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Abstract In many mouse models of skin cancer, only a few tumors typically form even though

many cells competent for tumorigenesis receive the same oncogenic stimuli. These observations

suggest an active selection process for tumor-initiating cells. Here, we use quantitative mRNA- and

miR-Seq to determine the impact of HrasG12V on the transcriptome of keratinocytes. We discover that

microRNA-203 is downregulated by HrasG12V. Using a knockout mouse model, we demonstrate that

loss of microRNA-203 promotes selection and expansion of tumor-initiating cells. Conversely,

restoration of microRNA-203 using an inducible model potently inhibits proliferation of these cells.

We comprehensively identify microRNA-203 targets required for Hras-initiated tumorigenesis. These

targets include critical regulators of the Ras pathway and essential genes required for cell division.

This study establishes a role for the loss of microRNA-203 in promoting selection and expansion of

Hras mutated cells and identifies a mechanism through which microRNA-203 antagonizes Hras-

mediated tumorigenesis.

DOI: 10.7554/eLife.07004.001

Introduction
Recent efforts in comprehensively sequencing human cancer genomes have confirmed ∼140 protein-

coding genes that, when mutated, can drive tumorigenesis (Vogelstein et al., 2013). When genome

sequencing data were utilized to construct the history of cancer cells in breast cancer, it was revealed

that a considerable amount of ‘molecular time’ exists between the common ancestors that harbor the

great majority of driver mutations and the phenotypically identified cancer cells that compose the bulk

of the tumor (Nik-Zainal et al., 2012). In support of these observations, lineage tracing experiments

conducted in genetically engineered mouse models revealed that only a few clones give rise to tumors

whereas a vast majority of mutated cells are unable to sustain tumorigenesis (Driessens et al., 2012;

Schepers et al., 2012). These results suggest that even after the acquisition of key driver mutations in

the nascent cancer cells, these cells must still undergo continuous evolution and likely clonal selection

before developing into clinically apparent tumors. To begin to understand the molecular basis

underlying such selection, we examined papilloma formation driven by oncogenic Hras in the skin,

a well-characterized model where Hras has been shown to initiate the formation of tumors that

clonally evolve (Brown et al., 1986; Driessens et al., 2012; Beck and Blanpain, 2013). Oncogenic

Ras mutations are some of the most frequently detected driver mutations in human cancer. Among

the three Ras genes (H-, K-, and N-ras), Hras is commonly mutated in tumors originated from stratified
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epithelial tissues including squamous cell carcinoma in the skin, head, and neck cancer as well as

bladder cancer (Bos, 1989; Agrawal et al., 2011; Stransky et al., 2011). Experimental and genomic

sequencing studies have revealed that the vast majority of Ras mutations are missense, point

mutations at amino acid residues glycine 12 (G12), glycine 13 (G13), or glutamine 61 (Q61)

(Bos, 1989). Structural and biochemical studies have further confirmed that all of these mutations

generally interfere with the GTP binding pocket and compromise the GTPase activity of Ras proteins.

In turn, these mutations lead to uncontrolled activation of downstream effectors including Raf/MEK/

ERK and PI(3)K pathways, resulting in sustained cell survival and proliferation observed in human

cancers. Because of the prominent role of Rasmutations in human cancer, extensive efforts have been

devoted to uncover and subsequently target downstream pathways that are regulated by Ras

mutations. However, the immediate impact of Ras mutations on the transcriptome, in particular, with

regards to microRNAs (miRNAs) remains unclear.

miRNAs are a class of small, noncoding RNA species that are involved in virtually all biological

processes examined in mammals including mouse and human. These regulatory RNA molecules

function by repressing the protein producing ability of mRNA targets through destabilization of

mRNAs and inhibition of translation (Bartel, 2009). miRNAs typically target a large number of mRNAs

in a dosage- and cell context-dependent manner (Mukherji et al., 2011). As prominent proto-

oncogenes, Ras mutations have long been recognized to interact with the miRNA pathway. Indeed,

Hras, Kras, and Nras all harbor multiple binding sites for the let-7 miRNA, a founding member of

miRNAs, in their 3′UTRs (Johnson et al., 2005). Additionally, impaired miRNA biogenesis in the form

of Dicer1 disruption has been shown to be a tumor-suppressing mechanism for the development of

Kras-induced lung cancer in a mouse model (Kumar et al., 2007). A number of individual miRNAs

eLife digest DNA mutations occur and accumulate during an individual’s lifetime. Often these

changes are harmless. But some mutations—called driver mutations—can trigger the formation of

tumors. This is often because these mutations allow the cells to grow faster than normal cells.

Mutations in genes in the Ras gene family are among the most common driver mutations found in

human cancers. These common mutations lead to the uncontrolled activation of genes that are

normally tightly controlled, which in turn allows the cells to divide more and live for longer: these are

two key features of cancer cells.

So, how are Ras genes and the genes that they control regulated to prevent such dangerous over

activation? One mechanism rests on binding sites in their messenger RNA sequence that are

recognized by smaller RNA molecules called microRNAs. RNA molecules are created when genes are

transcribed. Some RNAs, called messenger RNAs, are then decoded to create proteins. Many other

RNAs, including microRNAs, do not code for proteins, but instead bind to many messenger RNA

targets, and repress their ability to be decoded into proteins. Three genes, called Hras, Kras, and

Nras, are regulated in this way by numerous microRNAs, which together act to dampen the normal

activities of these genes.

Riemondy et al. investigate how a cancer-promoting mutation in the Hras gene affects the

activities of microRNAs in mouse skin cells in culture. By measuring RNA levels, the experiments

reveal that skin cells carrying this mutation produce significantly lower levels of what is normally the

most highly produced microRNA in the skin. This microRNA, called microRNA-203, acts to limit the

proliferation of skin cells when these cells are dividing rapidly. When the gene encoding microRNA-

203 was deleted in mice, the skin cells proliferated more. These mice also developed more skin

tumors than normal mice when they were exposed to cancer-causing chemicals. When the gene for

microRNA-203 was added into skin cells carrying the Hrasmutation and then activated, the cells both

divided less and, as a results, grew less. This indicates that microRNA-203 could prevent cancerous

cells from expanding in number, a key event in the initiation of tumors.

Riemondy et al. also used a variety of approaches to identify the molecules targeted by

microRNA-203 in the skin, and reveal that it targets multiple signaling pathways, including

components of the Ras pathway, to suppress cell proliferation. Together, these findings highlight

microRNA-203 as a potential source of new treatments to prevent or slow tumor growth in humans.

DOI: 10.7554/eLife.07004.002
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were also found to function as modifiers for Ras-induced tumorigenesis that include miR-21, -29, and

miR-17∼92 as tumor-promoting miRNAs and miR-34, -15/16, and miR-143/145 as tumor-suppressing

miRNAs (Kasinski and Slack, 2010; Iorio and Croce, 2012; Mendell and Olson, 2012). Collectively,

these seminal studies demonstrate unequivocally that the miRNA pathway and individual miRNAs play

important roles in Ras-induced tumorigenesis. However, it is unclear how Ras mutations, usually the

tumor-initiating drivers, directly alter the landscape of miRNA expression during tumorigenesis.

Importantly, it is also unknown whether the changes in miRNA expression play a role in the selection

of oncogenic Ras-transformed cells during tumor initiation. Finally, the lack of a comprehensive survey

of high-confidence miRNA targets that may play a role downstream of Ras mutations hinders our

mechanistic understanding and limits the potential to develop miRNA-based therapeutics.

In this study, we utilized our recently improved quantitative miR-Seq techniques to examine the

impact of an oncogenic Hras mutation (HrasG12V) on both mRNA and miRNA expression. We

discovered thatmiR-203, the most highly expressed miRNA in the skin (Yi et al., 2008; Jackson et al.,

2013), is downregulated by HrasG12V. Using both knockout (KO) and inducible models, we provide

evidence for an important role of miR-203 in restricting expansion of oncogenic Hras-transformed

cells in vitro and in vivo. We comprehensively surveyed skin-specific targets of miR-203 and identified

a number of novel targets that have important implications for Hras-mediated tumorigenesis. Our

results suggest that miR-203 plays a tumor-suppressing role in inhibiting selection and expansion of

tumor-initiating cells early in tumor development.

Results

HrasG12V profoundly deregulates the mRNA and miRNA transcriptome in
the skin
Oncogenic mutation of the Hras gene is one of the initiating drivers in the development of benign

papillomas and malignant squamous cell carcinomas in murine skin chemical carcinogenesis. However,

the molecular consequences defining the cellular changes that accompany expansion of oncogenic

Hras-transformed keratinocytes to initiate papillomas remain elusive. We first investigated the

consequences of HrasG12V activation on the mRNA transcriptome using a modified form of PolyA+
RNA-Seq, known as 3P-Seq, or 3seq (Figure 1A–C). Compared to traditional RNA-Seq, 3Seq allows

both quantification of mRNA transcripts and detection of changes in alternative 3′ UTR formation

(Wang et al., 2013). To examine the immediate impact of HrasG12V on primary skin cells, we used

primary keratinocytes isolated from newborn skin and performed 3Seq after HrasG12V transduction.

We did not observe widespread shortening or alternative formation of 3′UTRs, which are often

ascribed to oncogenic transformation when comparing tumor cell lines to normal cells (data not

shown). This is similar to our previous observation that alternative 3′UTR usage is infrequent within the

skin lineages (Wang et al., 2013). Over 1100 transcripts were differently expressed (two-fold change

and FDR <0.05) in keratinocytes expressing HrasG12V, compared to the control (Figure 1C and

Figure 1—source data 1). Gene ontology functional analysis revealed profound deregulation in three

core processes by HrasG12V: activation of cellular migration, upregulation of pro-angiogenic pathways,

and suppression of the terminal differentiation program (Figure 1D). All of these three processes are

identified as hallmarks of human cancer (Hanahan and Weinberg, 2011). The observed widespread

changes in the transcriptome also endorse the driver role of HrasG12V in skin tumorigenesis.

