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Abstract Disorders of sex development (DSD) are con-
genital conditions in which the development of chromo-
somal, gonadal, or anatomical sex is atypical. Many of
the genes required for gonad development have been
identified by analysis of DSD patients. However, the use
of knockout and transgenic mouse strains have contrib-
uted enormously to the study of gonad gene function and
interactions within the development network. Although
the genetic basis of mammalian sex determination and
differentiation has advanced considerably in recent
years, a majority of 46,XY gonadal dysgenesis patients
still cannot be provided with an accurate diagnosis.
Some of these unexplained DSD cases may be due to
mutations in novel DSD genes or genomic rearrange-
ments affecting regulatory regions that lead to atypical
gene expression. Here, we review our current knowledge
of mammalian sex determination drawing on insights
from human DSD patients and mouse models.
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Introduction

In mammals, biological differences between males and
females are determined genetically during embryonic
development. These differences have a significant
impact on the physical, reproductive, psychological,
and social life of an individual. Sex development can
be divided into two processes, “sex determination”,
which is the developmental decision that directs the
undifferentiated gonad to develop as a testis or ovary
and “sex differentiation”, which occurs once the
gonad has developed and is induced by the products
of the gonad to establish the phenotypic sex. In
mammals, sex determination equates to gonad devel-
opment. Factors influencing sex determination tend
to be transcriptional regulators, whereas factors influ-
encing sex differentiation are most often secreted
hormones and their receptors.

Most of our current knowledge on genes and their
proteins involved in sex development comes from
mutation studies in human patients with disorders of
sex development (DSD) and mouse models. Here, we
will discuss the current knowledge of gonad develop-
ment and how changes to this complex developmental
network result in cases of DSD. We will highlight
genes that have been implicated in embryonic mouse
gonad development and finally, discuss how whole
genome sequencing approaches are going to improve
our current understanding of the etiology of DSD.

Disorders of sex development

DSD are congenital conditions in which development
of chromosomal, gonadal, or anatomical sex is atypi-
cal (Hughes et al. 2006). DSD covers a wide spectrum
of different phenotypes with hypospadias being the
most common defect with an average of 1 in 250—
350 male births. In addition, 1 in 4,500 babies
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worldwide is born with significant ambiguous genita-
lia (Hughes et al. 2006) and significantly, DSDs
account for 7.5% of all birth defects. Furthermore,
DSD phenotypes are often associated with other syn-
dromes, such as Mayer—Rokitansky—Kuster—Hauser
syndrome, Smith—Lemli—-Opitz syndrome or genito-
palato-cardiac syndrome (Porter 2008; Sultan et al.
2009). Since the discovery of the sex-determining
region Y (SRY) in 1990 (Sinclair et al. 1990), there
have been considerable advances in understanding the
genetic factors involved in gonad differentiation. Nev-
ertheless, it has been estimated that a molecular diag-
nosis is made in only approximately 20% of DSD
cases (Hughes et al. 2006), and that up to 50% of 46,
XY DSD patients cannot be provided with an accurate
diagnosis. Furthermore, for approximately 80% of 46,
XY DSD complete gonadal dysgenesis patients and
about 20% of 46,XX testicular DSD patients, the
causative mutation remains unknown (Hughes et al.
2006). DSD represents a major pediatric concern, due
to the difficulty of clinical management of these com-
plex conditions and their common sequelae of gonad
cancer and infertility. The cause of these DSD con-
ditions is most often the breakdown of the complex
network of gene regulation and gene expression,
essential for proper development of testes or ovaries
in the embryo.

Gonad development in humans and mice
and the molecular basis of DSD

In humans, both males and females have 22 pairs of
autosomal chromosomes (mice have 19 pairs of auto-
somal chromosomes) but differ in their sex chromo-
some complement. Females in both humans and mice
have two X chromosomes (46,XX in humans, 40,XX
in mice), whereas males have one X and one Y chro-
mosome (46,XY in humans and 40,XY in mice).

At the beginning of gestation (first and second
week in humans), embryos of the two sexes differ
only by their sex chromosomes. The first visible
sign of sexual dimorphism in mammalian embryos
is when the bi-potential gonad starts to develop into
either a testis or an ovary in XY and XX individ-
uals, respectively. This decision is made around
embryonic day 10.5 (E10.5) in mice and 6 weeks
of development in humans. Differentiation of the
gonads leads to testicular and ovarian hormone

production and subsequent induction of anatomical
and psychological differences.

Both testis and ovarian development involve sex-
specific pathways that appear to act antagonistically to
one another (see Fig. 1). The normal role of SRY in XY
gonads is to tip the balance in favor of the testis-
specific pathway (Sinclair et al. 1990; Lovell-Badge
1992). In mouse, Sry is transiently expressed in the
bi-potential XY gonad (Koopman et al. 1990) and in
both species, SRY expression initiates an up-regulation
of SOXY expression. In mice, SOX9 has been shown
to stimulate Figf9 expression and subsequently, both
FGF9 and SOX9 act together in a positive feedback
loop, which are thought to suppresses Wnt4 (by un-
known mechanisms) and leads to the establishment of
the testis-specific pathway.

In the absence of SRY in XX individuals, RSPO!
and WNT4 are expressed at high levels and stabilize
cytoplasmic [(3-catenin, which is then translocated
into the nucleus, where it binds to the TCF/LEF
(transcription factor/lymphoid enhancer-binding
factor) and activates the transcription of target
genes. Both WNT4 and {3-catenin suppress (by
unknown mechanisms) the SOX9/FGF9 positive
feedback loop, allowing the ovarian-specific pathway
to progress.

Genes required for the development
of the bi-potential gonad

Mammalian gonads arise in both sexes from a bilater-
al, bi-potential gonad (also called genital ridges), an
organ that has the potential to develop either as an
ovary or as a testis, depending on differentially
expressed genes (reviewed by (Capel 1998; Swain
and Lovell-Badge 1999; Capel 2000)). In mouse, the
bi-potential gonads are first visible at E9.5, 1 day
before the onset of Sry expression, which is critical
for initiating testis development in XY individuals. A
number of genes have been shown to be required for
the development of the bi-potential gonad (Fig. 1a; see
also Table 1 for a summary of mouse and human
phenotypes of genes described in this section).

Empty spiracles homeobox 2

Empty spiracles homeobox 2 (Emx2) is a homolog of
the Drosophila head gap gene empty spiracles (ems)
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Fig. 1 Overview of the key genes and regulatory networks leading
from the bi-potential gonad to either testis or ovary development in
mouse. a Genes that are essential for the development of the
bi-potential gonad have been identified due to the total lack of
gonads in the corresponding knockout mouse strain and they have
been shown to be expressed in the bi-potential gonad. Functional
studies revealed that specifically the WT1 —KTS isoform binds to
and activates the Nrjal promoter in conjunction with LHX9. In the
spleen and adrenal gland, CBX2 has been shown to regulate Nr5al,
leading to the hypothesis of a similar function in the bi-potential
gonad. b Various genes have been implicated in the pathways
leading to testis development in mouse. In XY mouse embryos,
Sry is transiently expressed in the bi-potential gonad, whereas in
human embryos, SRY expression is periodic. However, in both
species, Sry expression initiates an increase of Sox9 expression,
which then stimulates Fgf9 expression. Both FGF9 and SOX9 act
in a positive feedback loop, which act to suppress the female specific
genes, especially Wnt4 and subsequently lead to the manifestation of
the testis-specific program. Numerous other genes and their gene
products, such as Gata4, Fog2, Wtl (+KTS isoform), NrSal, Pgsd,
Fgfirl, Cbx2, Sox8, Amh, Daxl, and Dhh are necessary for the
regulation (positive as well as negative) and maintenance of this

and is essential for the development of dorsal telen-
cephalon in mice (Yoshida et al. 1997). In addition,
Emx2 is expressed in the epithelial components of the
developing urogenital system. The kidneys, ureters,
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crucial male determining pathway. Dmrtl has recently been shown
to be required for the maintenance of gonadal sex, especially to
prevent female reprogramming in postnatal mouse testis. ¢ In XX
individuals, Sry is absent and ovary-specific genes, such as Rspol,
Wntd, and Foxl2 are expressed. Rspol —/— ovaries show reduced
levels of WNT4, suggesting that Rspol acts upstream of Wnt4.
However, a synergistic action of WNT4 and RSPO1 to activate
{3-catenin has also been suggested. WNT4/[3-catenin have been
proposed to suppress the SOX9/FGF9 positive feedback loop,
allowing the ovarian-specific pathway to progress. WNT4 and
FOXL2 are also involved in the positive regulation of Bmp2.
Together, FOXL2, RSPOI1, and WNT4 activate Fs¢ expression.
Genes of the female pathway that have been shown or suggested
to interact with the male pathway are shown in red, genes of the
male pathway interacting with the female pathway are highlighted
in blue. In this figure, solid lines do not necessarily imply direct
interactions. Question marks indicate that the position of that gene
and the interaction with other genes has been proposed. Many
pathways shown in this figure are similar or even identical between
mouse and human; however, for some of them, there might be
differences between the two species

gonads, and genital tracts are completely absent in
Emx2 —/— mice, while the adrenal glands and bladder
develop normally. However, a study by Taylor et al.
(1999) failed to identify mutations within EMX2 in
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Table 1 Genes involved in the development of the bi-potential gonad, testis development, and ovarian development in mice and humans

