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Abstract

Sugars are commonly supplemented into vitrification solution to dehydrate cells in order to

reduce the formation of fatal intracellular ice crystals. Natural honey is a mixture of 25 sugars

(mainly fructose and glucose) that have different biological and pharmacological benefits.

The present study was designed to determine if honey can be used as a nonpermeating

cryoprotectant in vitrification of bovine oocytes. In the first experiment, denuded-MII oocytes

were exposed to 0.25, 0.5, 1.0, 1.5 or 2.0 M of honey or sucrose. Natural honey and sucrose

caused similar ooplasm dehydration. A significant relationship existed between time and

ooplasm volume change (P < 0.05), during dehydration and rehydration phases, in both

honey and sucrose solutions. In the second experiment, the immature cumulus-oocyte com-

plexes (COCs) were vitrified in an EG/DMSO-based vitrification solution containing honey

(0.5, 1 or 1.5 M) or sucrose (0.5 M) as a gold standard. The vitrified-warmed COCs were

matured in vitro and evaluated for nuclear maturation. The maturation (MII) rate was greater

in nonvitrified control (81%) than vitrified groups (54%, P < 0.05). In the third experiment,

COCs were either remained nonvitrified (control) or vitrified in 1.0 M honey or 0.5 M sucrose,

followed by IVM, IVF and IVC (for 9 days). Cleavage rate was greater in control (74%) than

in vitrified groups (47%, P < 0.05), without significant difference between sugars. Blastocyst

rate was 34, 13 and 3% in control, honey and sucrose groups respectively (P < 0.05). In con-

clusion, natural honey acted as a nonpermeating cryoprotectant in vitrification solution and

improved the embryonic development in vitrified bovine COCs.

Introduction

Sugars are commonly used as energy substrate and/or nonpermeating cryoprotectants (CPs)

in cryoprotective solution. Sugars, being nonpermeating CPs, cause an osmotic gradient across

the cell membrane that enhances cell dehydration before freezing to reduce the quantity of

intracellular water. This reduction in water quantity decreases intracellular ice formation and

thus minimizes lethal freezing injuries [1, 2]. Sugars enhance the viscosity of the intracellular

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0238573 September 2, 2020 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Alfoteisy B, Singh J, Anzar M (2020)

Natural honey acts as a nonpermeating

cryoprotectant for promoting bovine oocyte

vitrification. PLoS ONE 15(9): e0238573. https://

doi.org/10.1371/journal.pone.0238573

Editor: Xiuchun Tian, University of Connecticut,

UNITED STATES

Received: December 16, 2019

Accepted: August 19, 2020

Published: September 2, 2020

Copyright: © 2020 Alfoteisy et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This study was partially funded by the

Canadian Animal Genetic Resource program,

Agriculture and Agri-Food Canada, The

Government of Canada (Research Grant # AGR-

14227) to MA; and the Ministry of Higher

Education, The Government of Libya to BA.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-8379-8852
https://doi.org/10.1371/journal.pone.0238573
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238573&domain=pdf&date_stamp=2020-09-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238573&domain=pdf&date_stamp=2020-09-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238573&domain=pdf&date_stamp=2020-09-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238573&domain=pdf&date_stamp=2020-09-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238573&domain=pdf&date_stamp=2020-09-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238573&domain=pdf&date_stamp=2020-09-02
https://doi.org/10.1371/journal.pone.0238573
https://doi.org/10.1371/journal.pone.0238573
http://creativecommons.org/licenses/by/4.0/


compartment, decrease the concentration of permeating CPs and thus lessen the associated

intracellular toxicity [3, 4]. Furthermore, vitrification solution containing sugars improved the

survival of bovine blastocysts and human immature oocytes following vitrification [5, 6].

Monosaccharides such as fructose and glucose are used for semen cryopreservation without

any cytotoxic effect [7, 8]. They can be mixed easily and efficiently even in concentrated solu-

tions of CPs because they have a lower viscosity than disaccharides [9]. Fructose has a better

effect on semen quality than disaccharides and oligosaccharides for cryopreservation of red

deer sperm [10]. Interestingly, disaccharides like sucrose and trehalose (not lactose) increased

sperm viability and reduced damage to acrosome in dog sperm whereas fructose improved

both intact acrosome and motility [11]. Other researchers showed that the effect of different

sugars during mouse sperm cryopreservation depends on their mass concentrations instead of

their molar concentrations [12]. Sucrose, trehalose [13] and lactose [14] have been used as

nonpermeating CPs in vitrification solutions, but sucrose and trehalose are more common

than other sugars [15]. Raffinose (trisaccharide) has also proven to be effective in increasing

the survival rate of embryos after vitrification [15]. Furthermore, the mixture of two sugars

(sucrose and glucose) in vitrification solution improved the survival rate of the vitrified bovine

blastocysts more than the addition of sucrose alone [6].