Importantly, transcripts upregulated by HrasG12V in our primary keratinocytes strongly and significantly

overlapped with the putative cancer stem cell signatures obtained from murine squamous cell

carcinoma (SCC) models (Schober and Fuchs, 2011). In addition, transcripts upregulated by HrasG12V

significantly overlapped with transcripts known to be targets of the c-Fos transcription factor in

a genetic model of SCC (Durchdewald et al., 2008). Furthermore, known core components of the

Hras signaling pathway were also among the differentially detected genes (Bild et al., 2006)

(Figure 1E). These transcriptome data indicate that we have captured the initiating changes induced

by oncogenic Hras in the keratinocytes.

To define the impact of the oncogenic Hras on the landscape of miRNA, we applied our recently

developed, quantitative miRNA-Seq (Zhang et al., 2013) to HrasG12V-transformed keratinocytes.

Overall, we detected 15 differentially expressed miRNAs upon HrasG12V expression (FDR <0.05, two-
fold change) (Figure 1F–H). Two key patterns emerged in these profiles. First, the epithelial tissue-

specific miRNAs, miR-203 and miR-205, which represent the most abundant miRNAs expressed in
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Figure 1. Genome-wide profiling of the oncogenic HrasG12V-transformed miRNA and mRNA transcriptome in primary keratinocytes. (A) Schematic of

experimental approach to identify deregulated mRNA and miRNA networks driven by oncogenic HrasG12V using small-RNA Seq and 3Seq. The 3seq

library preparation allows quantitative definition of poly-A+ RNA 3′ends and expression levels. (B) 3Seq reproducibly detects mRNA expression levels over

4 orders of magnitude. Pearson correlation coefficient displayed (C) unsupervised hierarchical clustering of log-transformed mean-centered mRNA

Figure 1. continued on next page
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murine skin and primary keratinocytes were strongly suppressed by HrasG12V. Additionally, members

of the abundantly expressed, miR-23/24/27 miRNA cluster were also downregulated by HrasG12V.

Secondly, miR-21 was strongly induced becoming the most highly expressed miRNA, consistent with

its direct activation by oncogenic Ras reported in other systems (Talotta et al., 2009). The

upregulation of miR-21 is also consistent with its well-appreciated oncogenic function in skin cancer

(Darido et al., 2011). miR-146 was also induced by HrasG12V. However, this miRNA is expressed 2-

orders of magnitude lower than miR-21, suggesting that its upregulation may have limited

contribution to Hras-initiated tumorigenesis at this early stage.

We further measured mature miR-21, miR-203, and miR-205 RNAs by qPCR. In support of the

quantitative performance of our miR-Seq, the differential expression of all three miRNAs measured by

qPCR was nearly identical to the quantification by our miR-Seq (Figure 2A,B). To initially probe the

mechanism through which HRASG12V suppresses miR-203 expression, we examined the level of miR-

203 primary transcripts. We previously characterized the transcribed genomic region of miR-203

including the promoter region and transcription start site (Jackson et al., 2013). Because the primary

transcript of miR-203 harbors a polyadenylation [Poly(A)] signal and generates a Poly(A) tail, we

directly quantified the abundance of the primary transcripts by counting the 3′end reads of the

primary miRNA obtained by 3seq (Figure 2C). This result was further confirmed by qPCR

measurement specific to the pri-miR-203 (Figure 2D). The degree of downregulation for both

mature and primary miR-203 transcripts was similar as judged by these two independent assays.

Collectively, we conclude that the repression of miR-203 by HrasG12V is most likely mediated by

suppressing the production of primary miR-203 transcripts at an early stage of oncogenic cellular

transformation.

miR-203 silencing is an early event in mouse and human SCC
Our data revealed the early silencing of miR-203 by oncogenic Hras in an in vitro model. We further

investigated miR-203 expression with in situ hybridization during skin tumorigenesis in vivo. In classic

chemical carcinogenesis models initiated by DMBA/TPA treatment of mouse skin, Hras is

preferentially mutated, which compromises the GTPase activity and results in constitutive Hras

activation. Mutating Hras at Q61 leads to papilloma development and infrequent malignant

transformation to SCCs (Abel et al., 2009). We first examined miR-203 expression in benign

papillomas. Consistent with our in vitro results, miR-203 expression was absent from epithelial

compartments adjacent to tumor stroma, the region where putative cancer stem cells reside.

Although we also observed moderately expressed miR-203 in tumor regions with evidence of cellular

differentiation (keratin pearls and large differentiated morphology), the levels of miR-203 was

considerably lower in these regions compared to the suprabasal cells of adjacent normal skin, where

miR-203 is normally expressed (Figure 2E). Overall, miR-203 expression levels were strongly reduced

in tumor tissues compared to adjacent epidermal regions. In an independent mouse model of SCC,

we also found that miR-203 expression was gradually lost in a KrasG12D/Smad4cKO model where skin

tumors progressed to invasive SCC through serial passages of tumors (White et al., 2013)

(Figure 2F). Taken together, these results demonstrate that miR-203 is significantly downregulated at

both early and late stages of papilloma and SCC formation in mouse models.

To evaluate the relevance of the loss of miR-203 in human skin cancer, we examined 9 tumor

samples obtained from patients with the early, middle, and late stages of skin cancer. In these human

skin SCC samples, miR-203 was already downregulated at the onset of tumorigenesis and

Figure 1. Continued

expression levels for all transcripts deregulated twofold by oncogenic HrasG12V (n = 2 libraries per condition) (D) Gene Ontology analysis of transcripts up

and downregulated by HrasG12V (twofold change FDR <0.05) indicates enrichment for migratory and angiogenic processes, and suppression of

keratinocyte differentiation. (E) GSEA analysis of selected genesets relevant to skin carcinogenesis. (F) Unsupervised hierarchical clustering of log-

transformed mean-centered miRNA expression levels for all transcripts deregulated twofold by oncogenic HrasG12V (n = 2 libraries per condition) (G, H)

Abundant miRNAs such as miR-203, miR-205, and miR-21 are strongly deregulated by oncogenic Ras.

DOI: 10.7554/eLife.07004.003

The following source data is available for figure 1:

Source data 1. Log2 fold changes for transcripts up or down regulated twofold with FDR <0.05 in HrasG12V-transformed keratinocytes.

DOI: 10.7554/eLife.07004.004
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Figure 2. miR-203 is strongly suppressed in mouse and human SCCs. (A, B) qPCR and small-RNA-Seq independently validate downregulation of miR-203

and upregulation of miR-21 driven by oncogenic HrasG12V (n = 3 biological rep. qPCR, n = 2 small-RNA-Seq, mean ± SEM displayed, *p < 0.05, Student’s

t-test two-sided). (C) Gene track and quantification the 3′end of themiR-203 primary transcript based on 3Seq. (D)miR-203 primary transcript detection by

qPCR (n = 3 biological replicates, Mean ± SEM displayed, *p < 0.05, ns = non-significant, Student’s t-test two-sided). (E) miR-203 is downregulated in

DMBA/TPA produced papillomas compared to normal adjacent tissue. Epi = epidermis, Der = dermis, T = tumor, and S = stroma. The black lines denote

the epidermal/dermal and tumor/stroma boundary (F) miR-203 is downregulated in malignant SCCs derived from KrasG12D/Smad4cKO and passaged in

immunocompromised mice. (G–O) Reduced miR-203 expression is correlated with increasing malignancy in human skin SCC cancers. Panels G, J, M were

taken from regions with more histologically normal regions to demonstrate successful miR-203 hybridization. (P) miRNA-Seq quantification from patient

matched normal and tumor tissue obtained from the TCGA consortium data (bar indicates mean value, Student’s t-test two-sided). Scale bar = 50 μm.

DOI: 10.7554/eLife.07004.005
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progressively lost during the course of tumor progression, similar to the pattern observed in the

mouse models. In the poorly differentiated SCC samples, the miR-203 signal was completely absent,

yet readily detectable in surrounding hyperplastic or normal epidermal regions (Figure 2G–O).

In addition, we mined publically available data sets from The Cancer Genome Atlas (TCGA) and

detected a significant reduction in miR-203 and an elevation of miR-21 in head and neck SCC samples

compared to patient-matched normal tissues (Figure 2P). Altogether, these results corroborate our

observations in mouse models and validate the strong correlation between the loss of miR-203 and

the development of skin cancer at multiple stages of tumorigenesis. These expression analyses

suggest that the loss of miR-203 coincides with the tumor-initiating events and miR-203 might

function as a tumor-suppressing mechanism in skin cancer.

Genetic deletion of miR-203 impacts early epidermal development in
mouse
We then generated a conditional KO mouse model to assess the function of miR-203 in murine skin

development and carcinogenesis in vivo. We have characterized the genomic locus of miR-203 and

determined that miR-203 is located in an intergenic region, 3.3 kbp downstream from the Asp gene

and 15.3 kbp upstream of the Kif26a gene (Figure 3—figure supplement 1). Two loxP sites were

inserted to flank themiR-203 hairpin (Figure 3A).miR-203 was deleted by first matingmiR-203fl/fl mice

with Actb-Flpe mice to remove the Neo cassette, followed by breeding with EIIa-Cre or Krt14-Cre

mice, resulting in complete miR-203 loss from all tissues or only from skin tissues, respectively. In both

cases, ablation of miR-203 was confirmed by qPCR on isolated epidermis and in situ hybridization

(Figure 3B,C). We previously demonstrated that expression ofmiR-203 was largely restricted to stratified

epithelial tissues. Within the skin, the differentiated skin lineages express miR-203 ∼10-fold higher than

the stem/progenitor lineages. Consistent with this observation, there are no discernible differences

between constitutive miR-203 null (miR-203−/−) mice and skin-specific cKO (Krt14-Cre/miR-203fl/fl) mice.