Gene Protein function

Gonad phenotype in mouse models

Human syndrome/phenotype (DSD related)

Genes involved in the development of the bi-potential gonad

Emx2 TXNF
Lhx9 TXNF
M33/CBX2 TXNF
NrSal Nuclear receptor/TXNF
wtl TXNF

Genes involved in testis development

Dhh Signaling molecule

Dmrtl TXNF

Fgf9 Signaling molecule
Fog?2 Cofactor of Gata4
Gata4 TXNF

Map3kl Kinase

Map3k4 Kinase

Nrobl Nuclear receptor
Sox3 TXNF

Sox8 TXNF

Sox9 TXNF

Emx2 —/— lacking kidneys, ureters, gonads and
genital tracts
Lhx9 —/— fail to develop bi-potential gonad

Chx2 —/—
XY male-to-female sex reversal

XX impaired ovary development

Nr5al —/— fail to develop bi-potential gonad

Wt1 —/— mice fail to develop bi-potential gonad

Dhh —/— disruption of testis cord formation due
to abnormal peritubular tissue

Dmrtl —/— impaired testis development (P2)
and loss of Sertoli and germ cells

Fgf9 —/— XY male-to-female sex reversal and
impaired development of Sertoli cells

Fog2 —/— Reduced Sry levels, XY male-to-
female sex reversal

Gata4 —/— embryo lethality (E7-E9.5)

ki .
Gata4* sever anomalies of testes

b(dependent on genetic background)
XY male-to-female sex reversal

XY impaired testis cord formation and
spermatogenesis (dependant on genetic
background)

Sox8 —/— reduced fertility
Sox8 —/—, Sox9 —/— XY variable degree
of male-to-female sex reversal

Sox9 —/— XY male-to-female sex reversal

Ods (deletion upstream of Sox9) XX
female-to-male sex reversal
Conditional knockout: XY ovarian development

XX testicular development

a

a

XY ovarian DSD

Embryonic testicular regression syndrome; XY
gonadal dysgenesis

XX premature ovarian failure (POF)

Denys-Drash, WAGR, and Fraiser syndromes

LOF: XY partial or complete gonadal
dysgenesis

Hemizygousity: XY gonadal dysgenesis

Deletion of 9p24 (including DMRTI): XY
gonadal dysgenesis (varying degrees)

a

Translocation including FOG2: XY
hypergonadotropic hypogonadism combined
with congenital heart defects (CHD)

LOF: XY ambiguous genitalia or reduced
phallus length

Deletion downstream of GATA4 (also including
NEIL2): XY complete gonadal dysgenesis
combined with adrenal hypoplasia congenital
(CAH)

XY partial or complete gonadal dysgenesis

a

LOF/Deletions: Congenital adrenal hypoplasia
(CAH)

Duplications: XY gonadal dysgenesis with
disorganized testis cords and
hypogonadotropic hypogonadism

Duplications (including SOX3) and deletion
upstream of SOX3: XX testicular DSD

a

LOF: XY gonadal dysgenesis combined with
campomelic dysplasia (CD)

GOF: XX female-to-male sex reversal (GOF)

Duplications including SOX9: XX testicular DSD

Translocation upstream of SOX9: XY
ovotesticular DSD

Duplication/triplication upstream of SOX9: XX
testicular DSD

Deletion upstream of SOX9: XY ovarian DSD
with acampomelic campomelic dysplasia

@ Springer



220

S. Eggers, A. Sinclair

Table 1 (continued)

Gene Protein function

Gonad phenotype in mouse models

Human syndrome/phenotype (DSD related)

Sox10 TXNF
Sry TXNF

Genes involved in ovary development

Sry - XY male-to-female sex reversal

Sry translocation: XX female-to-male sex
reversal

(ACD), gonadal dysgenesis, female or
ambiguous external genitalia

Duplication encompassing SOX10 (includes
also other genes): XX masculinized or
incompletely feminized

LOF: XY ovarian DSD
GOF/Translocation: XX testicular DSD

BPES and premature ovarian failure (POF)

Ctnnbl1/B-catinin  TXNF Conditional knockout in Sertoli cells
XX similar to Wnt4 —/— and Rspol —/—
Foxi2 TXNF FoxI2 —/— Premature ovarian failure
FoxI2 —/—, Wnt4 —/— XX female-to-male
sex reversal
Fst Inhibitor of activin XX partial female-to-male sex reversal, coelo-
mic vessel formation
Rspol Signaling molecule
to Wnt4 —/— and conditional Ctnnbl
knockout
Wnt4 Signaling molecule XX Miillerian duct agenesis, testosterone

synthesis, and coelomic vessel formation

XX partial female-to-male sex reversal, similar XX testicular and ovotesticular DSD

Duplication of 1p (including WNT4 and
RSPOI): XY gonadal dysgenesis (GOF)

Duplication of 1p (including WNT4 and
RSPOI): XY gonadal dysgenesis (GOF)
(male-to-female sex reversal)

LOF: XX Miillerian duct agenesis, testosterone
synthesis, and coelomic vessel formation

TXNF transcription factor
#No mutations described so far

®No gonadal phenotype

120 patients with either Kallmann syndrome or idio-
pathic hypogonadotrophic hypogonadism (IHH).

LIM homeobox 9

The LIM homeobox 9 (Lhx9) is a member of the LIM
homeobox gene family. In LAx —/— mice, germ cells
migrate normally, but somatic cells of the genital ridge
fail to proliferate and a discrete gonad fails to form. As a
result of the absence of testosterone and anti-Miillerian
hormone, genetically male mice develop as phenotypic
females (Luo et al. 1994; Birk et al. 2000). The expres-
sion of steroidogenic factor 1 (Sf7 also known as nuclear
receptor subfamily 5 group A member 1 (Nrjal)), a
nuclear receptor essential for gonadogenesis, is reduced
to minimal levels in the Lhx9-deficient genital ridge,
indicating that LAx9 may lie upstream of Nrjal in a
developmental cascade in mouse (Birk et al. 2000). Fur-
thermore, an in vitro biochemical analysis showed that
LHX9 has the potential to bind and trans-activate the
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Nr5al promoter in conjunction with WT1 (Wilhelm
and Englert 2002). However, mutation analysis of
LHXY9 in a range of human DSD patients (including
bilateral gonadal agenesis) did not reveal any mutations
(Ottolenghi et al. 2001).

Mouse polycomb group member M33/chromobox
homolog 2

Mouse polycomb group member M33 (M33) or chro-
mobox homolog 2 (Cbx2) is the mouse ortholog of the
Drosophila Polycomb gene. Cbx2 —/— mice show
male-to-female sex reversal in most XY animals and
XX animals have either smaller or absent ovaries
(Katoh-Fukui et al. 1998). Katoh-Fukui et al. (1998)
suggested a role for Chbx2 early during gonad devel-
opment, prior to the critical time of sex determination
and before expression of Sry. As CBX2 has been
implicated in the regulation of NrSal expression in
the adrenal gland (Katoh-Fukui et al. 2005), it has been
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speculated that CBX2 may play a similar role in gonad
development. A recent study by Biason-Lauber et al.
(2009) identified a compound heterozygous loss-of-
function mutation in the coding sequence of CBX2 in a
46,XY girl with female external and internal genitalia
(including ovaries). This study also supports a role for
CBX2 in the trans-activation of NR5A41, and thus a role
early during gonad development.

Nuclear receptor subfamily 5 group A member 1

NR5A1 encodes the nuclear receptor family member
nuclear receptor subfamily 5 group A member 1, also
known as steroidogenic factor-1 (SF1), which plays a
role in gonadal and adrenal development (Val and
Swain 2010). NR5A1 is expressed in the urogenital
ridge, the developing hypothalamus, and the anterior
pituitary gland. Expression in the bi-potential gonad
can be detected prior to SRY onset and functional
reporter studies suggest that NR5A4/ acts to mediate
the up-regulation of SRY (de Santa Barbara et al.
2001). Like the Lhx9 —/— mice, Nrjal —/— mice lack
adrenal and gonadal development. Gonad develop-
ment does not proceed beyond the early indifferent
stage, which results in complete male-to-female sex
reversal of XY animals, with the Miillerian ducts dif-
ferentiating into uteri, oviducts, and upper vagina (Luo
et al. 1994; Shinoda et al. 1995; Sadovsky and Dorn
2000). NR5A1 also has additional roles in the gonad
post-differentiation (see Fig. 2). NR5SALI is expressed
in Sertoli, and Leydig cells of the developing testis.
Together with SOX9, NR5A1 regulates the levels of
AMH (Arango et al. 1999) and other genes associated
with gonad development (Burris et al. 1995). Further-
more, Sekido and Lovell-Badge (2008) have shown
that NR5SA1 binds synergistically with SRY to a testis
specific enhancer region (TESCO) to up-regulate
SOX9 expression. SOX9 then displaces SRY and, to-
gether with NR5A1 causes further up-regulation of
itself. Mutations in and around NR5A41 cause 46, XY
DSD gonadal dysgenesis (Achermann et al. 1999),
whereas mutations in NR5A4/ in 46,XX individuals
are associated with primary ovarian insufficiency
(Lourenco et al. 2009).