Natural honey is a mixture of 25 sugars (mainly fructose and glucose) accounting for

approximately 95% of its dry matter [16–18]. Besides its dominant components of saccharides,

traces of a large number of other bioactive substances such as organic acids, enzymes, antioxi-

dants and vitamins are present in honey. Such a unique composition provides numerous

nutritional, biological and pharmacological effects on living cells, i.e. antimicrobial (antiviral,

antibacterial and antifungal), antioxidant and antitoxin, anti-inflammatory, antimutagenic,

anticancer and immunosuppressive activities [16–22].

Cryopreservation of oocytes has been very challenging due to their unique structure and

sensitivity to chilling [23]. Several attempts were made to improve the blastocyst rate following

vitrification of germinal vesicle (GV)-stage bovine oocytes. Cholesterol-loaded cyclodextrin

improved the survival of bovine oocytes [24] but could not improve the blastocyst develop-

ment [25]. Similarly, the pretreatment of GV oocytes with cytoskeletal relaxant cytochalasin B

did not improve the blastocyst rate of vitrified GV oocytes [26]. Recently, blastocyst formation

tended to improve by maturing the vitrified-warmed immature oocytes in the presence of

cyclic adenosine monophosphate modulators forskolin or 3-isobutyl-1-methylxanthine

(IBMX) [27]. There are conflicting reports on the role of cumulus cells in the development of

GV oocytes following vitrification and warming. Earlier, the cumulus-enclosed GV oocytes

showed higher cleavage and blastocyst rates than partially denuded GV oocytes [28]. Recently,

the downsizing of cumulus cell layers surrounding GV oocyte improved the blastocyst rate up

to 30% [29]. To the best of our knowledge, natural honey has not yet been studied as a nonper-

meating CP for vitrification of oocytes. Since honey is a rich-mixture of sugars, it was hypothe-

sized that natural (unheated) honey in vitrification solution can induce sufficient cell

dehydration in bovine oocytes and adds biological benefits towards early embryonic

development.

The overall objective of this study was to investigate if natural honey can be used as a non-

permeating CP for vitrification of bovine oocytes and subsequent early embryonic develop-

ment. The specific objectives of this study were to determine osmolalities of different

concentrations of honey and sucrose, to compare the volumetric change in bovine oocytes in

different concentrations of natural honey and sucrose solutions, and to investigate in vitro
maturation (IVM), fertilization (IVF) and embryo development (IVC) of GV-stage oocytes vit-

rified in honey and sucrose solutions.
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Materials and methods

The biological procedures used in this study were approved by the University Committee on

Animal Care and Supply, Animal Research Ethics Board, University of Saskatchewan (Animal

Use Protocol # 20090155).

Chemicals and supplies

Dulbecco’s phosphate buffered saline (DPBS), Ca2+/Mg2+-free DPBS, newborn calf serum

(CS), tissue culture medium (TCM)-199 and minimum essential medium (MEM) non-essen-

tial amino acids were purchased from Invitrogen Inc. (Burlington, ON, Canada). Lutropin-V

(LH) and folltropin-V (FSH) were supplied by Bioniche Animal Health, Inc. (Belleville, ON,

Canada). All other chemicals and reagents were purchased from Sigma-Aldrich (Oakville, ON,

Canada), unless otherwise stated.

Preparation of natural honey or sucrose containing solutions

Natural honey (unprocessed) was procured from a local beekeeper (Sollosy’s Honey, T&H

Apiaries, Saskatoon, Canada). First, the osmotic pressure of 10% w/v natural honey solution

(10% w/v in water) was determined using a vapor-pressure osmometer (VAPOR1, model #

5520, Wescor Inc. Logan, Utah, USA). It was calculated that 21.74 gm honey in 100 ml water

can yield an osmotic pressure of 1000 ± 10 mOsm/kg and thus was considered equivalent to 1

M. For confirmation, honey and sucrose solutions of 0.25, 0.5 and 1.0 M were prepared and

relationships between molal concentrations and osmolalities were determined. Later, various

concentrations of honey and sucrose ranging from 0.25 to 2 M were used, for vitrification of

oocytes, in experiments on IVM, IVF and IVC.

