SOCl2to give
rise to 161 in 61% yield. Nucleophilic substitution of 161 with
L-homocysteine under alkaline conditions afforded the desired
product BrSAH 123 in 9% yield.

The detailed synthesis of EPZ5676 (124) was described by
Epizyme in a patent (Olhava et al., 2012) (Scheme 11C). Thus, 5′-
Amino-5′-deoxy-2′,3′-O-(1-methylethylidene)-adenosine (162)

was transformed into the corresponding bis-alkylated product
(164) in a two step sequence involving reductive amination with
ketone 163, and alkylation with isopropyl iodide. Dibal reduction
of 164 in dichloromethane at -78◦C provided the corresponding
aldehyde, which underwent Wadsworth-Emmons olefination to
afford 165 in 83% yield in two steps. Catalytic hydrogenation

of α,β-unsaturated ester, followed by saponification of the
ethyl ester by treatment with aqueous lithium hydroxide in
methanl/tetrahydrofuran afforded acid 166 in 78% yield. Acid
166 was converted into EPZ5676 (124) in 51% yield by a three-
step sequence involving EDCI-promoted coupling of acid 166

with diamine 167, acid-mediated benzimidazole cyclization and
cleavage of the acetonide moiety.

SET8

SET8 (also known as PR-Set7/9, SETD8, KMT5A), a member
of the SET domain-containing methyltransferase family is solely
responsible for the catalysis of monomethylation of histone
protein H4K20 (Fang et al., 2002; Nishioka et al., 2002;
Beck et al., 2012). Since H4K20 methylation is widespread
in the genome and appears to be regulated during the cell
cycle, SET8 plays important roles in various of biological
processes, which involved in regulation of a range of biological
processes, namely gene transcription (Congdon et al., 2010; Li
et al., 2011), cell-cycle progression and development (Jorgensen
et al., 2007; Abbas et al., 2010; Centore et al., 2010; Wu
et al., 2010), genome integrity (Houston et al., 2008; Oda
et al., 2009), DNA replication, DNA double-strand breaks
and DNA damage response (Dulev et al., 2014). Moreover,
SET8 demonstrated its ability on methylation of non-histone
proteins including p53 tumor suppressor protein (Shi et al.,

Frontiers in Chemistry | www.frontiersin.org 14 July 2015 | Volume 3 | Article 44

http://www.frontiersin.org/Chemistry
http://www.frontiersin.org
http://www.frontiersin.org/Chemistry/archive


Hui and Ye Synthesis of lysine methyltransferase inhibitors

SCHEME 10 | (A) Synthesis of EPZ004777 and SGC0946 by Yu et al. (B) Synthesis of EPZ003696 by Basavapathruni et al.

2007). This methylation process resulted in the suppression
of p53 mediated transcription activation of highly responsive
target genes. In addition, SET8 catalyzes monomethylation
of proliferating cell nuclear antigen (PCNA) that results
stabilization of PCNA protein and consequentially promotes
cancer cell proliferation (Takawa et al., 2012). SET8 also played
a novel role in tumor invasion and metastasis and provided
a molecular mechanism underlying TWIST-promoted EMT
(Yang et al., 2012).

Selective small-molecule inhibitors of SET8 are important
tools for investigating the biology of this emerging target.
However, only a limited number of selective inhibitors of SET8
have been reported (Williams et al., 2013; Blum et al., 2014;
Ma et al., 2014a,b) (Figure 6). Marine natural product nahuoic
acid A (162), the first known selective inhibitor of SET8, is
competitive with the cofactor SAM and non-competitive with
the peptide substrate (Williams et al., 2013). Very recently,
Ma et. al. disclosed the structure of UNC0379 (163), which

is the first synthetic small molecule inhibitor of SET8 (Ma
et al., 2014a,b). Later, Blum et al. reported the validation
of three irreversible SET8 methyltransferase inhibitors with
different mode of inhibition. (Blum et al., 2014). Biological
studies demonstrated that the inhibition of SET8 by SPS8I1
(164) and SPS8I3 (166) are substrate-dependent while SPS8I2
(165) facilitates substrate-independent inhibition of SET8 (Blum
et al., 2014). Nahouic acid A is SAM-competitive inhibitor of
SET8 (Williams et al., 2013). However, no total synthesis has
been reported up to date. UNC0379 is a substrate-competitive
inhibitor (Ma et al., 2014a), and the corresponding synthesis is
shown in Scheme 12. Treatment of commercially available 2,4-
dichloro-6,7-dimethoxyquinazoline (167) with 5-(pyrrolidin-
1-yl)pentan-1-amine (168) and N,N-diisopropylethylamine at
room temperature afforded 169, which was then reacted with
pyrrolidine in the present of N,N-diisopropylethylamine and
under microwave irradiation to give rise to UNC0379 (163) in
33% yield over two steps. (Ma et al., 2014a).
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SCHEME 11 | (A) Synthesis of Yao cmp4 by Yao by Yu et al. (B) Synthesis of BrSHA by Yu et al. (C) Synthesis of EPZ5676 by Olhava et al.

Conclusions

Lysine methyltransferases continue to be an attractive drug
design target for the treatment of various disease ranging from
cancer, inflammation, psychiatric disorders to rheumatoid
arthritis. This review outlines the development and chemical

synthesis of a variety of structural chemotypes of lysine
methyltransferase inhibitors that have been reported during
the recent decade. The determination of the X-ray structure
of a number of mechanism-based inhibitors and lysine
methyltransferase complexes have provided important
information for the structure-based design of potent lysine
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FIGURE 6 | Example of inhibitors targeting protein SETD8.

SCHEME 12 | Synthesis of UNC0379 by Ma et al.

methyltransferase inhibitors. Many of these inhibitors exhibited
impressive intrinsic potency. Subsequent lead optimization
provided a broad range of lysine methyltransferase inhibitors
with promising pharmacological properties. In recent years, a
few of these new classes of lysine methyltransferase inhibitors
have been advanced to pre-clinical development, and selective
inhibitors of DOT1L and EZH2, have entered phase I clinical
studies. The major issue that needs to be addressed is the
selectivity among the different histone methyltransferases.
By applying a non-competitive approach that preserves the
physiological nature of endogenousl ligand-methyltransferase
signaling, it may be possible to produce therapeutic agents

that are safer than conventional competitive drugs. We predict
that efforts through structure-based design would lead to
the development of novel allosteric lysine methyltransferase
inhibitors with superior selectivity and improving the overall
side-effect profile.
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