Both strains were born at the expected Mendelian ratio. They also showed no signs of gross

developmental defects as adults (Figure 3D). For all subsequent studies, we used miR-203−/−, which was

maintained in the C57BL/6 background.

miR-203 is highly expressed primarily in stratified epithelial tissues, such as the epidermis, tongue,

esophagus, and cervix, yet poorly expressed or absent in other tissues such as the small intestine,

bladder, lung, kidney, liver, or brain (Figure 3—figure supplement 2). Because miR-203 begins to be

expressed by E13 when the epidermis begins to stratify, we examined the proliferation rate and

thickness of embryonic skin from E16 to P4. At E16, we observed a mild increase in cell proliferation in

the KO, as measured by BrdU incorporation (Figure 3E,F). Although the difference in BrdU

incorporation did not achieve statistical significance (p = 0.07), the thickness of the KO epidermis was

significantly increased, compared to WT littermates (p = 0.03). Interestingly, the increase in epidermal

thickness was most prominent at early stages (E16 and E17) and waned as skin development

progressed (P4) (Figure 3G). At P4, miR-203−/− mice displayed normal histological development of

the epidermis and hair follicles, and the difference in proliferation and epidermal thickness between

KO and WT became indistinguishable (Figure 3G). In addition, we found no evidence of perturbed

differentiation in miR-203−/− mice based upon analysis of early and late epidermal differentiation

markers, Keratin 1 and Loricrin, for the spinous and granular layers, respectively (Figure 3H,I).

Together, these results provide evidence that miR-203 limits cell division when the proliferation rate is

high during early embryonic skin development but not at later stages when the proliferation rate

wanes.

We noted that the impact of miR-203 loss was correlated with the rate of cell proliferation. To

further test whether miR-203 functions to restrict the expansion of highly proliferative cells, we

investigated the roles for miR-203 in regulation of primary and established keratinocyte cell lines,

respectively. We observed ∼two-fold higher colony-forming capacity of miR-203−/− keratinocytes,

compared to the WT controls (Figure 3J). To further confirm the ability of miR-203 to suppress cell

proliferation cell-autonomously, we generated a miR-203fl/fl keratinocyte cell line. By treating these

cells with an adenoviral vector to express Cre (Ad-Cre), we determined that within 48 hr of Ad-Cre

exposure miR-203 was completely depleted (<1% remaining as measured by qPCR). We again

observed a similar, ∼two-fold higher colony-forming capacity by the Ad-Cre-treated miR-203fl/fl cells

compared to the Ad-GFP-treated control cells (Figure 3K). In both cases, although we detected some
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Figure 3. Loss of miR-203 modestly impairs embryonic epidermal development. (A) Schematic of miR-203 conditional allele generation and knockout

strategy. (B) Validation of miR-203 ablation by qPCR from isolated epidermal samples (n = 3 biological replicates, * p < 0.05, ns = non-significant,

Student’s t-test two-sided). (C) Validation of miR-203 ablation within the epidermis by in situ hybridization (Scale bar = 50 μm). (D) miR-203 knockout mice

are visibly indistinguishable from wild-type counterparts. (E–G) miR-203 ablation results in mild epidermal hyperplasia during embryonic development.

Figure 3. continued on next page
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slightly larger clones with more cells formed by themiR-203 null keratinocytes, the biggest differences

were the significantly increased number of clones formed by the miR-203 null cells. These results

suggest thatmiR-203 limits the clonogenicity of normal keratinocytes. WhenmiR-203 is deleted, more

cells are likely to become clonogenic.

Loss of miR-203 enhances chemical carcinogenesis in the skin
We determined that the loss of miR-203 is an early event in the initiation and development of both

mouse and human skin SCCs. Furthermore, genetic deletion of miR-203 confers ∼two-fold higher

colony-forming ability on primary keratinocytes. Because oncogenic Hras is a potent driver for

tumorigenesis in the skin and our miR-seq data revealed a rapid and strong repression of miR-203 by

HrasG12V, these observations prompted us to investigate whether the loss of miR-203 plays a role in

skin carcinogenesis. We subjected WT and miR-203 null mice to two-stage chemical DMBA/TPA

carcinogenesis (Figure 4A). The chemical carcinogenesis experiments were terminated at week 21

when tumor burden had reached a maximum. Because our mice were generated in the C57BL/6

background and these mice are known to be resistant to two-stage chemical carcinogenesis

(Abel et al., 2009), all tumors generated in our mice were papillomas with no evidence for malignant

conversion to squamous cell carcinomas during the time frame of our study. Nevertheless, we

examined the temporal and numeric characteristics of tumor formation in our mice for the role ofmiR-

203 in tumor initiation. During the course of carcinogenesis, we observed a slightly earlier tumor

formation pattern on the backskin of miR-203 null animals (Figure 4B). Furthermore, miR-203 null

animals developed ∼2.5-fold more tumors, when compared to WT control animals (Figure 4B).

Measurement of tumor sizes at week 17 showed no statistically significant difference in tumor sizes

between genotypes although miR-203 null animals were more susceptible to tumor formation

(Figure 4C). These results suggest that loss of miR-203 increases the number of tumor-initiating cells

but does not significantly alter the type of tumors for example, conferring tumors with more

aggressive phenotypes.

Hematoxylin and Eosin staining revealed that the papillomas produced had similar morphology,

displaying exophytic lesions with evidence for squamous differentiation (Figure 4D,E). Assessment of

proliferation (Ki67), differentiation markers (Krt1, Lor) revealed similar dynamics between miR-203+/+

and miR-203−/− tumors (Figure 4F). To further probe the mechanistic differences between miR-203

WT and KO tumors, we assessed the mutation spectra of these tumors and found that they possess

the canonical HrasQ61L mutation at similar frequencies, 80% and 85.7% for WT and KO tumors,

respectively (Figure 4—figure supplement 1). Taken together, these results provide direct evidence

for miR-203’s tumor suppressing roles at the stage of tumor initiation in the classic DMBA/TPA

tumorigenic model.

miR-203 represses clonal selection of oncogenic Hras-transformed cells
in vitro
To further probe miR-203’s role in clonal selection, we infected miR-203 WT and null primary

keratinocytes with pBabe-HrasG12V. At the passage 1, the loss of miR-203 led to ∼40% increase in

Figure 3. Continued

(n = 3 E16, n = 4 E17, and n = 3 p4 animals, p-value provided in figure, Student’s t-test one-sided). (H) Representative hematotoxylin and eosin image from

p4.5 animals, demonstrating restored normal skin morphology in neonatal animals. (Scale bars = 50 μm for inset and 100 μm for main images) (I) Epidermal

differentiation is not compromised by loss of miR-203. (Scale bars = 50 μm) (J) miR-203−/− primary keratinocytes are more clonogenic than wild-type

counterparts (representative results from 3 experiments, *p < 0.05, Student’s t-test two-sided). (K) Conditional ablation of miR-203 from passaged

miR-203fl/fl keratinocytes results in higher clonogenicity (representative results from n = 3 independent experiments, mean ± standard deviation displayed,

*p < 0.05, Student’s t-test, two-sided).

DOI: 10.7554/eLife.07004.006

The following figure supplements are available for figure 3:

Figure supplement 1. Generation of a miR-203 conditional knockout mouse.

DOI: 10.7554/eLife.07004.007

Figure supplement 2. miR-203 expression in diverse mouse tissues.

DOI: 10.7554/eLife.07004.008
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Figure 4. Loss of miR-203 sensitizes mice to DMBA/TPA skin carcinogenesis. (A) Representative images of tumors that were formed in the skin of WT and

miR-203 null mice treated with DMBA/TPA. (B) miR-203−/− mice have a larger tumor burden than miR-203+/+ counterparts (n = 6 and 7 miR-203+/+ and

miR-203−/− animals respectively, mean ± SEM displayed, £ = p < 0.05, Whitney–Mann U-test one-sided). (C) miR-203−/− tumor size distribution is similar to

wild-type animals (ns = non-significant, Student’s t-test two sided, median displayed as bar). (D, E) miR-203+/+ and miR-203−/− papillomas display similar

morphologies and histology. (F) Proliferation and differentiation dynamics are similar between miR-203+/+ and miR-203−/− tumors. (Scale bars = 50 μm).

DOI: 10.7554/eLife.07004.009

The following figure supplement is available for figure 4:

Figure supplement 1. The HrasQ61L mutation is common in both miR-203+/+ and miR-203−/− tumors.

DOI: 10.7554/eLife.07004.010
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colony-forming capacity immediately after the initial plating (Figure 5A). When we passaged the

HrasG12V transduced cells, we began to observe reduced numbers of colonies that were formed by

both the WT and null cells (Figure 5A). This was likely due to oncogenic stress caused by HrasG12V

induction. Strikingly, in contrast to the WT cells that generally formed smaller colonies in subsequent

passages, the miR-203 null cells generated more and bigger clones compared to WT control cells at

each passage (Figure 5A). Collectively, the serial passage assay supported the enhanced selection of

tumor-initiating cells in the absence of miR-203 upon oncogenic Hras induction.

To further characterize the ability of miR-203 to suppress the growth of oncogenic Hras-

transformed cells, we used our previously established Krt14-rtTA/pTre2-miR-203-inducible model

(Jackson et al., 2013). After infecting the inducible keratinocytes with either the pBabe vector control

or pBabe-HrasG12V, we treated the cells with 5 μg/ml doxycycline to induce ∼4- to 7-fold increase in

miR-203 expression, a physiologically relevant level of miR-203 typically observed during epidermal

differentiation (Figure 5B). Introduction of miR-203 resulted in suppression of keratinocyte

proliferation and colony formation ability (Figure 5C,D), as noted previously (Yi et al., 2008; Jackson

et al., 2013; Benaich et al., 2014). Furthermore, whereas oncogenic Hras-enhanced S-phase entry,

short-term (∼24 hr) induction of miR-203 completely abolished the gain of S-phase entry (Figure 5D).