Oocyte collection

Bovine ovaries were collected from cows slaughtered under strict regulations of the Canadian

Food Inspection Agency, Government of Canada. Ovaries were transported to the laboratory

at approximately 25˚C within 3 h, and initially processed as previously described [30]. Briefly,

ovaries were washed in 0.15 M NaCl and extra-ovarian tissues were removed. The immature

cumulus-oocytes complexes (COCs) GV-stage were aspirated from follicles (3–8 mm in diam-

eter) using an 18-gauge needle attached to a 5-ml syringe containing 1-ml of DPBS supple-

mented with 5% new-born calf serum (CS, Invitrogen Inc.; v/v). The follicular fluid aspirated

from different ovaries was pooled, and COCs were searched under a stereomicroscope

(10 × magnification) and evaluated according to the International Embryo Transfer Society

guidelines.

Experiment 1: Dehydration of bovine oocytes (MII-stage) in honey and

sucrose solutions

IVM. Bovine oocytes with uniform cytoplasm and 3–4 layers of cumulus cells (Grade 1)

were selected and washed (3 ×) in maturation media [TCM-199 supplemented with 5% CS

(collectively called as “TCM-CS”), 0.5 μg/ml FSH, 5 μg/ml LH and 50 μg/ml gentamicin].

Groups of 18 to 22 COCs were incubated in 100-μl droplets of maturation media (under min-

eral oil) at 38.5˚C, 5% CO2, and high humidity in air for 22 h. After IVM, COCs were denuded

with 0.3% hyaluronidase in Ca2+/Mg2+-free DPBS and only matured oocytes (MII-stage) pos-

sessing the first polar body with homogeneous ooplasm were selected under stereomicroscope

to study dehydration and rehydration phases, as described below.
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Image processing of bovine COCs during dehydration and rehydration phases. First,

five concentrations (0.25, 0.5, 1, 1.5 and 2 M) of honey and sucrose were prepared. Honey

concentrations were achieved by dissolving 5.4, 10.9, 21.7, 32.6 and 43.5 gm of honey per 100

ml of TCM-CS. Denuded oocytes (MII-stage) were incubated in TCM-CS at 38.5˚C in a 5%

CO2 air and high humidity for at least 3 h before undergoing dehydration and rehydration

phases. Oocytes were randomly distributed into 11 groups, i.e. control (no sugar) and five

concentrations of each honey or sucrose group (0.25, 0.5, 1.0, 1.5 or 2.0 M in TCM-CS). For

imaging, a mature oocyte was held with an ICSI micropipette (MIC-50-30, Humagen, Jyl-

linge, Denmark) under an inverted Nikon microscope equipped with micromanipulators

(TransferMan NK2, Eppendrof AG 2231, Hamburg, Germany) and a Nikon D90 camera.

Each oocyte was first equilibrated in 20-μl and then 40-μl droplets of the control solution

(TCM-CS) for 10 s and 1 min, respectively. After equilibration, oocyte was transferred into

40-μl droplet of an experimental solution (TCM-CS + honey or sucrose) for 3 min, for imag-

ing during dehydration. Afterwards, oocyte was transferred into 40-μl droplet of control

solution (TCM-CS) for 3 min, for imaging during rehydration. During dehydration or rehy-

dration phases, the images were captured from recorded videos at 0, 5, 10, 15, 20, 25, 30, 60,

90, 120, 150 and 180 s using VideoMach software (version 5.8.3; www.gromada.com) run-

ning under Microsoft Windows 7 Professional. A total of 24 images were captured from each

oocyte and these images were overlaid to evaluate volumetric changes during the dehydration

and rehydration phases. Image-J version 1.42 software (Wayne Rasband, National Institute

of Mental Health, Bethesda, Maryland, USA) was used to measure the minimum and maxi-

mum diameters of ooplasm. The volume of ooplasm was calculated using the following for-

mula, assuming oocyte as a sphere:

Ooplasm volume ¼ 4=3�p�r1�r2�r3

where r1 and r2 are maximum and minimum radii, and r3 was assumed to be equal to the

minimum radius.

The shrinkage of ooplasm at a given concentration of honey or sucrose was calculated as

follows:

Ooplasm volume in CP solution=Ooplasm volume in control TCM without CP�100

Experiment 2: IVM of bovine oocytes (GV-stage) vitrified in honey and

sucrose solutions

This experiment was designed to determine the post-warm IVM ability of bovine oocytes

(GV-stage) vitrified in a solution containing honey or sucrose as a nonpermeating CP. After

collection and washing, COCs were distributed randomly into five groups as follows: control

(no vitrification), 0.5 M sucrose (gold standard), 0.5 M honey, 1.0 M honey and 1.5 M honey.

COCs were vitrified, warmed, cultured in vitro and evaluated for nuclear maturation as

described below.