A large deletion (3 Mb in size) of chromosome 9q34
that includes NR541 and LMXIB (LIM homeobox
transcription factor 1-beta) was identified in a 46,XY
girl with clinical features of genitopatellar syndrome
and ovotesticular DSD (Schlaubitz et al. 2007). van

Silthout et al. (2009) found a smaller, 970 kb deletion
which includes NR5A41 in a 46,XY DSD female without
skeletal features.

Wilms' tumor 1

Wilms' tumor 1 (WT1) encodes a zinc finger transcrip-
tion factor, which is primarily expressed in embryonic
mesodermal tissues such as the urogenital ridge,
gonads, and mesonephros (Armstrong et al. 1993).
WTI mutations in humans were first identified in
patients with Wilms' tumor, a form of kidney cancer
occurring primarily in children (Haber et al. 1990).
This tumor is also seen as part of WAGR syndrome
(Wilms' tumor, Aniridia, genitourinary anomalies,
and mental retardation), a more complex syndrome
including other clinical features such as aniridia,
genitourinary anomalies, and mental retardation.
The gonadal phenotype is recapitulated in other
disorders, where mutations in W71 have been de-
scribed such as Denys-Drash syndrome (including
gonadal abnormalities and renal failure) (Pelletier et
al. 1991; Lee et al. 2011) and Frasier syndrome
(46,XY gonadal dysgenesis together with glomero-
lupathy) (Barbaux et al. 1997). The Frasier patients
have been found to carry mutations that results in
the loss of the WT1+KTS isoform. This isoform
has an additional three amino acids (K—Ilysine; T—
threonine, and S—serine), which are located between
the third and fourth zinc finger of WT1. The two differ-
ent isoforms —KTS and +KTS have been shown to play
distinct roles during embryogenesis. The —K TS isoform
has been shown to bind to the SRY promoter region,
leading to the transactivation of SRY (Hossain and
Saunders 2001). Furthermore, the —KTS isoform of
WT1 was shown to bind sequences within the Nrial
promoter (Wilhelm and Englert 2002). Conversely, the
+KTS isoform seems to play a role in the regulation
of the SRY transcript. Knocking out this +KTS
isoform of WTI1 specifically, results in reduced
Sry levels (Hammes et al. 2001) presumably medi-
ated by its RNA binding affinity. There is also
evidence that this isoform may function synergistically
with NRSAL1 to increase Amh expression (Arango et al.
1999), which is essential for inhibiting the develop-
ment of the female Mullerian structures. Mice car-
rying a mutated W/ gene fail to develop kidneys
and gonads and often die at embryonic stages due to
heart defects (Kreidberg et al. 1993).
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Fig. 2 Known genes and pathways of the different cell types of
the developing testis in mouse (modified from Wainwright and
Wilhelm 2010). a Postulated molecular pathways underlying Ser-
toli cell specification, including the regulation of Sry, induction of
Sox9 expression, and the maintenance of Sox9 expression. b
Differentiation of peritubular myoid (PM) cells is regulated by
signaling from Sertoli cells via desert hedgehog (DHH) and its
receptor patched 1 (PTCHI1). In addition, Dax! expression in
Sertoli cells is required for PM cell differentiation, but the molec-
ular mechanism still remains to be elucidated. The interaction
between Sertoli cells and PM cells results in the secretion of
extracellular matrix (ECM) molecules by both cell types, which
finally leads to the formation of basement membrane (BM). Both
cell types contribute distinct components to the ECM, with PM
cells secreting fibronectin, collagens, and proteoglycans. ¢—f The
regulation of Leydig cell development via Sertoli cell and Leydig
cell interactions. The morphogen DHH is secreted by Sertoli cells
and induces Leydig cell specification through its receptor PTCH1.
Signaling via the receptor NOTCH3 and its effector HES1 is
crucial for the maintenance of the progenitor population and the

Genes required for testis development

The following section will summarize key genes in-
volved in testis development and their corresponding
DSD phenotypes (see Table 1 for a summary of the
human and mouse phenotypes of the genes described
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restriction of their differentiation to fetal Leydig cells. Platelet-
derived growth factor A (PDGFA) signaling via the receptor
PDGFR« plays a role in Leydig cell differentiation. In addition,
Sertoli cell expressed DAX1/NROBI has been implicated in Ley-
dig cell survival. As Leydig cells start to differentiate, they start
expressing genes required for steroid synthesis, such as side chain
cleavage (Scc). Differentiated Leydig cells synthesize testosterone
using the four enzymes P450 side chain cleavage (SCC), 3-3-
hydroxysteroid dehydrogenase/Delta-5-4 isomerase type 2
(HSD3B2), cytochrome P450 17-hydroxylase (CYP17), and
173-hydroxysteroid dehydrogenase 3 (173HSDIII). The biosyn-
thesis of testosterone leads to the masculinization of the develop-
ing embryo. Furthermore, fetal Leydig cells express insulin-like
factor 3 (INSL3), which regulates testis decent. Both INSL3 and
SCC are regulated by SFI/NRSALI at the transcriptional level.
Gene products from the female pathways known to interact with
the male-specific pathway are shown in red. Solid lines in this
figure do not indicate if the interactions occur in a direct or indirect
manner. Genes/gene products shown in gray are not mentioned in

below). Figure 1b illustrates known molecular path-
ways (from mouse studies) that are important for testis
development and putative inhibitory interactions be-
tween testis and ovary pathways. Figure 2 shows
genes involved in testis determination and mainte-
nance of different testis cell populations.
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GATA binding protein 4 and zinc finger protein
multitype 2

The evolutionary conserved GATA family of tissue- and
organ-specific vertebrate transcription factors (GATA-
binding proteins 1 to 6; GATA1 to GATAG6) consists of
two zinc finger domains. The two zinc fingers have been
shown to be necessary for DNA recognition and binding
(C-terminal zinc finger), the stabilization of the protein—
DNA interaction (N-terminal zinc finger) and the pro-
tein—protein interactions of the GATA family members
with other transcription co-factors (Evans and Felsenfeld
1989; Molkentin 2000). All family members recognize
the consensus target sequence (T/A)GATA(A/G). Of
these six family members, two genes, Gata2 and Gata4,
are known to be expressed in the fetal mouse gonads.
Gata?2 expression is detected between E10.5-15.5 in XX
gonads and the mesonephros of XX and XY gonads, but
its expression is missing in XX gonads lacking germ
cells. At E13.5 the expression is restricted to germ cells
of XX gonads, suggesting a role for GATA2 in ovarian
germ cell development (Siggers et al. 2002). Gata4 is the
only GATA family member that is expressed in somatic
cells (and not germ cells) in the bi-potential gonad
(Heikinheimo et al. 1997; Viger et al. 1998). At E11.5,
Gata4 is expressed in the somatic cells of the bi-potential
gonad of both sexes but becomes sexually dimorphic at
E13.5, with its expression being up-regulated in XY
Sertoli cells and down-regulated in interstitial cells. By
contrast, Gata4 expression is down-regulated in all cell
types in XX gonads. Gata4 expression is maintained in
Sertoli cells postnatally and regained in adult ovaries
(predominantly in granulosa cells) (Heikinheimo et al.
1997; Viger et al. 1998). GATA4 cooperatively interacts
with several proteins, including NR5SA1 and zinc finger
protein multitype 2 (FOG2) (friend of GATA protein 2 or
zinc finger protein, multitype 2; encoded by the Zfpm?2
gene) to regulate the expression of several sex-
determining genes. Amongst those are SRY, SOX9, and
AMH. Those complexes regulate key steroidogenic
genes, such as STAR (encoding steroidogenic acute reg-
ulatory protein), CYP19A41 (encoding aromatase), INHA
(encoding inhibin x-subunit), and HSD3B2 (encoding 3
beta-hydroxysteroid dehydrogenase/delta 5-4-isomerase
type 2) (Viger et al. 2008; Nishida et al. 2008; Miyamoto
et al. 2008).