Over a longer term, continuous induction of miR-203 severely compromised the colony-forming

capacity of the transduced cells (Figure 5C). We did not detect any evidence for enhanced apoptosis

caused by miR-203, as measured by the absence of sub-G1 keratinocytes. Taken together, our results

suggest that the loss of miR-203 is critical for the initial selection and expansion of primary

keratinocytes harboring the oncogenic Hrasmutation and the gain ofmiR-203 can effectively suppress

the growth of these cells.

Comprehensive identification of miR-203 targets reveals regulation of
the Ras signaling pathway
Our data so far have suggested a role ofmiR-203 in suppressing the expansion of tumor-initiating cells

driven by oncogenic Hras mutations. To decode the underlying mechanism, we carried out

comprehensive analyses to identify miR-203 targets in the skin. Recent studies demonstrated that

miRNAs’ impact on gene expression could be largely captured by measuring the changes of mRNA

levels upon manipulation of miRNA expression (Guo et al., 2010; Eichhorn et al., 2014). In parallel,

the high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP)

approach directly crosslinks miRISC to their targets and identifies miRNA targets through physical

interaction (Chi et al., 2009). Therefore, we took a combinatorial approach integrating multiple data

sets obtained from our KO and inducible mouse models with Ago2 HITS-CLIP analysis.

We applied several different profiling techniques including ribosome profiling, RNA-Seq (3Seq)

and microarray methods to determine upregulated genes in miR-203 KO samples and downregulated

genes in miR-203-induced samples. For ribosome profiling and 3Seq, we used primary keratinocytes,

which are amenable to effective cycloheximide treatment and therefore also allowed us to investigate

miR-203’s impact on translation efficiency (Figure 6A). For microarray analysis, we used freshly

isolated epidermis obtained from miR-203 WT and KO animals at P4.5. To interrogate the impact of

miR-203 gain-of-function, we used the Krt14-rtTA/pTre2-miR-203-inducible mouse model that allows

us to control the duration and dosage of miR-203 expression (Jackson et al., 2013). We applied

microarray profiling to determine downregulated genes in FACS-purified neonatal epidermal and hair

follicle progenitors with a short-term (24 hr) induction of miR-203 (Figure 6A). Altogether, we accrued

20 genome-wide expression data sets from miR-203 WT, KO and inducible samples. This

comprehensive collection of functional genomic data allowed us to characterize the action of miR-

203 on the transcriptome.

We first analyzed the miR-203 overexpression samples. GO-analysis demonstrated that genes

involved in regulation of mitotic cell cycle, DNA synthesis, and metabolism were prominently

downregulated upon miR-203 induction (Figure 6—source data 1). miR-203 upregulation in both

epidermal and hair follicle progenitors resulted in strong suppression of transcripts harboring perfect

seed matches to miR-203 in their 3′UTRs (Figure 6—figure supplement 1). Among them, transcripts

containing the 8-mer matches were strongly suppressed, compared to transcripts without a miR-203

seed match (p = 1.5 × 10−23 for epidermis and 2.6 × 10−25 for hair follicle, respectively)

(Figure 6—figure supplement 1A). In contrast to miR-203 overexpression, deletion of miR-203 did
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Figure 5. miR-203 antagonizes HrasG12V-driven keratinocyte proliferation. (A) HrasG12V transduced miR-203−/− primary cultures are more colonogenic upon

serial passage than wild-type controls (representative of n = 2 independent experiments, mean ± standard deviation displayed. *p < 0.05, ns = non-

significant, Student’s t-test two-sided). (B) qPCR of miR-203 induction upon addition of doxycycline in vector and HrasG12V transduced cells (mean ± SEM

displayed, n = 3 biological replicates). (C) Restoration ofmiR-203 using a doxycycline-inducible transgene results in suppression of colony formation ability

in HrasG12V transduced and control keratinocytes. miR-203 was induced with doxycycline (5 μg/ml) 24 hr after plating (representative of n = 3 independent

experiments, mean ± standard deviation displayed, *p ≤ 0.05, , ns = non-significant). (D) miR-203 restoration suppresses HrasG12V-driven S-Phase entry.

miR-203 was induced for 24 hr prior to harvesting for flow cytometry. (n = 3, mean ± standard deviation displayed, *p ≤ 0.05).

DOI: 10.7554/eLife.07004.011
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Figure 6. Comprehensive identification of miR-203 targets using genome-wide expression analyses and Ago2 HITS-CLIP. (A) Schematic of genome-wide

expression profiling data sets used in meta-analysis to identify bono-fide miR-203 targets. (B) Genes upregulated in all threemiR-203 loss-of-function data

sets (786 genes, no fold-change or p-value cut-off) were compared to genes downregulated in both miR-203 gain-of-function data sets (1704 genes, no

fold-change or p-value cut-off) to identify a subset of genes with a strong inverse correlation to miR-203 expression (294 genes) of which 100 genes

contained miR-203 7mer or 8mer seed sequence matches in their 3′UTRs. (C) Table demonstrating top 20 genes identified in meta-analysis ranked by

negative-correlation to miR-203 expression. Genes colored in red contain 3′ UTR miR-203 7 or 8mer seed matches. (D) De novo motif searching identified

an 8mer miR-203 seed motif, complementary to the miR-203 seed sequence enriched in the 3′UTR of candidate miR-203 target genes identified in the

Figure 6. continued on next page
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not perturb transcript levels genome-wide as strongly as observed under the induced conditions and

offered little insight into miR-203’s function based upon GO analysis (Figure 6—source data 1).

However, despite the relatively mild changes in the transcript levels in the KO skin and primary

keratinocytes, transcripts that contain 8-mer 3′UTR matches were still more significantly upregulated

than transcripts without any miR-203 seed matches (p < 0.05) (Figure 6—figure supplement 1B).

Lastly, a ranked sum analysis that ranked genes based on expression changes correlated with the

levels of miR-203 showed that genes with the 8-mer or 7-mer seed ranked significantly higher than

those transcripts without seed matches (Figure 6—figure supplement 1C).

By demanding all potential targets be upregulated in all the miR-203 KO samples and

downregulated in all the miR-203-induced samples, we identified 294 transcripts as our candidates

for miR-203 targets (Figure 6B). Among the top 20 most differentially expressed transcripts when

miR-203 was deleted or induced, 15 of them contain at least one 7-mer or 8-mer match in their 3′UTRs
(Figure 6C and Figure 6—source data 2). In support of this approach, an unbiased de novo motif

search using the 3′UTRs of these 294 transcripts revealed that the most enriched motif (ACAUUUCA,

p = 1 × 10−13) perfectly matched to nucleotide position 2–9 of miR-203, the 8-mer seed sequences of

miR-203 (Figure 6D). Additional statistical analysis of the number of genes containing perfect 3′UTR
matches to the 7-mer or 8-mer seed among these candidates revealed significant enrichment over the

background distribution among mRNAs expressed in the skin (Figure 6D). Therefore, we selected

genes containing 7-mer or 8-mer seed matched 3′UTR sites as miR-203 target candidates and

obtained a collection of 100 potential miR-203 targets (Figure 6B).

We then applied HITS-CLIP to interrogate the direct interaction between miR-203 and its mRNA

targets. We generated four Ago2 HITS-CLIP libraries from primary WT keratinocytes, which

abundantly express miR-203 (Figure 1G). Ago2-RNA complexes were isolated from a region

extending from approximately 110 kd–130 kd as expected (Figure 6—figure supplement 2A).

Sequencing libraries from Ago2 HITS-CLIP samples were generated and analyzed using previously

described methods (Chi et al., 2009; Moore et al., 2014). The HITS-CLIP faithfully captured miRNA

species expressed in keratinocytes, including miR-203 (Figure 6—figure supplement 2B,E). Overall

our HITS-CLIP reads and clusters alignment were similar to previous published results with a significant

portion aligned to 3′UTRs (Figure 6—figure supplement 2D). To further validate our approach, we

analyzed the positional enrichment of miRNA seed sequences within the 3′UTR HITS-CLIP clusters and

detected strong enrichment over dinucleotide shuffled cluster sequences or randomly distributed 3′
UTR regions (Figure 6—figure supplement 3A). Additionally, de novo motif searching for 8mer

Figure 6. Continued

meta-analysis (294 genes). Table demonstrating enrichment for 7 or 8mer seed matches in the 3′UTR of candidate miR-203 target genes (294) over the

background seed distribution in primary keratinocytes, which is not seen for randomly selected 294 genes expressed in primary keratinocytes or

a negative control gene set of genes upregulated in miR-203 gain-of-function and downregulated miR-203 loss-of-function (353 genes). (E) Schematic of

Ago2 HITS-CLIP and the identifiedmiR-203 seed motif. (F) Diagram of genes detected by expression meta-analysis and Ago2-HITS-CLIP. Table of 21 high

confidence miR-203 targets identified through expression meta-analysis and that have Ago2-HITS-CLIP 3′UTR peaks with miR-203 seed matches.

DOI: 10.7554/eLife.07004.012

The following source data and figure supplements are available for figure 6:

Source data 1. GO-analysis of selected miR-203 data sets.

DOI: 10.7554/eLife.07004.013

Source data 2. Putative miR-203 targets detected in the expression meta-analysis.

DOI: 10.7554/eLife.07004.014

Figure supplement 1. Transcripts containing 3′UTR miR-203 seed matches are regulated by miR-203.