Vitrification and warming procedures. Vitrification of COCs (GV-stage) was performed

using the Cryotop method [30, 31] with some modifications. All COCs were first equilibrated

in vitrification solution 1 [(VS1; TCM-199 + 7.5% v/v dimethyl sulfoxide (DMSO) + 7.5% v/v

ethylene glycol (EG) + 20% v/v CS] at 22˚C for 5 min. After equilibration, COCs were trans-

ferred through three 30-μl droplets of vitrification solution 2 (VS2) which contained either

sucrose (0.5 M) or natural honey (1 M) in TCM-199 + 15% v/v EG + 15% v/v DMSO + 20% v/

v CS at 37˚C for 1 min. Then, 3–5 COCs were loaded onto the filmstrip of a Cryotop (Kitazato

Corp.; Shizuoka, Japan) and immediately plunged into liquid nitrogen. Prior to vitrification,

the surrounding media was removed by gentle aspiration. For warming, the Cryotop
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containing COCs was immersed in 38.5˚C warming solution consisting of TCM-199 + 20% v/

v CS supplemented with the desired concentration of natural honey (0.5, 1, 1.5 M) or sucrose

(0.5 M) for 1 min. After warming, COCs were washed (3 ×, 5 min each) in TCM-CS.

Assessment of nuclear maturation (lamin-AC/DAPI staining). The vitrified-thawed

COCs were washed (3 ×) in the maturation media mentioned in Experiment 1. The COCs

(n = 18 to 20) were placed in 100-μl IVM media droplets under mineral oil, and incubated at

38.5˚C, 5% CO2 in air and high humidity, for 22 h.

The nuclear maturation of oocytes was determined using lamin-AC/DAPI staining, as pre-

viously described [32]. After IVM, the vitrified-warmed COCs were completely denuded (by

pipetting 80 to 100 times avoiding bubble formation) in 0.3% hyaluronidase in Ca2+/Mg2+-free

DPBS. Denuded oocytes were fixed in 4% w/v paraformaldehyde in DPBS for 15 min. All sub-

sequent steps were performed at 22˚C and oocytes were washed (3 ×, 5 min each) in DPBS

after each step. Oocytes were permeabilized with 0.5% v/v Triton X-100 in DPBS for 30 min

followed by an additional 30 min permeabilization in 0.05% v/v Tween-20 (BIO-RAD, Hercu-

les, CA, USA) in DBPS. Afterwards, oocytes were transferred in a blocking buffer [2% w/v

bovine serum albumin (BSA) in DPBS] at 22˚C for 60 min or at 4˚C overnight. After blocking,

oocytes were incubated with mouse anti-lamin-AC (1:300; Santa Cruz Biotechnology, Santa

Cruz, CA, USA) in DPBS + 2% w/v BSA for 60 min followed by washing (3 ×, 5 min each) and

incubation in secondary antibody, Alexa 488 labelled anti-mouse IgG (Santa Cruz Biotechnol-

ogy) in 2% w/v BSA in DPBS (1:200), for 60 min. Oocytes were washed (3 ×, 5 min each) and

transferred through at least three 5-μl droplets of Vectashield Mounting Medium containing

1.5 μg/ml of DAPI (Vector Laboratories Inc., Burlingame, CA 94010 USA). Oocytes were

mounted on a glass slide under a coverslip supported with paraffin-vaseline (1:1) drops at each

corner of the coverslip to avoid oocyte rupture. Finally, oocytes were evaluated for nuclear

maturation and classified as GV, germinal vesicle breakdown (GVBD), metaphase I (MI), and

MII as previously described [32]. Oocytes reaching MII-stage were included for statistical

analysis.

Experiment 3: IVF and IVC of bovine oocytes (GV-stage) vitrified in honey

and sucrose solutions

This experiment was designed to investigate cleavage and blastocyst rates of bovine oocytes

(GV-stage) vitrified in a solution containing 0.5 M sucrose as a gold standard (17.1% w/v) or

1.0 M honey (21.7% w/v). Briefly, COCs were randomly distributed into three groups includ-

ing nonvitrified (control) and vitrified groups using honey or sucrose, and vitrified as

described above (Experiment 2).

IVF and IVC. Frozen semen from a bull was used for all treatments and replicates.

Thawed semen was washed through Percoll gradient (45 and 90%) [33]. After washing, sperm

were diluted in Brackett-Oliphant (BO) medium [34] to a concentration of 3 × 106 cells/ml.