Gata4 —/— mice die at around E7.0-E9.5 due to
abnormalities in ventral morphogenesis and heart tube
formation (Kuo et al. 1997; Molkentin et al. 1997) so

analysis of gonadal differentiation is not possible. The
role of GATA4 in gonad development has been high-
lighted by the use of Gata4* mice that have a
p-V217G mutation in the N-terminal zinc finger do-
main, which disrupts the protein—protein interaction of
GATA4 with its cofactor FOG2 (Bouma et al. 2007).
These mice have severe anomalies of testis develop-
ment (Crispino et al. 2001; Tevosian et al. 2002).

In humans, mutations in GATA4 have been associated
with congenital heart defects (CHD), whereas other
organs were described as being normal in all cases (Garg
et al. 2003; Hirayama-Yamada et al. 2005; Nemer et al.
2006; Tomita-Mitchell et al. 2007). A recent study
describes a heterozygous loss-of-function mutation in
GATA4 (p.G221R) in a family with three 46,XY DSD
cases (with either ambiguous genitalia or reduced phal-
lus length) and two 46,XX females with CHD. Func-
tional studies showed failure of the mutated protein to
bind and activate the AHM promoter and to bind to
FOG2 (Lourenco et al. 2011). A 35-kb deletion down-
stream of GATA4 was identified by White etal. (2011) in
a patient with 46,XY complete gonadal dysgenesis and
adrenal hypoplasia congenita. The authors argue that the
deletion might affect a regulatory region of GATA4,
which could in turn explain the lack of cardiac malfor-
mations in this patient.

In vitro, FOG2 represses GATA4-dependent trans-
activation of AMH in primary Sertoli cell cultures
(Tremblay et al. 2001). Whether FOG2 acts as a tran-
scriptional repressor or activator in the context of gonad
development in vivo, in mouse as well as in human, still
has to be elucidated, but a role in early gonadogenesis
in mouse has been determined using Fog?2 null mice.
These mice die mid gestation (around E14.5) from a
cardiac defect and exhibit a block of gonad develop-
ment (Crispino et al. 2001; Tevosian et al. 2002). Finelli
et al. (2007) identified a translocation including FOG2
in a male patient with hypergonadotropic hypogonad-
ism, supporting a role for FOG2 in mammalian sex
determination.

Sex-determining region Y

Testis development is characterized by the expression
of SRY, the testis-determining gene on the Y chromo-
some, in the supporting cell lineage of the genital ridge
(Bullejos and Koopman 2001; Wilhelm et al. 2005).
SRY was identified using 46,XX testicular DSD male
patients, who each had small translocations of material
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from the Y to the X chromosome (Sinclair et al. 1990).
Further studies with 46,XY DSD gonadal dysgenesis
female patients revealed numerous point mutations in
the SRY gene, demonstrating it was required for testis
development. Finally, studies of transgenic mice,
showed Sry was sufficient, on its own, to cause
XX sex reversal (Koopman et al. 1991). Since then,
numerous studies have shown that translocations of
the SRY gene account for approximately 90% of 46,
XX testicular DSD, whereas point mutations in SRY
account for approximately 15% of 46,XY DSD
gonadal dysgenesis cases (Cameron and Sinclair
1997). 46,XX testicular DSD is a condition in
which genotypically female individuals develop as
males. That is the gonads develop varying degrees
of testicular tissue and may produce testosterone,
leading to virilization of external genitalia. In 46,
XY DSD gonadal dysgenesis patients, a dysgenic
streak gonad develops instead of a testis.

The expression pattern of SRY and its resulting
protein differs between the two species. In mice, Sry
expression is limited to a transient period in the genital
ridge of male embryos from E10.5 to E12.5, whereas
SRY expression in human embryos starts at E41, peaks
shortly after, and then remains present at low levels
beyond embryogenesis (Hanley et al. 2000). In all
mammals studied, SRY is a single-exon gene, but the
protein can vary in size. SRY is part of the SOX
gene family (SRY-related HMG box), a family of 20
genes in human and mice (Bowles et al. 2000;
Schepers et al. 2002), which contain a highly con-
served high mobility group (HMG) DNA-binding
domain. Outside the HMG domain, SRY shows limited
sequence conservation between species, suggesting
that this DNA-binding domain is of critical impor-
tance. In DSD patients, the vast majority of SRY muta-
tions are located within the HMG domain (Cameron
and Sinclair 1997), suggesting that this is the most
important domain. The SRY HMG domain contains
signal sequences that can direct SRY to the nucleus,
where it is assumed to play a role in transcriptional
regulation (Poulat et al., 1995). This domain also
mediates the sequence-specific DNA-binding ability
of SRY, which results in the alteration of chromatin
conformation (Giese et al. 1992). However, an addi-
tional C-terminal CAG repeat domain, which is not
present in the human homolog, has been shown to be
essential for male sex determination in the mouse
(Bowles et al. 1999).
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SRY-related HMG-box genes 9, 8, and 10—the SoxE
genes

The SOX gene family consists of 20 members, which
all encode for transcription factors. These genes have
been divided into 10 subgroups, A to J, according to
their sequence homologies (Bowles et al. 2000).
Besides SRY, three other members of this gene family
are expressed in the XY gonad (Cory et al. 2007;
Polanco et al. 2010; Schepers et al. 2003). These
members are SOX8, SOX9, and SOX10, which together
form the subgroup E within this gene family.

SOX9 was first shown to be associated with testis
development in 1994, when mutations in and around
SOX9 were identified in human DSD patients (Foster
et al. 1994; Wagner et al. 1994).

In mice, Sox9 is expressed in the genital ridge at low
levels at E10.5 (Morais da Silva et al. 1996) shortly
after the expression of Sry in XY embryos and then
shows a dramatic increase in expression levels. This
temporal and spatial expression profile in mouse sug-
gested that Sox9 is either a direct or indirect down-
stream target of SRY. This is supported by the findings
that only Sry expressing precursor cells of the
bi-potential gonad show an increase in Sox9 expression
and subsequently develop into Sertoli cells (Sekido et
al. 2004). Odsex (Ods) mice carry a 150-kb deletion,
1.3 Mb upstream of Sox9 (Bishop et al. 2000). These
mice show XX female-to-male sex reversal (dependent
on the genetic background of mice) (Poirier et al. 2004)
mediated by the up-regulation of Sox9 and failed
down-regulation in XX gonads, suggesting the pres-
ence of a distal repressor element that is deleted in
Odsex mice. The existence of distal, long-range regu-
latory elements of Sox9/SOX9 was confirmed by
Sekido and Lovell-Badge 2008, who identified a
testis-specific regulatory element in mouse. Subse-
quent findings in human DSD patients with genomic
re-arrangements upstream of SOX9 also point to novel
gonad-specific SOX9 regulatory elements (see below).

Downstream targets of SOX9 have been identified,
including the genes encoding anti-Miillerian hormone
(Ambh; (Arango et al. 1999)), Vanin-1 (Vnn; (Wilson et
al. 2005)), Pgds (Wilhelm et al. 2007) and cerebellin 4
precursor (Chin4; (Bradford et al. 2009)) (see Fig. 2).

Due to its role in chondrocyte differentiation, SOX9
loss of function mutations lead to a combined pheno-
type of 46,XY DSD gonadal dysgenesis and campo-
melic dysplasia, a syndrome characterized by various
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severe skeletal malformations (Foster et al. 1994;
Wagner et al. 1994; Hanley et al. 2000). Duplications
including SOX9 have also been described in a 46,XX
testicular DSD patient with complete sex reversal
(Huang et al. 1999). 46,XY ovotesticular DSD associ-
ated with a 12;17 translocation upstream of SOX9 has
also been identified by Refai et al. (2010). Recent
genome-wide studies, using a CGH array approach,
have identified further genomic rearrangements
upstream of the SOX9 gene in patients with varying
severity of both 46,XX and 46,XY DSD. In 46, XY
DSD patients, a number of deletions upstream of
SOX9 have been identified. Pop et al. (2004) identified
a 1.5-Mb de novo deletion in a patient affected by the
acampomelic form of campomelic dysplasia (ACD)
and 46,XY DSD (complete female phenotype) and
Lecointre et al. (2009) identified an inherited 960 kb
deletion 517 kb to 1.477 Mb upstream of SOX9 in a
family affected by ACD combined with 46, XY DSD
gonadal dysgenesis in a 46,XY DSD patient and the
ACD-affected mother. White et al. (2011) identified a
1.2-Mb deletion in a 46,XY DSD patient with gonadal
dysgenesis but without skeletal malformations. Benko
et al. (2011) identified a 240-kb deletion upstream of
SOXY in two cousins affected by isolated 46,XY DSD
(one with a complete female phenotype, the other one
with ambiguous genitalia). In this familial case, the
deletion was inherited by the mothers (who were sis-
ters and both normal females).