DOI: 10.7554/eLife.07004.015

Figure supplement 2. Ago2-HITS-CLIP in primary keratinocytes.

DOI: 10.7554/eLife.07004.016

Figure supplement 3. Ago2 HITS-CLIP 3′UTR peaks are enriched in keratinocyte miRNA seed matches, including miR-203.

DOI: 10.7554/eLife.07004.017

Figure supplement 4. Predicted miR-203 targets based on HITS-CLIP are regulated by miR-203.

DOI: 10.7554/eLife.07004.018

Figure supplement 5. miR-203 targets do not display translation efficiency changes upon miR-203 ablation.

DOI: 10.7554/eLife.07004.019
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motifs identified the seed sequences of miRNAs that are highly expressed in keratinocytes

(Figure 6—figure supplement 3B). The motif corresponding to miR-203 detected by the HITS-

CLIP was also ACAUUUCA (p = 1 × 10−19), identical to the motif detected by our transcriptome

analysis (Figure 6E and Figure 6—figure supplement 3B). A total of 113 mRNAs were detected to

have miR-203 seed containing Ago2 binding sites. We next examined the ranked sum expression of

these targets and determined that transcripts with Ago2 HITS-CLIPmiR-203 binding sites were ranked

significantly higher compared to non-targeted mRNAs, indicating that many of these targets are

functional (Figure 6—figure supplement 4). Finally, we did not detect any evidence for global

regulation at the translation level for miR-203 targets based on our analysis of translational efficiency

changes upon miR-203 deletion (Figure 6—figure supplement 5). Together, these HITS-CLIP data

independently validated that miR-203 uses its seed sequences for mRNA targeting and predicted

113 miR-203 targets based on Ago2 binding.

By combining the targets detected by our differential expression data sets and by the HITS-CLIP,

we identified a list of high-confidence targets for miR-203 (Figure 6F). Importantly, we found

a number of key regulators in the Ras signaling pathway and important genes involved in regulation of

cell division including Hbegf, Ccnd1, Snai2, Met, and Pola1 in this list (Figure 6F). This collection

of miR-203 targets suggests that miR-203 targets multiple pathways, including several components of

the Ras signaling pathway, to suppress cell proliferation.

miR-203 directly targets Hbegf and Pola1
Our genome-wide analyses identified a number of novel targets of miR-203. Given our findings that

the loss of miR-203 promotes the selection and expansion of oncogenic Hras-transformed cells both

in vivo and in vitro, we were interested in understanding the underlying mechanism. Overall, miR-

203 targets identified in the meta-analysis were enriched in the upregulated transcripts in HrasG12V-

transformed keratinocytes, compared to non-targeted transcripts, consistent with the down-

regulation of miR-203 in these cells (Figure 7—figure supplement 1A). Among these targets, we

were intrigued by the observation that multiple regulators of the Ras signaling pathway and critical

factors for DNA replication and cell cycle progression were among our high confidence targets and

additionally were among the most upregulated miR-203 targets in HrasG12V-transformed

keratinocytes (Figure 7—figure supplement 1B). To begin to validate the high-confidence set of

miR-203 targets, we selected Pola1 and Hbegf for further study. Pola1 is the catalytic subunit of the

DNA-POL-alpha holoenzyme, which is required in initiation of DNA replication during S-phase

(Lehman and Kaguni, 1989). Hbegf is an Egf-like ligand that activates MAPK signaling through

activation of EGF-receptors, Erbb1 and Erbb4. In keratinocytes, Hbegf is mitogenic and promotes

keratinocyte migration (Stoll et al., 2012). In an epithelial cancer cell line, Hbegf acts as an

oncogene promoting cell proliferation (Miyamoto et al., 2004). Pola1 and Hbegf contain 3′ UTR
miR-203 target sites (9-mer and 8-mer respectively) that are targeted by miR-203, validated by

luciferase assay (Figure 7A). Furthermore, in miR-203 null epidermis, both Pola1 and Hbegf mRNAs

were elevated (Figure 7B). In addition to mRNA levels, Pola1 protein levels were also elevated in

the absence of miR-203. It was further elevated in the presence of HrasG12V and repressed by miR-

203 induction (Figure 7C,D). We were unable to measure the protein level of Hbegf due to poor

antibody performance. Additionally, we observed that the expression of Ccnd1, an essential cell

cycle regulator that is often induced or amplified by oncogenic Ras (Downward, 2003; Stransky

et al., 2011), showed a strong negative correlation to miR-203 (Figure 7C,D). This suggested that

loss of miR-203 increases the levels of Ccnd1 and contributes to the observed upregulation of this

critical gene.

To assess the functional consequences of Hbegf and Pola1 suppression on keratinocyte

proliferation, we knocked down these targets using three independent shRNAs. Suppression of

Hbegf and Pola1 strongly suppressed the growth potential of keratinocytes (Figure 7E). Additionally,

we knocked down Hbegf and Pola1 in established miR-203+/+ and miR-203−/− keratinocytes

transduced with HrasG12V and similarly observed potent suppression of keratinocyte growth potential,

demonstrating that these targets are also required in HrasG12V-transformed keratinocytes

(Figure 7—figure supplement 2). Taken together, these results validate Hbegf and Pola1 as direct

targets of miR-203. We hereby propose a model in which miR-203 restricts selection and expansion of

Hras-mutated cells by repressing multiple targets, a subset of which are involved in the Ras signaling

pathway (Figure 7F).
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Figure 7. Hbegf and Pola1 are direct miR-203 target genes critical for keratinocyte proliferation. (A) 3′UTR luciferase reporter assays demonstrate that

miR-203 directly targets Trp63 (positive control), Pola1, and Hbegf in keratinocytes (representative of n = 3 independent experiments, mean ± propagated

standard deviation displayed, *p < 0.05, ns = non-significant, Student’s t-test two-sided) (B) Hbegf and Pola1 are upregulated in miR-203−/− isolated

epidermis (p4) (n = 8 and n = 10,miR-203+/+ andmiR-203−/− animals respectively, mean ± SEM displayed, *p < 0.05). (C, D) Western blots from lysates with

miR-203 overexpression (48 hr) or miR-203 ablation. (E) shRNA knockdown of Hbegf or Pola1 impairs keratinocyte colony formation ability (representative

Figure 7. continued on next page
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Discussion
Identification and experimental validation of driver gene mutations have been instrumental for our

understanding of cancer biology (Vogelstein et al., 2013). Although it is clear that not all cells

harboring driver gene mutations develop into tumors, the mechanism of clonal selection within cells

that have acquired driver gene mutations remains poorly understood. In this study, we used an

oncogenic Hras-induced tumor model to determine the molecular consequences of this oncogenic

driver mutation and to study the selection process. We quantitatively measured the impact of

oncogenic HrasG12V on the landscape of mRNA and miRNA expression. Whereas our mRNA-Seq data

confirmed the profound ability of HrasG12V in promoting cellular transformation, our miR-Seq data

revealed new insights into the dynamic changes in highly expressed miRNAs caused by HrasG12V

(Figure 1). In particular, the downregulation of miR-203, one of the most highly expressed miRNAs in

the skin, likely occurs at the transcriptional level (Figure 2C,D). By examining tumor samples obtained

from both mouse and human at multiple stages, we showed that the downregulation of miR-203 is

associated with tumor initiation and progression (Figure 2E–P). To determine the role of miR-203 in

this process, we generated a KO mouse model. Initial insights into the function of miR-203 came from

the analysis of miR-203 null epidermis during skin development. Whereas we and others have shown

the potent inhibition of epidermal proliferation by miR-203 with gain-of-function approaches

(Lena et al., 2008; Yi et al., 2008; Jackson et al., 2013; Benaich et al., 2014), it is unknown how

the loss of miR-203 affects the skin and mouse development in general. By analyzing the KO mouse,

we revealed an early, albeit mild, hyperproliferative phenotype in the embryonic but not postnatal

skin (Figure 3E–I). However, when we subjected miR-203 WT and null cells obtained from postnatal

skin for their colony-forming ability, we observed an increased ability of the miR-203 null cells to give

rise to colony-forming cells (Figure 3J,K). This observation was indicative of a role for miR-203 in

restricting the expansion of highly proliferative cells. Of note, we did not observe any defects in the

formation of the differentiated layers of the skin in the miR-203 KO mice. This suggests that the

primary function of miR-203 is to restrict cell proliferation but not to promote epidermal

differentiation per se. When we examined the role of miR-203 during DMBA/TPA-mediated chemical

carcinogenesis, we observed strong increase in the number of papillomas formed in the KO skin

(Figure 4A–C). In vitro colony formation assays with serial passages further illustrated the enhanced

ability for selecting tumor-initiating cells with miR-203 KO cells when subjected to HrasG12V

transformation (Figure 5A). However, due to tumor resistance of our C57BL/6 strain, we were

unable to determine if the loss of miR-203 also promotes malignant transition. Of note, a recent study

showed interesting results that restoration of miR-203 suppresses human SCC metastasis (Benaich

et al., 2014). Collectively, our results provide experimental evidence for an important role of miR-203

in suppressing clonal selection and expansion of Hras-mutated nascent cancer cells.

A major challenge in understanding miRNA functions is to identify their high-confidence targets

globally. To this end, we employed two independent approaches: transcriptome analysis with our KO

and inducible models and direct miRNA target capture by Ago2 HITS-CLIP (Figure 6). Importantly,

with our expansive data set, we confirmed that miR-203 utilizes the 5′ seed sequences to target

perfectly matched sequences located on the 3′UTRs of its target genes. Consistent with recent

genome-wide studies for the impact of miRNA on mRNA levels and translation efficiency in mammals

(Guo et al., 2010; Eichhorn et al., 2014), we found no evidence for global changes of translational

efficiency in the absence of miR-203, one of the most highly expressed miRNAs in the skin. However,

we also noted that Trp63, a well-established miR-203 target, showed little change at the mRNA levels

Figure 7. Continued

of n = 3 independent experiments, *p <0.05, mean ± standard deviation displayed). (F) Model for the mechanism of miR-203 in restricting Hras-initiated

tumorigenesis.