COCs (n = 18–22) were washed (3 ×) in BO medium supplemented with 10% w/v BSA and

then placed into 100-μl droplets of sperm suspension in BO medium, under mineral oil, for

co-incubation at 38.5˚C, 5% CO2 in air and high humidity, for 18 h. After co-incubation, the

presumptive zygotes were denuded and washed (3 ×) through IVC medium, i.e. Charles-

Rosenkrans amino acid (CR1aa) with 5% v/v CS, 1% v/v MEM non-essential amino acids, 2%

v/v BME essential amino acids (Invitrogen Inc.), 1% v/v L-Glutamic acid, 0.3% w/v BSA and

0.05 μg/ml gentamicin. Finally, 18–22 presumptive zygotes were transferred in 100-μl droplets

of IVC medium under mineral oil and incubated at 38.5˚C under 5% CO2, 5% O2, 90% N2 and

high humidity. During IVC, the cleavage rate was determined at day 2 of IVF; whereas, the

blastocyst formation rate was evaluated at day 9.
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Statistical analysis

Data were presented as means ± SEM. Data were analyzed using SAS1 Enterprise Guide 4.2

(SAS, SAS Enterprise Guide Inc., 4.2 ed. Cary, NC, USA; 2006). The statistical analysis

included following: (a) Proc Mixed repeated-measures one-way analysis of variance (time as

independent discrete variable with randomized complete block design) in order to determine

the time point by which the dehydration or rehydration is completed (i.e. equilibrium is

obtained) in each concentration of honey- and sucrose-based solutions. (b) Proc Mixed

repeated-measures factorial (compound�concentration�time) analysis of variance (time as

independent discrete variable) with randomized complete block design was carried out in

order to determine the effect of CP, concentration and time on ooplasm volume during dehy-

dration and rehydration. Regression analysis was used to study the relationships of molal con-

centrations of sucrose and honey with osmolalities, and ooplasm shrinkage at 60 s during

dehydration. Polynomial regression analysis was used to study the curvilinear relationship

between time and changes in ooplasm volume, during dehydration and rehydration phases, in

different concentrations of honey and sucrose.

In the second experiment, differences in oocyte maturation rate among treatment groups

were analyzed using one-way analysis of variance. In the third experiment, ooplasm shrinkage,

at 60 s during dehydration, in 0.5 M sucrose and 1 M honey was compared with t-test. The sta-

tistical analyses of cleavage and blastocyst formation rates were carried out using chi-square

(Fisher’s exact test for the blastocyst formation rates). The differences between treatment

means were considered significant at a level of P < 0.05.

Results

Experiment 1: Dehydration of bovine oocytes (MII-stage) in honey and

sucrose solutions

Linear relationships existed between molal concentrations and osmolalities in both honey and

sucrose solutions (Fig 1). Total volume of bovine oocytes (including zona pellucida) remained

the same during dehydration and rehydration processes. No significant difference was

observed in ooplasm volume and shrinkage due to nonpermeating CPs (honey and sucrose)

during dehydration (P = 0.485) and rehydration (P = 0.990) phases (Fig 2). In this study, the

time required for maximum dehydration in bovine oocytes was 60 s in all concentrations of

honey and sucrose (Fig 2). During dehydration phase, the ooplasm volume decreased

(P< 0.05) and shrinkage relative to control solution increased (P < 0.05) with an increase in

concentrations of honey and sucrose, at 60 s (Table 1). At 60 s, ooplasm shrinkage ranged

from 72 to 38% and 74 to 37% in different concentrations of honey and sucrose, respectively.

First significant shrinkage in ooplasm was observed in 1.5 M honey and 1 M sucrose (Table 1).

There were significant linear relationships between molal concentrations of honey and

sucrose, and ooplasm shrinkage at 60 s during dehydration (Fig 3). During rehydration in the

isosmotic TCM-CS solution, ooplasm regained their original volume in 60 s (Fig 2).

Polynomial regression revealed that, the ooplasm shrinkage during dehydration and swell-

ing during rehydration in all honey and sucrose concentrations changed with time (P< 0.05,

Table 2).

Experiment 2: IVM of bovine oocytes (GV-stage) vitrified in honey and

sucrose solutions

IVM ability of nonvitrified (control) and vitrified COCs in 0.5 M sucrose or different concen-

trations of honey was determined. The number of mature oocytes (MII-stage) was greater in
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Fig 1. Relationship between molal concentrations and osmolalities of 0.25, 0.5 and 1 M honey and sucrose

solutions.

https://doi.org/10.1371/journal.pone.0238573.g001

Fig 2. Effect of honey (H) and sucrose (S) concentrations (0.25, 0.5, 1, 1.5 and 2 M), time (0, 5, 10, 15, 20, 25, 30,

60, 90, 120, 150 and 180 s) and their interactions on ooplasm volume (μ3 × 1000) during dehydration and

rehydration phases. Each point represents a mean ± SEM (n = 3 oocytes per treatment group per replicate × 3

replicates).

https://doi.org/10.1371/journal.pone.0238573.g002

PLOS ONE Honey and cryopreservation of bovine oocytes

PLOS ONE | https://doi.org/10.1371/journal.pone.0238573 September 2, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0238573.g001
https://doi.org/10.1371/journal.pone.0238573.g002
https://doi.org/10.1371/journal.pone.0238573


the control group than in the vitrified groups (P < 0.05; Fig 4). On the other hand, no signifi-

cant differences were found in nuclear maturation (MII) rates among honey and sucrose vitri-

fied groups.