In 46,XX DSD cases, a gain in copy number (dupli-
cations, as well as a triplication) upstream of SOX9 has
been described in a number of patients. Cox et al.
(2011) presented an extremely rare familial case of
46,XX complete sex reversal, where two brothers
and their parental uncle were diagnosed with 46,XX
testicular DSD (SRY negative and without any other
developmental or skeletal phenotypes). Genetic anal-
ysis revealed a 178-kb duplication 600 kb upstream of
SOX9. Vetro and colleagues (2011) identified a 96-kb
triplication approximately 500 kb upstream of SOX9
in two 46,XX azoospermic brothers (both SRY nega-
tive) and Benko et al. (2011) identified three familial
cases of isolated 46,XX DSD with duplications up-
stream of SOX9 of varying size. It should be noted that
XX humans and mice show the opposite phenotypes
where there is a loss of copy number upstream of
SOX9/Sox9. In humans, a gain of copy number results
in female-to-male sex reversal, whereas the Odsex
mouse model shows female-to-male sex reversal when

they lose one copy of the Sox9 upstream region (see
above). The 1.9-Mb upstream region of SOX9 is a
gene desert, which is extremely conserved in mam-
mals. Sekido and Lovell-Badge defined a 3.2-kb
testis-specific enhancer of Sox9 (TES) in mouse
(Sekido and Lovell-Badge 2008), which is located in
this gene desert, but not affected by the above men-
tioned CNVs in DSD patients. Further studies in
mouse helped to refine this testis-specific region fur-
ther to 1.4 kb, which is referred to as Testis Enhancer
Sequence core element (TESCO). Functional analysis
showed that SRY and NR5A1 were required to bind to
this enhancer region in order to initiate Sox9 up-
regulation. TESCO seems to play an important role in
the testis-specific expression of Sox9 in mice. However,
in human DSD patients, the range of deletions, duplica-
tions, and translocations described above (see references
above and review by (Gordon et al. 2009)), suggests the
involvement of multiple testis-specific regulatory ele-
ments that are not functionally conserved between
human and mouse. Aligning all the CNVs that have
currently been identified in DSD patients, results in a
78-kb minimal overlap region, which is located 517—
595 kb upstream of the SOX9 promoter (Benko et al.
2011). This region is a highly likely to contain one or
several gonad specific regulatory elements, which,
when affected by CNVs, lead to DSD of variable sever-
ity, depending on the number and nature of the regula-
tory elements being affected. However, another possible
scenario may be that the changes, especially when
occurring, e. g., in tandem, influence the genomic archi-
tecture needed to activate SOX9 in the proper spacio-
temporal manner essential for gonad development. A
recent study screened 66 patients with 46,XY DSD
gonadal dysgenesis for mutations in the human,
TESCO-corresponding region, but failed to identify
point mutations in this regulatory region (Georg et al.
2010).

Conditional knockout of Sox9 leads to ovary
development in XY mouse embryos (Chaboissier et al.
2004; Barrionuevo et al. 2006) and over-expression of
Sox9 in XX embryos results in the development of testis
(Bishop et al. 2000; Vidal et al. 2001). The importance
of Sox9 is highlighted in that all reported cases of XY
sex reversal show a disturbance in the expression level
or function of SOX9. Therefore, it is surprising that
Sox9 expression does not seem important for the main-
tenance of Sertoli cell fate and testis cord integrity. XY
embryos with null mutations of Sox9 show normal
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embryonic testis development after E13.5 and are ini-
tially fertile, but become infertile at the age of about
5 months (Barrionuevo et al. 2009). This demonstrates
that SOX9 is dispensable at later stages of testis devel-
opment, which may be due to redundancy of the related
factors SOX8 and SOX10. The importance of Sox9 in
testis differentiation, along with the close evolutionary
relationship and the expression patterns it shares with
the two other SoxE family members, raises questions
about the functional role of Sox8 and Sox/0 during
gonadogenesis.

Initially, Sox8 was shown to be specifically expressed
in the testis cords at E13.5. This and its ability to induce
Amh (anti-Muellarian hormone) expression in vitro,
suggested a role of this member of the SOX gene family
member in male sex determination, testicular differenti-
ation, or germ cell development (Schepers et al. 2002,
2003). However, the first studies of Sox8 ablated mice
failed to result in abnormal sexual development and
resulted only in idiopathic weight loss and reduced bone
density phenotypes (Sock et al. 2001). Closer analysis of
Sox8 —/— mice by O'Bryan et al. (2008) showed that
Sox8 —/— males rarely produced litters, while Sox8 +/—
males and Sox8 —/— females appeared reproductively
normal. This study shows an essential role for Sox§ in
the maintenance of male fertility beyond the first wave
of spermatogenesis. Loss of Sox§ resulted in progres-
sive degeneration of the seminiferous epithelium
through perturbed physical interactions between Sertoli
cells and the developing germ cells. Double knockout
studies of Sox8 and Sox9 showed that SOXS reinforces
SOX9s role in testis differentiation (Chaboissier et al.
2004; Barrionuevo et al. 2006). Double knockout testis
showed mainly complete absence of testis cord forma-
tion (tissue-specific Sox9™/* testis showed a variable
degree testis cord formation and abnormal coelomic
vessel formation) (Chaboissier et al. 2004). These
results, together with the above mentioned in vitro stud-
ies regarding SOX8s ability to bind and synergistically
activate Amh expression alongside NR5SA1, support the
idea of redundancy for SOX8 and SOX0 in testis differ-
entiation. It has been postulated that the interchangeable
roles of SOX8 and SOX9 are due to their shared ances-
try and high sequence, as well as structural homology
(Koopman 2005).

In SoxI0-null mice, no testis phenotype has been
described. Sox10, over-expression studies in XX gonads
showed that SOX10 is sufficient to induce testis differ-
entiation (Polanco et al. 2010), suggesting that, although
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it might not be necessary for testis formation, Sox10 still
can function as a testis-determining gene. Human 46,
XX testicular DSD patients who are masculinized or
incompletely feminized and who have a duplication of
the region encompassing SOX10, amongst a number of
other genes, have been described (Aleck et al. 1999;
Cantu et al. 1981; Nicholl et al. 1994; Seeherunvong et
al. 2004). The possibility that other genes within this
duplicated region are responsible for this phenotype,
either solely or in combination with SOX70, cannot be
excluded. However, SOX10 is a strong candidate for the
causative gene within this region. It is interesting to note
that Sox9 is upregulated in Sox/0-transgenic XX
gonads. It would be worthwhile investigating whether
overexpression of Sox8 and or Sox/0 would be suffi-
cient to rescue the Sox9 knockout phenotype.

Desert hedgehog

Desert hedgehog (DHH) is a member of the hedgehog
family of signaling molecules, which also includes
sonic hedgehog (SHH) and indian hedgehog (IHH)
(Ingham 1998). Of the three family members, Dhh is
the only one that is expressed in somatic cell population
of the developing XY mouse gonad from E11.5 and
continues later in Sertoli cells. No expression can be
detected in XX ovaries at any stage (Bitgood et al.
1996; Yao and Capel 2002; Beverdam and Koopman
2006). DHH binds to its receptor Patched 1 (PTCHI),
which is expressed shortly after DHH. PTCHI is bound
to the membrane of Leydig and peritubular myoid cells,
and its expression is up-regulated via DHH (Clark et al.
2000; Yao and Capel 2002). Dhh null mice show dis-
rupted testis cord formation due to abnormal peritubu-
lar tissue (Clark et al. 2000; Pierucci-Alves et al. 2001).
DHH seems to be necessary for the up-regulation of Sf7
in Leydig cells (Yao et al. 2002). Several mutations of
DHH have been described in patients affected by 46,
XY partial or complete gonadal dysgenesis. The first
case was described by Umehara et al. (2000). The
patient was affected by 46,XY partial gonadal dysgen-
esis and minifascicular neuropathy. A homozygous
missense mutation at the initiation codon in exon 1
(c.T2C; p.M1T) was identified in the patient. The father
carried the same mutation in a heterozygous state,
showing that the phenotype displays a recessive mode
of inheritance. Further studies identified a homozygous
substitution in exon 2 (¢.T485C; p.L162P) in one pa-
tient with 46,XY complete gonadal dysgenesis (CGD)
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and a homozygous frame-shift deletion in exon 3
(c.1086delG), which results in a premature stop
codon four codons after the deletion in two patients
with 46,XY CGD (Canto et al. 2004). The later
mutation has also been identified in two patients
with 46,XY partial gonadal dysgenesis (PGD), but
in a heterozygous state (Canto et al. 2005). Recent-
ly, Das et al. (2011) described two novel heterozy-
gous mutations (c.271 273delGAG; p.D60del and
¢.57 60dupAGCC resulting in premature transla-
tional termination) in DHH in two patients affected
by 46,XY CGD.