DOI: 10.7554/eLife.07004.020

The following figure supplements are available for figure 7:

Figure supplement 1. A subset of miR-203 targets are upregulated by HrasG12V.

DOI: 10.7554/eLife.07004.021

Figure supplement 2. Hbegf and Pola1 are required for keratinocyte growth potential in HrasG12V-transformed miR-203+/+ and miR-203−/− cultures.

DOI: 10.7554/eLife.07004.022
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under all conditions (not shown). Our analysis with differential gene expression did not identify Trp63

as a miR-203 target. In contrast, the recognition of the 3′UTR site of Trp63 by miR-203 was robustly

detected by the HITS-CLIP (Figure 6E). Thus, it is likely that our identification of miR-203 targets

based on the transcriptome analysis alone was conservative. More studies will be required to further

integrate direct miRNA target capture with transcriptome analysis for miRNA target identification.

Nevertheless, we still observed strong enrichment of miR-203 targets in genes required for cell

proliferation. These high-confidence targets illustrate the broad targeting of cell proliferation by

miR-203 and suggest mechanisms by which loss of miR-203 can facilitate the expansion of oncogenic

Hras-transformed cells. These new insights point to the potential of utilizing miR-203 to simultaneously

target multiple effectors required for cell division in human cancers. We also note thatmiR-203 is known

to antagonize human papillomaviruses (HPV) (Melar-New and Laimins, 2010). Our identification of

Pola1, a critical cellular gene required for HPV genome replication, as a target of miR-203 may provide

a potential mechanism for miR-203-mediated antagonism against HPV infection. Finally, the relatively

mild requirement for miR-203 in slowly proliferating cells suggests that a reduction or increase in the

level ofmiR-203may be well tolerated by most normal cells. This unexpected discovery could be further

explored to determine miR-203’s therapeutic potential in treating certain types of epithelial cancers.

Materials and methods

3seq library construction
3′seq libraries were constructed using methods described previously (Wang et al., 2013). Briefly, 500

ng of total RNA isolated from primary keratinocytes was poly-A purified (Dynabeads, Thermo Fisher

Scientific, Waltham, MA) and chemically fragmented by treatment 95˚C for 8 min in Fragmentation

Buffer (Thermo Fisher Scientific). Fragmented RNAs were then oligoDT primed with a P7T20V oligo and

reverse transcribed using SuperScript III (Thermo Fisher Scientific) (see Supplementary file 2 for Oligo

Sequences). Following ethanol precipitation, ligation competent cDNAs were generated via second-

strand synthesis using RNase H and DNA Pol I enzymes, end-repaired using a mix of T4 DNA

polymerase, Klenow DNA polymerase and T4 Polynucleotide Kinase in the presence of dNTPs

(New England Biolabs, Ipswich, MA), and A-Tailed using Klenow 3′ to 5′ exo- in the presence of

dATP (New England Biolabs). Ligation was then performed using the P5 Adaptor with T4 DNA Ligase

for 1 hr (New England Biolabs). cDNA inserts 80–100 nt in length were isolated from 8% PAGE gels and

subject to PCR amplification using RP1 and RT-Primer oligos for 12–16 cycles (Phusion, New England

Biolabs). PCR products were isolated from PAGE gels and subject to 6 cycles of secondary PCR to

introduce unique indices for multiplexed DNA sequencing on a HiSeq 2000 (Illumina, San Diego, CA).

Bioinformatics processing of 3seq data was performed as described previously, including adaptor

trimming, read alignments, peak calling, peak filtering to remove internal polyA priming events, and

transcript quantification with minor modifications (Wang et al., 2013). Following read alignment to

the mm10 genome, alignments from every library were grouped together for peak calling and 3′end
filtering to create a master set of high confidence 3′ end peaks. From this 3′end data set, reads counts

for each library were obtained (see Supplementary file 1 for mapping statistics). To obtain transcript

read counts, reads from all peaks that passed our internal priming filter and were 3′UTR localized were

summed to obtain an overall transcript count for each transcript. Normalized transcript counts were

calculated as reads per million reads mapped (RPM). To determine differential transcript expression,

low-abundance transcripts with less than 10 reads in two libraries were first excluded then the

remaining transcripts were analyzed with EdgeR with classical analysis parameters.

Small RNA-Seq
Small RNA-Sequencing libraries were prepared using minor modifications of a previously published

protocol that reduces RNA-ligation biases and enables accurate miRNA quantification (Zhang et al.,

2013). Briefly, two micrograms of total RNA was first ligated to a pre-adenylated 3′ linker (10 μM)

using truncated T4 RNA Ligase 2 (20 Units New England Biolabs) in the presence of PEG-8000 (10%

wt/vol) RNaseOUT (20 Units Thermo Fisher Scientific) for 4 hr at room temperature. Ligation reactions

were then resolved on 7 M Urea-15% PAGE gel to isolate the miRNA-3′ adaptor hybrids. Following
overnight elution from the acrylamide gel in HSCB buffer (400 mM NaCl, 25 mM Tris–HCl pH 7.5, 0.1%

SDS), ligation products were ethanol precipitated, resuspended in 5′ ligation reaction mixture

containing a 5′ linker (10 μM), 1 mM ATP, Peg-8000 (20% wt/vol), 1 × T4 RNA Ligase buffer (New

Riemondy et al. eLife 2015;4:e07004. DOI: 10.7554/eLife.07004 18 of 26

Research article Developmental biology and stem cells | Human biology and medicine

http://dx.doi.org/10.7554/eLife.07004


England Biolabs), denatured for 5 min at 70˚C, after which RNaseOUT (20 units) and T4 RNA Ligase 1

(10 units) were added. Following ligation for 37˚C for 2 hr, cDNA was generated via reverse

transcription using Superscript III (Thermo Fisher Scientific) in the presence of a 3′adaptor specific

primer. cDNA products were then subjected to 10–14 PCR cycles and resolved on 8% native PAGE

gels. Libraries were then eluted as described above, precipitated, and submitted for sequencing on

a HiSeq 2000 (Illumina).

Small-RNA sequencing reads were analyzed following previously described methods with the

following modifications (Zhang et al., 2013). Adaptor sequences were trimmed from reads using

CutAdapt using default parameters. Reads were then further trimmed to remove the randomized

adaptor dinucleotides on the 5′ and 3′ end. Read were next aligned to a database of mouse miRNA

sequences (miRbase) using blastn with the following settings (blastn -word_size 11 -outfmt 6 -strand

plus). Blast alignments were then parsed with custom python scripts to extract and count the best

miRNA alignment for each read with a minimum read alignment of 18 nucleotides. miRNA counts for

each library were then filtered to keep only miRNAs with a minimum count of 50 reads in two libraries

and analyzed for differential expression using EdgeR, with classical analysis parameters.

Affymetrix microarray analysis
For the miR-203 epidermal loss-of-function microarray analysis, RNA was isolated from total

epidermal samples from two-pairs of miR-203+/+ and miR-203−/− animals at p4. For the doxycycline-

inducible miR-203 over-expression microarray analysis, RNA was isolated from two pairs of

doxycline induced or uninduced Krt14-rtTA/ pTre-miR-203 animals using FACS sorting for Krt14-

H2B-GFP+ cells as described previously (Jackson et al., 2013). The microarray analysis of miR-203

overexpression in basal epidermis was previously published (Jackson et al., 2013). Subsequently

total RNAs (500 ng) were processed and hybridized to the GeneChip Mouse Genome 430 2.0 array

(Affymetrix, Santa Clara, CA) following the manufacturer’s instruction at the MCDB microarray

facility. Microarray image files were processed using the R Bioconductor suite and Mas5

normalization. Probesets were then filtered to include only those probes with present or absent

calls in at least two arrays. Probesets were then collapsed using the probeset with the maximum

averaged probeset intensity to represent each GeneID. Log2 fold changes were then computed

using the limma Bioconductor package.

Ribosome profiling
Ribosome profiling was performed on primary keratinocyte lysates using the ARTseq Ribosome

profiling kit (Illumina). Briefly, lysates from a 10-cm dish of primary keratinocytes were isolated in the

presence of cycloheximide (Sigma-Aldrich, St. Louis, MI, 50 μg/ml) and subject to limited RNAse

digestion (10 units) for 45 min at room temperature. RNase digestion was terminated by addition of

15 μl of SUPERase In (Thermo Fisher Scientific) followed by ribosome isolation using illustra MicroSpin

S-400 HR Columns (GE Healthcare, United Kingdom). Following RNA extraction and precipitation,

rRNA was depleted using the Ribo-Zero Gold kit (Illumina), with the remaining RNA then fractionated

through 18% PAGE gels. RNA species 28–32 nt were isolated for adaptor ligation, reverse

transcription, circularization, and PCR amplification following the manufacturer’s protocol. PAGE gel

isolated PCR products were then sequenced on a HiSeq 2000 (Illumina).

Raw reads were first trimmed to remove 3′ adaptors using cutAdapt with default parameters.

Reads were aligned to mm10 rRNA, tRNA, and ncRNA (Ensemble annotation) databases using Bowtie

(default settings) to exclude reads aligning to abundant rRNA, tRNA, and ncRNA sequences.