Experiment 3: IVF and IVC of bovine oocytes (GV-stage) vitrified in honey

and sucrose solutions

Ooplasm shrinkage between 0.5 sucrose and 1 M honey, used in this experiment, was statisti-

cally similar (P> 0.05). Cleavage rates were significantly greater (P < 0.05) in the control

group than in vitrified groups (Fig 5). However, cleavage rates between vitrified groups were

not significantly different. Blastocyst rate was greater in the nonvitrified (control) group than

in vitrified groups, and in honey than sucrose group (P < 0.05; Fig 5).

Discussion

This is a first report on the use of honey as a nonpermeating CP using a bovine oocyte model.

In this study, the volumetric change observed in response to honey or sucrose solutions was

Table 1. Volume of bovine ooplasm in TCM containing different concentrations of honey and sucrose at 60 s post-exposure, and their shrinkage (%) relative to vol-

ume in the control TCM (without nonpermeating CP). Each value represents mean ± SEM (n = 9 oocytes).

Conc.(Mol/L) Honey� Sucrose�

Volume (μ3 × 1000) Shrinkage (%) Volume (μ3 × 1000) Shrinkage (%)

0 772 ± 31.2a NA 772 ± 31.2a NA

0.25 550 ± 8.2b 72 ± 2.4a 564 ± 24.6b 74 ± 4.2a

0.50 436 ± 12.3b 60 ± 2.3a 419 ± 23.7b 58 ± 4.1a

1.00 398 ± 34.1b 52 ± 3.7ab 345 ± 30.2c 47 ± 5.1b

1.50 268 ± 21.8c 36 ± 3.7b 343 ± 47.9c 44 ± 5.6b

2.00 277 ± 63.5c 38 ± 4.2b 282 ± 25.7c 37 ± 9.7b

�At a given concentration, the ooplasm volume and shrinkage between honey and sucrose were similar (P > 0.05).
a,bWithin a column, values with different superscripts differ (P < 0.05).

NA–Not applicable.

https://doi.org/10.1371/journal.pone.0238573.t001

Fig 3. Relationship between molal concentrations of honey and sucrose, and ooplasm shrinkage at 60 s during

dehydration phase (n = 3 oocytes per treatment group per replicate × 3 replicates).

https://doi.org/10.1371/journal.pone.0238573.g003
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virtually in the ooplasm, not in oocyte per se. The volumetric change in ooplasm in honey and

sucrose containing solution was concentration-dependent. An inverse relationship was found

between ooplasm volume change and concentration of honey or sucrose. Volumetric changes

in ooplasm during dehydration in honey- and sucrose-based solutions were similar. The

ooplasm regained their approximate original volume during rehydration in 60 s indicating

their integrity and viability after exposure to honey or sucrose solutions. This study also dem-

onstrated that COCs (GV-stage) vitrified in a solution containing honey or sucrose had similar

maturation and cleavage rates. However, the ability of vitrified-warmed oocytes to reach blas-

tocyst stage in the honey group was significantly greater than in the sucrose group. Thus,

honey can be used as a nonpermeating CP in vitrification of bovine oocytes.

Natural honey is a mixture of about 25 saccharides (mainly fructose and glucose), which

accounts for approximately 95% dry matter [16]. Fructose and glucose are good osmotic

buffers in cryoprotective solutions because they have a lower viscosity than disaccharides

[9]. The significant linear relationship between molal concentration of honey and osmotic

pressure in honey and sucrose solutions revealed that sugars and other molecules present in

honey contribute towards the osmolality of the solution. The ultimate aim of this study was to

improve the embryonic development in vitrified GV-stage oocytes. However, in the first

experiment, MII oocytes were used as proof of concept of the dehydration ability of honey.

Cumulus cells surrounding MII oocytes can be easily removed to monitor volume changes in

the ooplasm.

Table 2. Polynomial regression analysis of ooplasm volume (y) as a function of time (x), during dehydration and rehydration phases, in different concentrations of

nonpermeating cryoprotectants (NPCP; honey and sucrose).