Nuclear receptor subfamily 0 group B, member 1

The dosage sensitive gene nuclear receptor subfamily 0
group B, member 1 (NROBI) (dosage sensitive sex
reversal, adrenal hypoplasia critical region, X chromo-
some gene 1), encodes DAX1 on chromosome Xp21.2.
Mutations and deletions of NROBI result in congenital
adrenal hypoplasia (CAH), whereas duplications of
NROBI in 46,XY individuals lead to gonadal dysgenesis
and a female phenotype (Bardoni et al. 1994). CAH
patients develop testis, but the testis cords appear to be
disorganized and hypogonadotropic hypogonadism
occurs in these patients. Duplications of NROBI have
been described in a small number of other 46, XY
gonadal dysgenesis cases. Two studies identified dupli-
cations of NROBI in patients with isolated 46,XY DSD
complete gonadal dysgenesis (Barbaro et al. 2007;
White et al. 2011) and a unique 257 kb deletion located
250 kb upstream of NROBI was reported in a 46,XY
female with complete gonadal dysgenesis (Smyk et al.
2007). This deletion presumably affects regulatory ele-
ments of NROBI and thus results in dysregulation of its
expression. As duplications of NROB/ resulted in 46,
XY male-to-female sex reversal, it led to the concept of
NROBI as an “anti-testis” gene. However, XY Nr0bl
null mice also show sex reversal, which suggest a po-
tential “pro-testis” role of Nr0b1. Ludbrook and Harley
(2004) propose a dosage-based mechanism that allows
both a pro- and anti-testis function in an attempt to
resolve these apparently contradictory roles of NROBI
(Ludbrook and Harley 2004).

Doublesex and mab-3 related, transcription factor 1

Doublesex and mab-3 related, transcription factor 1
(DMRTI) is located at the tip of chromosome 9p in

human and encodes the transcription factor DMRT]1
(doublesex and mab-3 related transcription factor 1).
In some vertebrates, DMRTI is up-regulated in the
developing genital ridge of XY embryos (Moniot et al.
2000; Smith et al. 1999) with continued expression
confined to Sertoli cells. Interestingly, DMRTI repre-
sents one of the few sex determining genes that is shared
between different species and phyla. Orthologous genes
are found in a medaka species (Dmy) on the Y chromo-
some (Lutfalla et al. 2003) and in chicken (DmrtI) on the
Z sex chromosome (Nanda et al. 1999). Both, Dmy in
medaka and Dmrtl in chicken have been shown to be
testis-determining genes (Matsuda et al. 2002; Smith et
al. 2009). Interestingly, in platypus, a single copy of
Dmrtl is located on chromosome X5 (Grutzner et al.
2004) although its function, if any, in sex determination
is unknown. All these genes encode a protein containing
a DM domain as a DNA-binding motif (Raymond et al.
1998). In chicken and medaka, these genes are believed
to initiate the molecular network leading to testis devel-
opment (Smith et al. 2009; Matsuda et al. 2002; Nanda et
al. 2002). In humans and mice, DMRT! is required for
the postnatal maintenance of Sertoli and germ cells.
Matson et al. (2011) have recently shown in mouse that
Dmrtl and FoxI2 form another regulatory network nec-
essary for maintenance of the testis during adulthood.
Loss of Dmrtl in mouse Sertoli cells leads to the upre-
gulation of Fox/2, amongst other genes. This induces the
reprogramming of Sertoli cells into granulosa cells. Sub-
sequently theca cells form, oestrogen is produced and
germ cells appear feminized.

Dmprtl-null mice develop normal gonads but show
severely impaired testis development from postnatal day
2 resulting in dysgenic testes (Kim et al. 2007a;
Raymond et al. 2000) and feminized germ cells (Matson
et al. 2011). Similarly, human patients with DMRTI
hemizygosity are associated with dysgenic testis and
46,XY DSD gonadal dysgenesis (Crocker et al. 1988;
Raymond et al. 1998; Veitia et al. 1998). In humans,
heterozygosity of DMRT is associated with DSD. Dele-
tions of chromosome 9p24 are associated with varying
degrees of 46,XY DSD gonadal dysgenesis in about
70% of cases with this chromosomal rearrangement
(Barbaro et al. 2009; Raymond et al. 1999; Calvari et
al. 2000). This region contains: DMRT1, DMRT?2, and
DMRT3 and other genes, such as FOXD4 (Forkead box
protein D4), INSL4, and INSL6 (insulin-like 4, 6 protein).
Mutations or rearrangements of DMRT] are the most
likely cause of the 46,XY DSD phenotypes. However, in
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humans, there have been no mutations identified within
the DMRT1 gene itself, jet.

Fibroblast growth factor 9

FGF9 encodes fibroblast growth factor 9 (FGF9), one
of a number of growth factors that play a role in various
developmental processes such as cell proliferation, cell
survival, cell migration, and cell differentiation. Figf9 is
expressed in the bi-potential gonad immediately after
the expression of Sry. Mice null for Figf9 show male-to-
female sex reversal along with impaired development of
Sertoli cells. However, this is only evident on some
genetic backgrounds, but not on others (Colvin et al.
2001; Schmahl et al. 2004). In the absence of Fgf9, Sox9
expression is not maintained, Sertoli cells fail to differ-
entiate, testis development is aborted and the resulting
somatic cells express genes characteristic for ovarian
development and the female pathway. There is data
supporting the concept that SRy and NR5A1 initiate a
positive feedback loop by up-regulating SOX9, which
in turn up-regulates FGF9, further increasing Sox9
expression (Kim et al. 2006). FGF9 mediates its molec-
ular function through the membrane-bound receptor
FGFR2 (fibroblast growth factor receptor 2). FGFR2 is
integrated in the plasma membrane of progenitor Sertoli
cells and is critical for Sertoli cell proliferation and
differentiation in the developing testis. Although no
mutations in FGFR2 have yet been reported in human
DSD patients (Kim et al. 2007b), due to its crucial role in
Sertoli cell proliferation and differentiation, mutations in
this gene could account for some unexplained cases of
DSD.

A new role for MAP kinases MAP3K1 and Map3k4
in gonad development

In a linkage study of a large family with DSD, a putative
testis determining gene was mapped to a region on the
long arm of chromosome 5 (Jawaheer et al. 2003). A
follow-up study identified a mutation in the gene
MAP3K1, which segregated with the phenotype in the
family. Further mutations within the MAP3KI gene
were identified within a second family and two out of
eleven sporadic cases analyzed. The mutations found in
the first family and in the two sporadic cases were
shown to alter the phosphorylation of MAP3K1 down-
stream targets, such as p38 and ERK1/2, and to enhance
the binding of RHOA to the MAP3K1 complex.
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Map3kl is expressed in the mouse gonad prior to, and
following, sex determination but Map3k! null mice do
not show a gonadal phenotype. The spatiotemporal
expression profile of Map3kl, together with the identi-
fication of mutations within the MAP3K1 gene in cases
of human 46,XY DSD strongly implicates the mitogen-
activated protein kinase (MAPK) pathway in normal
human and mouse sex determination (Pearlman et al.
2010). However, a mutation in another member of the
MAPK family, Map3k4, was recently shown to be as-
sociated with XY sex reversal in mice, providing further
evidence, that mutations in genes of the MAPK signal-
ing pathways may be associated with DSD (Bogani et
al. 2009; Bashamboo et al. 2010).

Genes required for ovary development

While many genes have been identified as part of the
testis developmental pathways, until recently little was
known about the molecular mechanisms underlying
ovarian development. Figure lc gives an overview of
the current knowledge of molecular mechanisms lead-
ing to ovarian development (see also Table 1 for a
summary of the mouse and human phenotypes of
genes that are described below).

Wingless-type MMTYV integration site family, member 4

WNT4 encodes member 4 of the wingless-type MMTV
integration site family, a family of locally acting signal-
ing molecules that are known to play a role in a range of
developmental processes. Wnt4 is expressed in the
mesonephric mesenchyme and coelomic epithelium in
mouse as early as E9.5. At El1, it is expressed in the
mesonephros and the bi-potential gonad of both sexes
but is then downregulated in the developing testis at
around E11.5. The expression persists in the mesoneph-
ros as well as the developing ovary and the mesenchyme
surrounding the Miillerian ducts (Stark et al. 1994;
Vainio et al. 1999). WNT4 plays a role in Mullerian
duct formation, oocyte development, and sex-specific
patterning of the vasculature (Heikkila et al. 2005). Lack
of Wnt4 in the mouse results in partial female-to-male
sex reversal, suggesting that WNT4 acts to positively
regulate ovary differentiation. The gonads of XX em-
bryos appear to be masculinized, round shaped, unen-
capsulated, and associated with a fat body but do not
form testis cords or express Sertoli cell markers. These
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mice lack Miillerian ducts and retain Wolffian ducts,
have degenerating oocytes, and produce testosterone
(Vainio et al. 1999). A human patient resembling this
Wnt4 null mouse phenotype was shown to carry a
mutation in WNT4 (Biason-Lauber et al. 2004). Ectopic
over-expression of Wnt4 in mice resulted in disruption
of testis-specific vasculature (the coelomic vessel still
forms, but the structure and branching seem to be ab-
normal) and inhibition of testosterone synthesis in XY
embryos (Jordan et al. 2003). As the coelomic vessel
forms in XX embryos with WNT4 over-expression, it
suggests either, that WNT4 is not the only factor re-
quired to suppress male-specific vasculature or that the
testes express another factor that is able to compensate
for WNT4-mediated repression. Yao et al. (2004) pro-
pose that WNT4 regulates vascular boundaries and the
maintenance of germ cell survival in the ovary via
follistatin (Fst) as both Wnt4 and F’st null ovaries devel-
op the male-specific coelomic vessel and show a sub-
stantial apoptotic loss of germ cells at E16.5. Wnt4 —/—
ovaries show a loss of Bmp2 and Fst expression between
E12.5 and E14.5 and Fst —/— ovaries (Matzuk et al.
1995) have normal Bmp2 and Wnt4 expression within
that time frame. These results suggest that WNT4 acts
upstream of (and directly or indirectly activates) Bmp2
and Fst in the developing ovary (Yao et al. 2004). Wnt4
—/— XY embryos do not show complete sex reversal,
suggesting that inactivation of additional genes are re-
quired to disrupt the male-specific pathways and pro-
mote female ovarian development (Kim et al. 2006; Kim
and Capel 20006).