Unaligned reads were then aligned via Tophat using default settings, with a supplied .gtf annotation

file containing combined Refseq and Ensembl gene annotations (iGenomes Illumina downloaded

9/4/2013). Uniquely aligned read counts were quantified across each CDS using HTSeq Count

(settings: -s yes -m union -t CDS) using the above-mentioned GTF annotation database. Transcripts

with low reads counts were excluded by only keeping transcripts with at least 50 reads in at least two

libraries. Filtered transcript reads count data were then analyzed for differential expression using

EdgeR with classical analysis parameters. To calculate translation efficiency for each transcript, Reads

Per Million Mapped (RPM) values from 3Seq were divided by Reads per Million Mapped to coding

sequence for the Ribo-Seq. The change in translation efficiency was then computed as the ratio of

translation efficiency in the miR-203−/− and miR-203+/+ libraries.
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Ago2 HITS-CLIP
Ago2 HITS-CLIP was performed as described with minor modifications (Chi et al., 2009). 15-cm2

dishes of primary keratinocytes were irradiated twice at 200 mJ/cm with 254 nm UVC light. Following

irradiation, cell lysates were harvested by scraping and stored at −80˚C. Following thawing, lysates

were further lysed by trituration 3 times through pre-chilled 25- and 30-gauge needles. Lysates were

then treated with 10 μl Turbo DNase (Thermo Fisher Scientific) and 5 μl RNaseOUT (Thermo Fisher

Scientific) per ml of lysate. Limited RNase digestion was performed using 10 μl per ml of lysate of a 1:

20 dilution of an RnaseA/T1 mix (Sigma-Aldrich/Thermo Fischer Scientific 1× mix = 3.33 μl RnaseA [2

μg/μl] with 6.66 μl RnaseT1 [1 U/μl]). Crosslinked Ago2 was recovered via immunoprecipitation for 2 hr at

4˚C with 3 μg of a monoclonal anti-mouseAgo2 antibody (Wako Chemicals USA Inc., Richmond, VA, clone

2D4) complexed with Protein-G Dynabeads (Thermo Fisher Scientific). Immunoprecipitates were washed

twice with High-Salt Buffer and PNK buffer, then end labeled with 25 μCi 32P y-ATP using PNK 3′
phosphatase minus (New England Biolabs) for 5 min at 37˚C. After washing the beads as listed above, 5′
adaptor ligation was performed for 2 hr at room temperate using T4 RNA Ligase 1 with 10 μM 5′ RNA

Linker, 20% PEG-8000 (wt/vol final), 1 mM ATP, and RNaseOUT (Thermo Fisher Scientific). Beads were

again washed twice with PNK buffer then resuspended in a phosphatase reaction with 5 μl FastAP
(Thermo Fisher Scientific) with RNaseOUT. Following washing twice with PNK buffer, Protein–RNA

complexes were eluted from the beads using 1× NuPage Loading buffer supplemented with 50 mM DTT

at 70˚C for 10 min. Protein–RNA complexes were then resolved on an 8% Bis-Tris Gel and transferred to

nitrocellulose. Membranes were exposed to a phosphor screen for 1–2 hr to obtain an autoradiograph.

Subsequently, RNA–protein complexes migrating in the 110–130 kD range were excised. RNA was

recovered from the nitrocellulose using Proteinase K treatment followed by phenol–chloroform extraction

and ethanol precipitation. Isolated RNA was ligated to a 3′linker using the same ligation reaction

conditions as for 5′ ligation, and ligated RNA species were fractionated away from adaptor–adaptor

products on 10% UREA PAGE gels. The RNA was eluted from the PAGE gel with HSCB buffer overnight

at 4˚C, then ethanol precipitated and resuspended for reverse transcription with SuperScript III (Thermo

Fisher Scientific). cDNA products were then subjected to PCR amplification for 20–24 cycles and

fractionated on an 8% native PAGE gel. PCR products representing cDNA inserts of 20–50 nts were

recovered and subject to sequencing on a HiSeq 2000 (Illumina).

HITS-CLIP reads were analyzed as follows. First, reads were processed to identify miRNA alignments

using the same pipeline that we use for Small-RNA-Seq listed above. Reads not mapping to miRNAs were

next processed as follows. Reads were trimmed with Cutadapt to remove adaptor sequences using

default settings. To avoid PCR duplicates from biasing the analysis, duplicate reads were then collapsed to

a single read using Fastx_collapser (default settings). The 5′ and 3′ adaptor sequences contain

randomized dinucleotides on their 3′ and 5′ ends respectively, which were next trimmed from the reads.

The reads were then aligned to the mm10 genome assembly using NovoAlign requiring a minimum

alignment length of 25 nucleotides (settings –s 1 –t 85 –l 25) (Novocraft, Malaysia). All unique alignments

from each library were then pooled to identify Ago2HITS-CLIP clusters. Clusters were defined as two read

alignments that overlap by a minimum of one nucleotide. Clusters were next annotated to gene features

in a hierarchical manner in which clusters were annotated to protein coding RefSeq 3′ UTRs (with 5 kbp

extension allowed), RefSeq CDS regions, RefSeq 5′ UTRs, Ensemble ncRNA regions, and RefSeq intron

regions. Clusters not found in these regions were annotated as intergenic clusters. For predicting miRNA

target sites, 3′UTR cluster sequences were searched for 6mer seed-sequence matches for miRNA species

that accounted for 90% of miRNAs expressed in epidermis based on small-RNA sequencing. From this

data set, 117 binding sites in 113 mRNAs were predicted be miR-203 target sites.

Meta-analysis of miR-203 targets
The miR-203 overexpression data sets used in the meta-analysis included previously published

microarrays from sorted H2B-GFP+ epidermal cells with transient miR-203 induction (GSE45121), and

microarrays from sorted H2B-GFPhi+ hair follicle progenitor cells with transient miR-203 induction

described in this manuscript. The miR-203 knockout data sets used in the meta-analysis included the

microarrays from p4.5 total epidermal samples from miR-203+/+ and miR-203−/− animals, ribosome

profiling of miR-203+/+ and miR-203−/− primary keratinocytes, and 3seq of miR-203+/+ and miR-203−/−

primary cultures. We also performed 3seq on miR-203−/− cells transformed with HrasG12V; however,

there was no enrichment for miR-203 seed matches in the upregulated transcripts based on CDF
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analysis, consistent with the low levels of miR-203 in HrasG12V-transformed keratinocytes, and

therefore, this data set was excluded from the expression meta-analysis (data not shown). Gene

symbols were used to compare across microarray, 3Seq, and Ribo-Seq data sets. Log2 fold changes

were used to assess differential gene expression in each data set. In total 6407 genes were detectable

in all the data sets, from which 294 satisfied the criteria of being upregulated in all the miR-203

knockout data sets and downregulated in the miR-203 overexpression data sets. Negative control

data sets were constructed to analyze the enrichment of genes containing miR-203 seed matches with

the following criteria, randomly selected genes from the list of detected transcripts in the meta-

analysis, or genes that have a positive correlation to miR-203 expression (downregulated in miR-203

knockout data sets and upregulated in miR-203 overexpression data sets).

In order to compare gain-of-function and loss-of-function data sets in aggregate, a ranked

correlation to miR-203 metric was calculated. Transcripts were assigned a rank in each knockout data

set with the most upregulated gene given a rank of 1. Transcripts were next assigned a rank in each

overexpression data set with the most downregulated gene given a rank of 1. The ranked values from

each of the 5 data sets were then summed and ranked with the transcript most upregulated uponmiR-

203 ablation and downregulated upon overexpression being assigned a value of 1.

Hierarchical clustering, GO-term analysis, GSEA, 3′UTR motif-searching
Normalized transcript abundances (expressed as Reads Per Million) were used for mean-centered

unsupervised hierarchical clustering using Cluster 3.0 software. For 3seq data, only transcripts with at

least twofold change were selected and for miRNA data, only miRNAs with at least an expression level

of 1000 RPM and at least a twofold change were selected for visualization in JavaTree View. GO-term

enrichment analysis was performed by DAVID using Gene-IDs as input, with analysis being performed

using GO biological processes data sets. GSEA analysis was performed using ranked expression

values for the displayed data set, and genesets were selected from the referenced publications. De

novo motif searching was performed using the HOMER package to search for 7 or 8mer motifs in

RefSeq 3′UTR sequences for selected genesets. For genes with multiple 3′UTR isoforms, the longest

3′UTR was selected for motif searching. miRNA seed-sequence searches in Ago2-HITS-CLIP clusters

were performed with a Python script using regular expressions.

Analysis of The Cancer Genome Atlas (TCGA) data
Head and Neck SCC miRNA-Seq data were obtained from the TCGA https://tcga-data.nci.nih.gov/tcga/

(Download date 10/23/2014). Patient matched normal solid tissue and tumor miRNA quantification

records were identified using custom R scripts (regular expression query for tumor and solid tissue

normal samples respectively ‘TCGA-[0-9A-Z]{2}-[0-9A-Z]{4}-0’, ‘TCGA-[0-9A-Z]{2}-[0-9A-Z]{4}-11’). The

normalized reads_per_million quantification for miR-203 and miR-21 was then plotted to determine the

relative expression in normal and tumor tissue samples.

Mouse strains and generation of the conditional miR-203 knockout
mouse
A gene targeting vector was constructed that contained 11 kbp homologous region surrounding the

miR-203 locus (Figure 3—figure supplement 1). LoxP were inserted flanking the pre-miR-203

sequences, with a neomycin selection cassette flanked by Frt sites. The construct was electroporated

into Cy2.4 ES cells (B6(Cg)-Tyr<c2J> genetic background). Positive clones were identified by

Southern blot analysis using a probe complementary to the 3′ end of the targeted homologous

region. ES cells were injected into blastocysts and chimeras were screened based on white/black coat

color selection. Upon obtaining germline transmission, the neo cassette was excised by breeding the

F1 progeny to an Actb-Flpe line maintained on a C57BL/6J background (obtained from Jackson Labs,

Bar Harbor, ME). miR-203floxed animals were then bred to a EIIa:Cre line maintained on a C57Bl/6

background (obtained from Jackson Laboratory) or a Krt14:Cre line maintained on a mixed

background (obtained from E. Fuchs Laboratory), to obtain germline or conditional ablation ofmiR-203.