Phase/NPCP Conc. (Mol/L) (Mol/L) Polynomial regression Correlation coefficient

Dehydration

Control 0 y = 0.00002x2–0.0051x +764.8 r = 0.104, P > 0.05

Sucrose 0.25 y = -0.0002x3 + 0.0553x2–6.3255x +768.38 r = -0.995, P < 0.01

Honey 0.25 y = -0.0002x3 + 0.0687x2–7.5136x + 789.79 r = -0.995, P < 0.01

Sucrose 0.5 y = -0.0003x3 + 0.1088x2–10.951x +723.66 r = -0.980, P < 0.01

Honey 0.5 y = -0.0003x3 + 0.1128x2–11.365x + 751.48 r = -0.982, P < 0.01

Sucrose 1.0 y = -0.0005x3 + 0.1532x2–14.842x + 730.65 r = -0.962, P < 0.01

Honey 1.0 y = -0.0004x3 + 0.1396x2–14.141x + 777.82 r = -0.975, P < 0.01

Sucrose 1.5 y = -0.0005x3 + 0.1611x2–15.481x + 730.95 r = -0.956, P < 0.01

Honey 1.5 y = -0.0006x3 + 0.1839x2–16.999x + 669.17 r = -0.934, P < 0.01

Sucrose 2.0 y = -0.0007x3 + 0.2135x2–18.139x + 643.46 r = -0.886, P < 0.01

Honey 2.0 y = -0.0006x3 + 0.178x2–15.868x + 624.84 r = -0.899, P < 0.01

Rehydration

Control 0 y = 0.0001x2–0.0238x +773.87 r = 0.545, P > 0.05

Sucrose 0.25 y = 9E-05 x3–0.034x2–4.5102x +534.21 r = 0.998, P < 0.01

Honey 0.25 y = 0.0001x3–0.0468x2 + 5.788x + 535.72 r = 0.995, P < 0.01

Sucrose 0.5 y = 0.0001x3–0.0515x2 + 6.8273x +405.66 r = 0.998, P < 0.01

Honey 0.5 y = 0.0002x3–0.0633x2 + 7.8479x + 423.8 r = 0.997, P < 0.01

Sucrose 1.0 y = 0.0002x3–0.08x2 + 9.9101x + 327.58 r = 0.988, P < 0.01

Honey 1.0 y = 0.0002x3–0.0816x2 + 10.024x + 406.8 r = 0.994, P < 0.01

Sucrose 1.5 y = 0.0005x3–0.1568x2 + 15.173x + 433.7 r = 0.952, P < 0.01

Honey 1.5 y = 0.0003x3–0.1091x2 + 11.863x + 310.27 r = 0.986, P < 0.01

Sucrose 2.0 y = 0.0003x3–0.0871x2 + 7.6963x + 459.36 r = 0.915, P < 0.01

Honey 2.0 y = 0.0003x3–0.0837x2 + 8.946x + 318.44 r = 0.980, P < 0.01

https://doi.org/10.1371/journal.pone.0238573.t002
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Fig 4. In vitro maturation of bovine oocytes (GV-stage) vitrified in 0.5 M sucrose and different concentrations of honey

solutions. Each bar represents mean ± SEM from 5 replicates. Different letters on bars represent differences among treatment

groups (P< 0.05). Letter n represents the number of COCs used in control and vitrified groups; MII, metaphase-II.

https://doi.org/10.1371/journal.pone.0238573.g004

Fig 5. In vitro cleavage and blastocyst rates in oocytes (GV-stage) vitrified in 0.5 M sucrose or 1 M honey solution. Each

bar represents mean ± SEM from 5 replicates. Within an embryonic stage, different letters on bars represent difference among

treatment groups (P< 0.05). Letter n represents the number of COCs used in control and vitrified groups.

https://doi.org/10.1371/journal.pone.0238573.g005
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The appropriate concentration of honey and sucrose to be used in vitrification solutions

should be based on the ooplasm volume with maximum dehydration without causing any phy-

sico-chemical damage to oocytes. A lethal issue for living cells’ dehydration is the loss of

bound-water which forms a “hydration shell” around various cellular molecules such as pro-

teins, DNA, RNA and membrane phospholipids, and thus protects their structures and func-

tions [35]. Therefore, during dehydration of oocytes, a delicate balance must be maintained

for drawing out free water (which tends to form ice crystals rapidly) while not disturbing the

bound water in order to acquire a safe dehydration of the intracellular compartment. Other-

wise, the post-warm cell viability will be affected as a result of losing the structural support to

intracellular proteins and lipids. According to previous studies, the osmotically inactive vol-

ume (i.e. proportion of cell volume that has no response to extracellular hyperosmotic pres-

sure) of MII bovine oocytes in the presence of NaCl [36] or sucrose [37] were determined to

be 24.7 and 26.1% of the isosmotic cell volume, respectively. The osmotically inactive volume

of a mature human oocyte is about 19%, indicating that volume of intracellular free-water is

approximately 80% of the oocyte volume [38]. The osmotic tolerance limit is about 57% of the

original volume to dehydrate human oocytes safely using 0.4 M sucrose [39]. In the present

study, the osmotic tolerance threshold of oocyte was set at 50%. The ooplasm shrinkage in 0.5