Studies of in vitro cultured XX gonads showed that
addition of exogenous FGF9 induces Sox9 and blocks
Wnt4 expression. In Wnt4 —/— XX gonads SOX9 and
FGF9 were found to be transiently up-regulated
between E11.5 and E12, indicating that WNT4 would
usually act as repressor of the male pathway by sup-
pressing Sox9 up-regulation. However, no mechanism
has been proposed to explain how this interaction
occurs (Kim et al. 2006).

Human patients with duplications of chromosome
1p, including WNT4, show a broad range of gonadal
anomalies including complete sex reversal (Jordan et
al. 2001).

The Wnt morphogens are known to signal through
binding to integral membrane-bound co-receptors LRP5
and LRP6 (low-density lipoprotein receptor-related pro-
tein 5 and 6). These co-receptors heterodimerize with
the integral membrane receptor Frizzled and thus

transfer the signal into the cytoplasm of the cell. Within
the cell, this leads to the dephosphorylation of cytoplas-
mic 3-catenin (via the glycogen synthase kinase 3 beta/
casein kinase 1 (GSK3-3/CK-1) complex), which results
in the stabilization and accumulation of 3-catenin in the
cytoplasm. At a certain threshold, dephosphorylated
[3-catenin enters the nucleus and interacts with the TCF/
LEF/BCLY (transcription factor/lymphoid enhancer-
binding factor/B-cell CLL/lymphoma 9 protein) complex
of transcription factors. This results in the transcriptional
activation of downstream target genes. In the absence of
Wnt signaling molecules, (3-catenin is phosphorylated
and subjected to proteosomal degradation, which results
in the repression of target genes (Bernard and Harley
2007). It seems likely that WNT4 uses this canonical
[3-catenin pathway in the developing gonad.

R-spondin 1

R-spondin 1 (RSPO1I) encodes a secreted factor that can
stabilize [3-catenin as part of the canonical Wnt-signaling
pathway and is expressed at high levels in mouse, as well
as human gonads around the critical time of gonad de-
velopment (mouse: (Parma et al. 2006; Chassot et al.
2008a; Smith et al. 2008), human: (Tomaselli et al.
2011)). Its role in ovarian development was first impli-
cated when a homozygous single nucleotide insertion
within the RSPO! coding sequence was identified in four
46,XX testicular DSD patients from a consanguineous
family. In addition, a homozygous exonic deletion was
identified in an unrelated sporadic case of 46,XX testic-
ular DSD (Parma et al. 2006). This study was the first to
show that inactivation of a single gene can cause female-
to-male sex reversal. A subsequent study identified a
homozygous splice-site mutation in a 46,XX ovotesticu-
lar DSD patient (Tomaselli et al. 2008). In vivo studies on
ovotesticular tissue from this patient showed no changes
in CTNNBI ([3-catenin) mRNA levels, but 3-catenin
protein levels were decreased. In addition, WNT4 mRNA
expression was significantly decreased compared to nor-
mal ovaries. These results suggest that RSPO! acts either
upstream of WNT4 or synergistically with WNT4 during
early ovarian development (Tomaselli et al. 2011). The
conserved expression pattern of RSPO! in other verte-
brates suggests that it is a critical gene in ovarian devel-
opment. XX Rspol knockout mice have masculinised
gonads, but do not show complete sex reversal
(Tomizuka et al. 2008). This phenotype is similar to
Wnt4 null mice, and provides further evidence, that these
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genes act within the same pathway to activate (3-catenin.
Whnt4, Fst, and Bmp2 were down-regulated in Rspol —/—
XX ovaries at E13.5, suggesting that RSPO1 acts as a
positive regulator of Wnt4 (Yao et al. 2004; Tomizuka et
al. 2008; Chassot et al. 2008b; Trautmann et al. 2008).
Chassot et al. (2008b) showed that in the absence of
Rspol, the canonical Wnt-signaling pathway was not
activated, and there was no increase in Wn#4 expression.
The phenotype of Rspol null ovaries could be rescued by
stabilized [3-catenin expression in ovarian somatic cells,
suggesting that 3-catenin acts downstream of Rspol to
block testis development in XX gonads (Chassot et al.
2008b).

In 46,XX female individuals, both WNT4 and
RSPOL1 are known to promote ovarian development
and repress testis development. In 46,XY DSD gonadal
dysgenesis females with a duplication of chromosome
1p, that includes both WNT4 and RSPOI, testis devel-
opment is suppressed and the ovarian pathway domi-
nates. WNT4 as well as RSPO1 perform their actions in
the somatic cell population of the ovary via (3-catenin
and the canonical Wnt-signaling pathway.

Conditional knockout of (3-catenin in ovarian so-
matic cells (the putative precursors of granulosa cells)
leads to ovarian defects similar to those of Rspo/ and
Wnt4 null mice (Manuylov et al. 2008). Ectopic over-
expression of a stabilized form of (3-catenin in mouse
somatic cells, leads to the disruption of testis develop-
ment in XY embryos and causes male-to-female sex
reversal (Maatouk et al. 2008). This suggests that
{3-catenin is a key ovarian and anti-testis signaling
molecule. As a consequence, 46,XY DSD gonadal
dysgenesis female patients, without any apparent
mutations in known testis-determining genes, could
be the result of stabilized (-catenin which then
undermines the role of SRY in the developing testis
by inhibiting its critical downstream target SOX9
(Maatouk et al. 2008).

Forkhead box L2

Forkhead box L2 (FOXL?2) encodes the forkhead tran-
scription factor 2, which is a member of the winged
helix/forkhead transcription factors (Hannenhalli and
Kaestner 2009). A role for FOXL2 in ovarian develop-
ment was first suggested with the identification of a
deletion near FOXL2 in the polled/intersex syndrome
(PIS) goat (Pailhoux et al. 2001). In humans, mutations
in FOXL?2 are associated with blepharophimosis/ptosis/
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epicanthus inversus syndrome (BPES), which is charac-
terized by eyelid defects with or without ovarian dys-
function, such as premature ovarian failure (POF)
(Crisponi et al. 2001). In addition, BPES patients have
been shown to carry a 7.4-kb deletion of a cis-regulatory
region, which is thought to interrupt the FOXL2 pro-
moter (D’Haene et al. 2009).

FoxI2 —/— mice develop normal testis during embryo-
genesis but show masculinization of the supporting cells
in the postnatal gonad (Ottolenghi et al. 2005). Fox/2 null
and Wnt4/FoxI2 double knockout ovaries have reduced
Fst and Bmp?2 expression at E13.5. In Wnt4 —/— ovaries,
the expression of Fist is back to wild-type levels at birth
(postnatal day 0; P0), whereas the expression of Fist
remains decreased in both, the Fox/2 —/— and Wnt4 —/—,
FoxI2 —/— double knockout ovaries. Bmp?2 expression
remains significantly reduced in all three mouse strains.
In vitro studies show that FOXL2 and BMP2 up-regulate
Fist expression. Exogenous BMP2 increased Fist expres-
sion in ex vivo studies on fetal mouse gonads, but this
was counteracted by the BMP antagonist Noggin
(Kashimada et al. 2011). Together this data suggest
that FOXL2 cooperates with BMP2 to ensure correct
expression of Fst in the developing ovary, whereas
WNT4 is necessary for the initiation, but not the
maintenance of Fst expression.