The EIIa:Cre transgene was removed from the germline miR-203 deleted line by backcrossing to a

C57Bl/6 line and subsequently maintained on a C57Bl/6 background. pTre2-miR-203/Krt14-rtTA mice

were generated as described previously and maintained on an FVB background (Jackson et al., 2013).
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Mice were bred and housed according to the guidelines of IACUC at a pathogen-free facility at the

University of Colorado (Boulder, CO, USA).

Immunofluorescence, EdU detection, and miRNA in situ hybridization
Frozen cryostat sections (8 μM) were fixed in 4% paraformaldehyde for 10 min at room temperature,

washed thrice with PBS, and blocked for 10 min using Gelatin Block (0.1% Triton X-100, 2% gelatin, 2.5%

normal goat serum, 2.5% normal donkey serum, and 1% BSA in PBS). Primary antibodies, diluted in

gelatin block, were then incubated overnight (see Supplementary file 2 for antibody references).

Following three washes with PBS, sections were incubated with appropriate Alexa-Fluor secondary

antibodies (1:2000) for 1–2 hr at room temperature. Following three washes with PBS, sections were

stained with Hoescht Dye and mounted in Anti-fade solution. miRNA in situ hybridization formiR-203 was

performed on frozen sections as described previously (Yi et al., 2008). EdU detection was performed

following manufacturer’s instructions, with the following parameters. P4 animals were IP injected with 50

μg/g EdU 4 hr prior to tissue harvest. Following EdU detection, the sections were blocked and probed

with antibodies as described above. BrdU detection was performed as previously described, with the

following parameters. Pregnant female mice were IP injected with 50 μg/g BrdU for 2 hr prior to embryo

harvest in OCT compound. miR-203 in situ hybridization on FFPE mouse and human tumor samples was

performed with the following modifications, after deparaffinization in xylenes, the tissue was treated with

proteinase K (20 μg/ml) for an extended period of 20 min at an elevated temperature (37˚C). Microscopy

images were obtained using a Leica DM5500B microscope with either a Leica camera (brightfield) or

Hamamatsu C10600-10B camera (fluorescence) and processed with the Leica image analysis suite,

MetaMorph (MDS Analytical Technologies, Sunnyvale, CA) and Fiji software. BrdU or EdU image

quantifications were performed by counting the number of Krt5+/EdU or BrdU positive cells in randomly

chosen microscopy fields. The length of the basement membrane was used to represent the length of the

epidermis analyzed and was determined by tracing the basement membrane and calculating line length

using Fiji software. Epidermal thickness was assessed by tracing a line tangential to the basement

membrane and extending to the beginning of the stratum corneum and calculating the line length.

qPCR and western blotting
qPCR was performed using the Qiagen (Germany) miR-script RT system and a BioRad CFX-384

machine (Hercules, CA). Fold-changes were computed using the ΔΔCt formula normalized to sno25

and Hprt values. In all qPCR figures, error bars denote standard errors of the normalized mean.

Western blotting was performed using 20–40 μg of protein lysate run on 8–12% SDS-PAGE gels.

Proteins were transferred to PVDF for detection of Pola1, β-tubulin (Tubb5), or Ccnd1. Primary

antibodies were incubated in 5% BSA overnight and detected using HRP-conjugated secondary

antibodies and Amersam ECL-Plus reagents (1:10,000)(GE Healthcare). See Supplementary file 2 for

antibody descriptions and dilutions. X-ray films were scanned and processed with Fiji software to

calculate relative protein abundance.

Primary keratinocyte harvesting and cell culture, viral infections, Edu
flow cytometry, and shRNA knockdown
Primary keratinocytes were isolated from neonatal mice using previously described methods with the

following modifications (Lichti et al., 2008). Isolated skin was incubated on a solution of Dispase

overnight at 4˚C to dissociate the epidermis from the dermis. The following day epidermal sheets

were incubated in 37˚C Trypsin for 10 min to isolate keratinocytes. Primary keratinocytes were then

plated in 6-cm or 10-cm dishes with E-Low media supplemented with 0.2 mM calcium chloride for the

first 24 hr then switched to E-Low media with 0.05 mM Ca++. Lentiviral particles were produced by

transient transfection of pLKO-shRNA constructs, PsPax.2, and pVSVG. 24 hr post transfection, the

media was changed to E-Low calcium. Retroviral particles were produced by transient transfection of

pBabe-vector-puro, pBabe-HrasG12V-puro, pBabe-vector-neo, or pBabe-HrasG12V-neo, with PCL-Eco

and pAdvantage packaging plasmids. Viral supernatant was harvested every 12 hr for up to 96 hr,

pooled and filtered with 0.45-μM filter. Ad-eGFP or Ad-CREeGFP adenoviruses were obtained from

the Iowa Gene Transfer Core and used at MOI of 50. Retroviral and lentiviral infections were

performed 3–4 days after plating primary keratinocytes. Keratinocytes were selected with 2 μg/ml

puromycin for 48 hr or 50 μg/ml neomycin for 7 days, at which time non-infected cell cultures were
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non-viable. Spontaneously immortalized miR-203+/+, miR-203−/−, and miR-203fl/fl mouse keratinocyte

cell lines were also generated via serial passage on mitomycin-C treated NIH-3T3 feeder cell culture

layer and utilized for assays as noted in the text. Flow cytometry was performed as previously

described, with minor modifications (Jackson et al., 2013). Cell cultures derived from pTre2-miR-203/

Krt14-rtTA animals were treated with 5 μg/ml doxycycline for 24 hr to induce miR-203 expression,

pulsed with EdU (10 μM) for 30 min, harvested and analyzed according to the Click-IT EdU Plus

instructions on an BD Cyan flow cytometer (Thermo Fisher Scientific). For colony formation assays,

2000 cells were split into individual wells of 6-well plates, cultured for 10–14 days, fixed with 4% PFA,

and stained with 0.2% crystal violet in 70% ethanol. For induction of miR-203, 24 hr after plating, cells

were supplied with fresh media containing doxycycline at 5 μg/ml. Sigma–Aldrich TRC lentiviral

shRNAs against Hbegf and Pola1 were obtained from the Functional Genomic Facility (University of

Colorado at Boulder, sequences listed in Supplementary file 2).

3′UTR luciferase assays
3′UTR reporter constructs were generated by PCR amplification of 3′UTRs from cDNA or gDNA and

subcloning of the fragments into pGL3-Control (Promega, Madison, WI) (primer sequences listed in

Supplementary file 2). 2 ng renilla luciferase control, 20 ng pGL3-3′UTR reporter, and 380 ng of Krt14

empty vector, or Krt14-miR-203 were transiently cotransfected into keratinocytes in each well of a 12-well

plate using Mirus Bio LT1 reagent (Mirus Bio LLC, Madison, WI). 24 hr later cell lysates were collected, and

renilla and firefly luciferase activity were measured using Dual-Glo Luciferase Assay system (Promega) as

described previously (Yi et al., 2008). Data are represented as the ratio of firefly to renilla RFU values,

normalized to Pgl3-control values. Error bars represent propagated standard deviations.

DMBA/TPA carcinogenesis
DMBA/TPA carcinogenesis was performed as described previously (Abel et al., 2009). The backskin

of 7- to 9-week-old miR-203+/+ and miR-203−/− mice was shaved. 48 hr later the backskin was painted

with a single dose of 25 μg of DMBA in 200 μl of Acetone. 2 weeks following DMBA treatment the

mice began receiving bi-weekly treatments of 4 μg of TPA in acetone. The number of palpable tumors

of at least 1 mm in diameter, persisting for at least 2 weeks, was recorded weekly. Tumor diameters

were measured using a digital caliper. Following 21 weeks of TPA treatment, mice were euthanized

and tumors were collected for HrasQ61l genotyping, OCT embedding, and paraffin embedding.

HrasQ61L genotyping of DMBA/TPA tumors
Tumor DNA was isolated by incubating the tissue in a DNA Lysis Buffer (400 mM NaCl, 0.1% SDS,

1 mM EDTA, 1 μg/ml Proteinase K) at 55˚C for 4 hr. Lysates were then vortexed and lightly centrifuged

to liberate DNA from the partially digest tumor tissue. The supernatant was then removed and subject

to Phenol–chloroform extraction, followed by isopropanol precipitation. Isolated DNA pellets were

then resuspended in TE buffer and quantified by UV spectrophotometry (10 mM Tris pH 8.0, 1 mM

EDTA). The Hras gene was PCR amplified using primers that flank exon 2. Following amplification, the

PCR reactions were digested with 5 units of XbaI restriction enzyme at 37˚C. The reaction products

were then resolved and visualized on a 3% agarose gel. DNA isolated from the tails of animals in the

DMBA/TPA experiment was treated in parallel as a negative control for detection of the HrasQ61L

mutation.

Statistical analysis
Statistical analysis was performed using either R or Microsoft Excel. Statistical methods employed are

indicated in the figure legends. Unpaired two-sided Student’s t-tests were used to assess statistical

significance unless indicated otherwise in the figure legends. For comparisons with multiple

categories, ANOVA was used with Tukey’s HSD post-hoc test. Non-parametric Whitney–Mann

U-tests were used to assess significance for the tumor multiplicity measurements (Abel et al., 2009).

The hypergeometric test was used to assess the enrichment of gene lists in genome-wide studies.

The Kolmogorov–Smirnov test was used to assess differences in cumulative distributions functions.

Data access
All sequencing and microarray data are deposited in the Gene Expression Omnibus (GSE66056).
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