M sucrose and 1 M honey at 60 s during dehydration was not different (58 vs. 52%, respec-

tively). It was anticipated that 1 M honey would provide similar dehydration but add more

nutritive benefits, compared to 0.5 M sucrose. Therefore, cleavage and blastocyst rates of

oocytes vitrified in 0.5 M sucrose and 1 M honey were compared. Increasing the extracellular

concentrations of nonpermeating CPs in vitrification solution significantly reduced the con-

centrations of permeating CPs required for intracellular vitrification [3]. Therefore, an ideal

vitrification solution should have an appropriate sugar concentration in order to enhance cell

dehydration, minimizing the quantity of intracellular permeating CPs while not exceeding the

osmotic-tolerance limit of oocytes [3]. Sugar alleviates the requirement for high concentrations

of permeating CPs, and thus decreases their toxicity [35, 38].

Polynomial regression analysis indicated a lack of relationship in ooplasm volume change

as a function of time in the control group and clearly demonstrated the validity of our proce-

dure to measure the ooplasm volume. However, the ooplasm volume changed over time in all

concentrations of sucrose and honey, following third degree cubic regression. The decrease

and increase of ooplasm volume during dehydration and rehydration respectively changed lin-

early during first 30–60 s and then became stable afterwards.

So far, no tangible improvement has been made in oocyte vitrification in spite of using

additives in vitrification solution, culture media or by structural modifications. Recently,

cAMP modulator forskolin or IBMX in the medium and partial removal of cumulus cells from

GV oocytes improved blastocyst development following vitrification [27, 29]. However, these

findings must be confirmed. The present study indicated similarities in short term post-warm

viability (maturation and cleavage rates) between honey and sucrose groups. However, vitri-

fied-warmed oocytes in the honey group demonstrated better blastocyst development than in

the sucrose group (13 vs. 3%) but it was still low. Inadequate cell dehydration leads to forma-

tion of large intracellular ice crystals, which can be lethal to cells [40]. Therefore, COCs dehy-

drated by 1 M honey-based solution had minimal chance of oocyte damage by intracellular ice

crystallization during cooling and warming procedures. In the present study, the 0.5 M sucrose

group was considered the gold standard since it is the most commonly used sugar in vitrifica-

tion solution. Our results showed that maturation, cleavage and blastocyst formation rates of

the 0.5 M sucrose groups were comparable to other studies on vitrification of bovine GV

oocyte using the Cryotop and open pulled straw methods [28, 41]. These results indicate low

relationship between cleavage and embryonic (blastocyst) development. In a recent

PLOS ONE Honey and cryopreservation of bovine oocytes

PLOS ONE | https://doi.org/10.1371/journal.pone.0238573 September 2, 2020 11 / 15

https://doi.org/10.1371/journal.pone.0238573


cytotoxicity study in oocytes, the cleavage rate was not considered a reliable parameter for

evaluating the oocytes’ viability because toxic effects are reflected in later stages of embryonic

development, i.e. blastocyst than the early cleavage stage [42]. We considered blastocyst forma-

tion as a satisfactory parameter for evaluation of post-warm viability of vitrified oocytes.

From another point of view, along with predominant saccharides, natural honey contains

number of bioactive substances such as organic acids, enzymes, antioxidants and vitamins.

Such a unique composition provides numerous nutritional, biological and pharmacological

effects in living cells [16, 17, 19–21, 43, 44]. Therefore, we can speculate that the wide variety of

bioactive substances in natural honey might be responsible for better post-warm embryonic

development. Honey is composed of a wide variety of amino acids [17, 44, 45], and glycine

and alanine help the cell membrane from freezing by stabilizing phospholipids [46]. Recent

studies stated that amino acids have been successfully used as nonpermeating CPs for mam-

malian cells including sperm and oocytes [47–49]. It was demonstrated that addition of gluta-

mine, one of the amino acids in honey, to vitrification solution improved the maturation

ability of vitrified-warmed immature bovine oocytes [49].

In conclusion, natural honey 1 M (21.7% w/v) was found to be a suitable nonpermeating

CP to dehydrate bovine oocytes sufficiently, and can be used in vitrification solution. Vitrifica-

tion of oocytes in solution containing 1 M natural honey improved post-warm oocyte viability

and embryonic development.
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