Fox[2 —/—, Wnt4 —/— double knockout XX animals
show testis differentiation and the development of male
germ cells (Ottolenghi et al. 2007). Surprisingly, condi-
tional knockout of Fox/2 in the adult mouse ovary
results in trans-differentiation into testis (Uhlenhaut et
al. 2009). The ovarian structures become more testis-
like, with tubular features and Sertoli-like cells. Gene
expression was investigated using in situ hybridization
and showed that some male-specific genes were
up-regulated, including Sox9. These results indicate that
FoxiI2 has a role in maintaining the ovary even during
adulthood, presumably by suppressing the pro-testis
action of Sox9/Fgf9. There is experimental evidence that
this role is carried out together with ESR1/ESR2 (estro-
gen receptor 1 and 2) by binding to sequences within the
TESCO region and thus controlling Sox9 expression
(Bagheri-Fam et al. 2010). This study may be clinically
relevant in humans, as somatic mutations in FOXL2
could be the underlying cause of ovarian dysfunction
in adult females.

As previously mentioned (see DMRTI section),
Matson et al. (2011) have recently shown that loss of
Dmrtl in mouse leads to the upregulation of Foxi2,
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theca cell formation, estrogen production, and eventu-
ally feminized germ cells.

Identifying novel genes in the sex determining
pathway

We are currently still unable to determine the causative
mutation in a relatively high percentage of DSD
patients. This together with the recent discovery of
several new genes in patients with previously unex-
plained DSD lend support to the idea that both, the
genes involved in gonad development, as well as the
etiology of DSD, are still incompletely understood.
Mutations in regulatory elements of known DSD/gonad
development genes, as well as novel gonad-determining
genes, are likely to be responsible for a significant
percentage of yet unexplained DSD cases.

Gene expression profiling, using microarrays

Over the years, several strategies were used to identify
novel genes involved in gonad development. One
approach was the analysis of differentially expressed
genes using microarrays. Several studies performed
these types of analyses using mouse (Beverdam and
Koopman 2006) and human (Houmard et al. 2009)
gonadal tissues. While the lists of genes that show
sexually dimorphic expression patterns identified
many of the known gonad genes (although rarely
SRY) this approach has not lead to the discovery of
any novel genes involved in sex determination and the
etiology of DSD.

CNV arrays—genomic rearrangements associated
with DSD

As previously mentioned, CNV arrays have been
used over the last couple of years to screen for and
identify copy number variations in patients affected
by DSD. Throughout this review, we mentioned a
number of cases where this approach lead to the
identification of the causative mutation in DSD
patients. Nevertheless, there are still various genomic
rearrangements associated with human DSD pheno-
types that have been reported but where no causative
gene could be identified.

A duplication of 1p has been shown to be associated
with 46,XY DSD gonadal dysgenesis, although the

gene(s) causing the DSD phenotype are still unknown
(Wieacker and Volleth 2007). Several deletions of ter-
minal 10q have been associated with 46,XY DSD
gonadal dysgenesis together with other somatic anoma-
lies. The gene responsible for this DSD phenotype is
still unknown, but EMX2 has been suggested to be a
likely candidate (Ogata et al. 2000). Deletions and
duplications of chromosome 22q11.2 have been identi-
fied in three cases of 46,XX testicular DSD (which were
SRY-negative) (Aleck et al. 1999; Erickson et al. 2003;
Seeherunvong et al. 2004). The causative gene(s)
haven't been identified, but this region contains the
MAPK]1 gene, which appears to play an important role
in proper testis development. Deletions on chromo-
somes 11pl13 and 9p24 were identified using CGH
arrays and were found to be associated with syndromic
forms of 46,XY DSD (Le Caignec et al. 2007; Vinci et
al. 2007). Other CGH arrays revealed a novel recurrent
15g24 microdeletion syndrome with the deletions being
between 1.7 and 3.9 Mb in size. The syndrome is
characterized, amongst other features, by genital
anomalies in male, including micropenis and hypospa-
dias (Sharp et al. 2007; Andrieux et al. 2009), but the
causative genes have not been identified.

SRY-related HMG-box gene 3—an unexpected role in
46,XX DSD

By far, the most successful approach to the identifica-
tion and functional analysis of gonad genes used a
combination of human DSD patient studies and mouse
models. The recently published example of SOX3
highlights this once more.

SOX3 is another member of the SOX gene family of
transcription factors. SOX3 shows near sequence iden-
tity to SRY so it has been proposed that the Y-linked
SRY evolved from the X-linked SOX3 gene (Foster et
al. 1992; Graves 2001). This process occurred as the
mammalian sex chromosomes evolved and differenti-
ated. SOX3 is not expressed in the developing gonads
in either sex, and loss-of-function mutations in SOX3
do not affect sex determination in humans or mice.
However, a transgenic mouse line over-expressing
Sox3 showed ectopic expression of this gene in the
bi-potential gonad. XX embryos showed female-to-
male sex reversal, and further analyses suggest that
SOX3 induced testis differentiation by up-regulating
Sox9 expression in these animals through a similar
mechanism to SRY (Sutton et al. 2011). The same
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study identified three 46,XX testicular DSD patients
with genomic rearrangements: two duplications in-
cluding SOX3 and one deletion upstream of SOX3, in
the putative SOX3 regulatory region. It was hypothe-
sized that these rearrangements caused ectopic expres-
sion of SOX3 in the embryonic gonad, where it was
able to substitute for the absence of SRY and drive
testis development. Together, these findings suggest
that SOX3 and SRY are functionally interchangeable
in testis determination and lend further support to the
hypothesis that SRY evolved from SOX3.

Conclusion and future directions of DSD research

Since the discovery of SRY in 1990, we have signifi-
cantly increased our knowledge of genes and gene net-
works involved in gonad development and the etiology
of DSD. Nevertheless, still unexplained DSD cases, as
well as gaps in the network of testis and ovary develop-
ment show us that there is still much to understand.
With the development of more powerful algorithms,
comparative genomic hybridization (CGH)/SNP chip
arrays have the potential to detect subtle rearrangements
of genes involved in gonad determination and differen-
tiation. These two arrays-based methods allow the de-
tection of rearrangements in putative regulatory
elements, which, if mutated, may cause DSD. The use
of microarrays to detect CNVs has had some success in
identifying causative mutations in unexplained cases of
DSD. However, this technique is limited to the detection
of large rearrangements and may miss smaller genomic
rearrangements or point mutations. Familial cases of
both 46,XY DSD and 46,XX DSD often show a broad
range of phenotypes in affected individuals within the
same family, including instances, where the underlying
genetic mutation has been identified (Temel et al. 2007;
Lourenco et al. 2009). This phenotypic variability may
be explained by additional mutations in other genes up
and downstream of the target gene, which may interact
or influence its activity. This has been shown in a
familial case of hypogonadotropic hypogonadism,
where a compound heterozygous GNRHR (gonadotro-
pin-releasing hormone receptor) and a heterozygous
FGFRI mutation were identified (Pitteloud et al.
2007). In addition, almost all cases of non-syndromic
ovotesticular DSD remain unexplained although there
have been considerable genetic analyses of candidate
genes (Temel et al. 2007; McElreavey et al. 1992).
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Although mutations in the androgen receptor (4R) gene
are the most common genetic cause of 46,XY DSD,
pathogenic mutations in 46,XY under-androgenized
patients who are suspected to have mutations in this
gene are only found in about 50% of affected individu-
als (Audi et al. 2010). The analyses of presumably
multifactoral DSD phenotypes, such as hypospadias or
cryptorchidism, have rarely identified the genetic cause,
although epidemiological studies give clear evidence of
a major genetic component in these conditions (Fukami
et al. 2006; Schnack et al. 2008; Kohler et al. 2009).
Next generation sequencing (NGS) or massively paral-
lel sequencing approaches (MPS), such as whole
exome, single chromosome, or targeted sequencing of
sets of candidate genes (together referred to as targeted
sequencing from this point), as well as whole genome
sequencing, should provide substantially higher resolu-
tion for mutation detection and should assist in resolving
unexplained cases of DSD. Whole genome sequencing,
which combines the advantages of all other methods, is
a powerful tool to detect the range of genomic muta-
tions, including SNPs and all size ranges of genomic re-
arrangements and CNVs, in coding as well as non-
coding and putative regulatory regions, in a non-biased
manner. Currently, this method is still costly and
requires immense bioinformatic analysis. However, as
the cost of whole genome sequencing continues to de-
crease and as bioinformatic analysis improves, this will
eventually become the method of choice for many
researchers. In the interim, targeted sequencing
approaches and whole exome sequencing offer a great
opportunity to gain new insights into key genes required
for gonad development with a lower level of bioinfor-
matic complexity.

Despite the differences between human and mouse
and the improvements in the techniques and bioinfor-
matics, comparative genomics will still play a key role.
Given the increasing resolution of the new techniques
and the increasing power of bioinformatics, we are
likely to identify an increasing number of new genes,
which are mutated or rearranged in DSD patients. Com-
parative genetics and mouse models will be essential for
establishing the biological function of mutations that do
not lie within known DSD genes and crucial in verifying
novel genes with a role in gonad development.
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